[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6180860A - Power mosfet - Google Patents

Power mosfet

Info

Publication number
JPS6180860A
JPS6180860A JP59201764A JP20176484A JPS6180860A JP S6180860 A JPS6180860 A JP S6180860A JP 59201764 A JP59201764 A JP 59201764A JP 20176484 A JP20176484 A JP 20176484A JP S6180860 A JPS6180860 A JP S6180860A
Authority
JP
Japan
Prior art keywords
cell
substrate
gate
source
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59201764A
Other languages
Japanese (ja)
Inventor
Tetsuo Iijima
哲郎 飯島
Shigeo Otaka
成雄 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59201764A priority Critical patent/JPS6180860A/en
Publication of JPS6180860A publication Critical patent/JPS6180860A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To enable to a decrease current to flow on the internal diodes, which are parasitic on a power MOSFET, and to improve the breaking withstand quantity of the MOSFET by a method wherein the comparatively larger diodes are formed in parts of the surface of the substrate, where are located just under the bonding pads for the source and the gate. CONSTITUTION:Each p type layer and the n<+> type layers formed in the p type layer are used as one cell 7 and the MOS cell part with the plural cells 7 arrayed longitudinally ad laterally is formed. Each aluminum source electrode 8 is connected to the contact part of each cell 7 and a part of the aluminum source electrodes 8 is used as a bonding pad 8A for the source. A part of aluminum gate electrodes 9 is used as a bonding pad 9A for the gate. The p-n junction between p type layers 10 formed in the surface of the substrate 1, where are located just under the bonding pads 8A and 9A, and n<+> type layers 11 formed in parts of the surface of the substrate are constituted as flywheeled diodes FRD1. These FRD1s are designed in such a way as to have a speed on the same level as that of each cell's own FRD2 and the withstand voltage thereof has a withstand voltage equal to that of each cell or a withstand voltage higher than that utilizing the pinch-off between the cells.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はパワーMOSFETにおける寄生バイポーラト
ランジスタ防止技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a technique for preventing parasitic bipolar transistors in power MOSFETs.

〔背景技術〕[Background technology]

パフ −M OS F E T Kは、横形オフセット
構造と、縦形D S A (Diffusion 5e
lf Alignment )構造とがあり、このうち
、後者は多数の素子を平面上に縦横に等間隔にならべる
ことにより高耐圧化と大電流化が図られ、高電圧スイッ
チング用として使用されていることが知られている。(
工業調査会電子材料1981年9月号p22−23)こ
の縦形DSA構造のパワーMOSFETは第3図に示す
ように、底部に高濃度n 型層2を有するn−型シリコ
ン基板1をドレインとし℃、その表面上の一部に絶縁膜
4を介して設けたゲート(ポリS1ゲート)5をマスク
にセル7アライン拡散したp型層3及びn 型層(ソー
ス)6を形成したもので、ゲートへの電圧印加によって
ゲート下のp型層(チャネル部)3aを通るソース・ド
レイン電流ISDを制御するようにM OS F E 
Tを動作させるものである。
Puff-MOSFETK has a horizontal offset structure and a vertical DSA (Diffusion 5e
lf alignment) structure, of which the latter has a high withstand voltage and a large current by arranging a large number of elements on a plane at equal intervals vertically and horizontally, and is used for high voltage switching. Are known. (
Industrial Research Group Electronic Materials, September 1981 issue, p. 22-23) As shown in Fig. 3, this vertical DSA structure power MOSFET uses an n-type silicon substrate 1 having a high concentration n-type layer 2 at the bottom as a drain. , a p-type layer 3 and an n-type layer (source) 6 are formed by aligning and diffusing the cell 7 using a gate (poly S1 gate) 5 provided on a part of the surface via an insulating film 4 as a mask. The source/drain current ISD passing through the p-type layer (channel part) 3a under the gate is controlled by applying a voltage to the MOS F E
This is what makes T operate.

この縦形DSA構造のパワーMO3FETに内蔵されて
いるダイオード(p型層5とn型基体1との間の接合ダ
イオード)をフライホイールダイオードFRD、として
積極的に利用するDC/ACインバータプリンジ回路に
おいては第5図に示すように対偶のMOSFETである
Q、、’Q。
In a DC/AC inverter spring circuit that actively utilizes the diode (junction diode between the p-type layer 5 and n-type substrate 1) built in the power MO3FET with this vertical DSA structure as a flywheel diode FRD, As shown in FIG. 5, the pair MOSFETs Q, ,'Q.

とQ、、Q、とが交互にス・fノチング動作するように
構成されるが、その場合FRD、の他にバイポーラトラ
ンジスタに、、に、(第3図)が寄生しやす(、F R
D tに大電流を流すと、オン、オフの非定常時にバイ
ポーラトランジスタに1 、K。
and Q, ,Q, are configured to perform an alternating S-f notching operation, but in that case, in addition to the FRD, the bipolar transistor (Fig. 3) is likely to be parasitic (,F R
When a large current is passed through Dt, 1,K flows through the bipolar transistor during unsteady on and off states.

がオンしてセル周辺部に電流集中し素子の破壊が生じる
turns on, current concentrates around the cell, and the device is destroyed.

このような寄生バイポーラトランジスタをオンさせない
手段とし℃、回路上において、MO3FET自身のFR
Dtの他に、並列に外付けのFRDを挿入することが考
えられるが、これには高耐圧で電流容量の犬ざいものが
必要であり、接続加工が加わり構造的にも複雑になるな
どの問題がある。
As a means to prevent such parasitic bipolar transistors from turning on, the MO3FET's own FR is
In addition to Dt, it is possible to insert an external FRD in parallel, but this requires a device with a high withstand voltage and current capacity, and requires connection processing, making the structure complicated. There's a problem.

〔発明の目的〕[Purpose of the invention]

不発明は上記の問題を克服するためになされたものであ
り、その目的とするところは、パワーMOSFETにお
ける寄生バイポーラトランジスタによる電流集中をなく
シ、破壊耐量を向上することにある。
The invention was made to overcome the above problems, and its purpose is to eliminate current concentration caused by the parasitic bipolar transistor in the power MOSFET and to improve breakdown resistance.

〔発明の概要〕[Summary of the invention]

本願におい又開示される発明のうち代表的なものの概要
を簡単に説明すれば下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、半導体基体表面に複数のMOSセルを有し、
基体表面上にソース用及びゲート用のポンディングパツ
ドが設けられたパワーMO3FETであって、上記ソー
ス用又は及びゲート用ポンディングパッド直下の基体表
面に比較的に太ぎいダイオードを形成することにより、
MOSFETに寄生する内部ダイオードに流れる電流を
減少させ、破壊耐量を向上させて発明の目的を達成でき
る。
That is, it has a plurality of MOS cells on the surface of the semiconductor substrate,
A power MO3FET in which source and gate bonding pads are provided on the surface of the substrate, and by forming a relatively thick diode on the substrate surface directly below the source and gate bonding pads. ,
The object of the invention can be achieved by reducing the current flowing through the internal diode parasitic to the MOSFET and improving breakdown resistance.

〔実施例〕〔Example〕

第1図及5第211発q′)一実施例′示すも    
 1のであって、第1図はnチャネルパワーMO3FE
Tチップの全体平面図、第2図は第1図における人−A
′視断面図である。同図において、1はドレイン部とな
るn−型シリコン基板、(チップ)2 ki n+型拡
散シリコン層でこの裏面にドレイン電極が形成される。
Figures 1 and 5 No. 211 q') An embodiment' is shown.
1, and FIG. 1 shows an n-channel power MO3FE.
The overall plan view of the T-chip, Figure 2 is the person-A in Figure 1.
FIG. In the figure, reference numeral 1 denotes an n-type silicon substrate serving as a drain portion, and (chip) 2 denotes an n+-type diffusion silicon layer on the back surface of which a drain electrode is formed.

4はゲート絶縁膜、たとえばうすいSin、膜でこの上
にポリシリコンゲート電極5が形成される。3はチャネ
ル部となるp型層。
Reference numeral 4 denotes a gate insulating film, for example a thin Si film, on which a polysilicon gate electrode 5 is formed. 3 is a p-type layer that becomes a channel portion.

6はソースとなるn1型層でこれらp型層3及びn+型
層6はゲート5をマスクとして不純物2重拡散を行うこ
とによりセル7アライン(自己整合的)にチャネル長を
規定することができる。これらp型層及びンースn+型
層6を1つのセルフとして第1図に示すように複数のセ
ルを縦横に配列したM OSセル部が形成される。
Reference numeral 6 denotes an n1 type layer which serves as a source, and the channel length of the p type layer 3 and n+ type layer 6 can be defined in the cell 7 alignment (self-aligned manner) by performing double impurity diffusion using the gate 5 as a mask. . A MOS cell section is formed in which a plurality of cells are arranged vertically and horizontally as shown in FIG. 1, with these p-type layer and n+-type layer 6 as one cell.

8はアルミニウムソース電極であって、各セルフのコン
タクト部に接続され、その一部はソース用ポンディング
パッド8Aとしてその上に金ワイヤ12がポンディング
される。
Reference numeral 8 denotes an aluminum source electrode, which is connected to the contact portion of each self, and a part of which serves as a source bonding pad 8A, on which a gold wire 12 is bonded.

9はアルミニウムゲート電極(配線)でポリシリコンゲ
ート5にスルーホール部’a’A シテ:I ンタクト
され、その一部はゲート用ポンディングパッド9Aとし
てその上に金ワイヤ12がポンディングされる。
Reference numeral 9 denotes an aluminum gate electrode (wiring) which is in contact with the polysilicon gate 5 through the through-hole section 'a'A', and a part of it is used as a gate bonding pad 9A and a gold wire 12 is bonded thereon.

10はポンディングパッド8A、9Aの直下の基板表面
に形成したp型層、11はp型層10の表面の一部に形
成したn+型層でこのp型層10とn−型基板1この間
のpn接合がフライホイルドダイオードFRD1 とし
て構成される。13はFRD、とアルミニウム配m(電
極)とのコンタクト部である。
10 is a p-type layer formed on the surface of the substrate directly under the bonding pads 8A and 9A, and 11 is an n+-type layer formed on a part of the surface of the p-type layer 10 between this p-type layer 10 and the n-type substrate 1. The pn junction of is configured as a flywheel diode FRD1. 13 is a contact portion between the FRD and the aluminum wiring (electrode).

このFRD、は通常のMO3FETプロセスで各セルの
p型層5n+型層6を形成するのと同じ拡散工程により
形成する。このFRD、はセル自体のもつFRD、と同
じレベルのスピードヲモつように設計され、このFRD
、の耐圧はセルとセルとの間のピンチオフを利用し、セ
ルと同等以上の耐圧を有する。
This FRD is formed by the same diffusion process as that used to form the p-type layer 5n+-type layer 6 of each cell in a normal MO3FET process. This FRD is designed to have the same level of speed as the FRD of the cell itself, and this FRD
, utilizes pinch-off between cells, and has a breakdown voltage equal to or higher than that of cells.

〔効 果〕〔effect〕

以上実施例で述べた本発明によれば下記の理由により発
明の効果が得られる。
According to the present invention described in the embodiments above, the effects of the invention can be obtained for the following reasons.

第6図は第2図で示される一つのセルに対応する等価回
路図である。FRD、はドレインn−型基板とソース電
極との間に設けられたp型磨10による共通のフライホ
イルダイオードである。
FIG. 6 is an equivalent circuit diagram corresponding to one cell shown in FIG. 2. FRD is a common flywheel diode with a p-type layer 10 placed between the drain n-type substrate and the source electrode.

第7図は一つのセルに対応する部分での電流の状態を示
す断面図である。
FIG. 7 is a cross-sectional view showing the state of current in a portion corresponding to one cell.

同図に示すようにソースからドレインへ流ス順方向電流
(IF)  のMOSセル部に流れる絶対分をFRD、
からFRD、に流すことでMO3FET全体に流れるI
Fを低減する。これにより、回生電流IDRを減少して
破壊耐量を向上する。すなわち、MOSFETの破壊は
工、によって決定されるから、第4図を参照し、■、が
減少した分だけIDRも減少し破壊耐量を向上すること
ができる。
As shown in the figure, the absolute portion of the forward current (IF) flowing from the source to the drain in the MOS cell is expressed as FRD.
I flows through the entire MO3FET by flowing from FRD to FRD.
Reduce F. This reduces the regenerative current IDR and improves breakdown resistance. In other words, since the breakdown of the MOSFET is determined by the factor , as shown in FIG. 4, the IDR decreases by the amount of decrease in , and the breakdown resistance can be improved.

本発明者の実験圧よれば、MOSFET(素子)の破壊
耐量はFRDlを形成しない場合に比して2〜3倍向上
させることが確認された。
According to the experimental pressure of the present inventor, it was confirmed that the breakdown strength of the MOSFET (device) is improved by 2 to 3 times compared to the case where FRDl is not formed.

なお、ソース用及びゲート用のボンディングパッド直下
には通常MOSセルが形成されないから、この領域にダ
イオードFRD、を形成することは可能であり、その場
合、各セルの拡散プロセスをそのまま利用すればよく新
たな工程が加えられることがない。
Note that since MOS cells are not normally formed directly under the source and gate bonding pads, it is possible to form a diode FRD in this region, and in that case, the diffusion process for each cell can be used as is. No new processes are added.

以上本発明によってなされた発明を実施例にもとづぎ具
体的に説明したが、本発明は上記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもなX、1゜ たとえばFRDlをチップの中央に配置すれば一層効果
がある。ただし、その場合、ソースやゲートなどのポン
ディングパッドを中央位置に集めて配置しておく必要が
ある。
Although the invention made by the present invention has been specifically explained above based on examples, the present invention is not limited to the above-mentioned examples, and it is understood that various changes can be made without departing from the gist of the invention. Needless to say, if X is 1°, for example, FRDl is placed in the center of the chip, it will be more effective. However, in this case, it is necessary to place the bonding pads such as the source and gate in a central location.

〔利用分野〕[Application field]

本発明は主としてモータコントロール用パワーMO3F
ETに適用する場合に有効である。
The present invention mainly focuses on power MO3F for motor control.
This is effective when applied to ET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦形DNA構造0″ワ
−MOSFETOチ″全体平面図・第       1
2図は第1図におけるA−A’視折断面図ある。 第3図はこれまでの縦形DSA!造パワーMOSFET
の縦断面図である。 第4図はパワーM OS F E Tの順方向電流IF
と回生電流IDRの形態を示す曲線図である。 第5図はDC/八Cへンバータプリクジ回路の例を示す
回路図である。 第6図は第2図に示すパワーM OS F E Tの等
価回路図である。 第7図は一つのセルに対応する部分での電流状態を示す
断面図である。 1・・・n−型ンリコン基板(ドレイン)、3・・・p
型層(チャネル部)、4・・・ゲート絶縁膜、5・・・
ポリシリコンゲート、6・・・n+型層(ソース)、7
・・・セル、8・・・アルミニウム’7tC極(ソース
) 、9・・・アルミニウム電極(ゲー1−)、10・
・・p型層(FRD、)。 第   1   図 第  3  図 第  4  図 第  5  図
FIG. 1 is an overall plan view of a vertical DNA structure 0"W-MOSFETO CH" showing one embodiment of the present invention.
FIG. 2 is a sectional view taken along the line AA' in FIG. Figure 3 shows the conventional vertical DSA! manufactured power MOSFET
FIG. Figure 4 shows the forward current IF of the power MOSFET.
FIG. 3 is a curve diagram showing the form of regenerative current IDR. FIG. 5 is a circuit diagram showing an example of a DC/8C converter converter circuit. FIG. 6 is an equivalent circuit diagram of the power MOSFET shown in FIG. 2. FIG. 7 is a cross-sectional view showing the current state in a portion corresponding to one cell. 1...n-type silicon substrate (drain), 3...p
Type layer (channel part), 4... gate insulating film, 5...
Polysilicon gate, 6... n+ type layer (source), 7
... Cell, 8... Aluminum '7tC electrode (source), 9... Aluminum electrode (Ge 1-), 10.
...p-type layer (FRD, ). Figure 1 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、半導体基体表面に複数のMOSセルを有し、基体表
面上にソース用及びゲート用ボンディングパッドが設け
られたパワーMOSFETであって、上記ソース用又は
及びゲート用ボンディングパッド直下の基体表面にMO
SFETに寄生する内部ダイオードに流れる電流を減少
するようにダイオードが形成されていることを特徴とす
るパワーMOSFET。 2、上記ダイオードはMOSFETの各セルを形成する
拡散層と同じ拡散工程により形成されたものである特許
請求の範囲第1項に記載のパワーMOSFET。
[Claims] 1. A power MOSFET having a plurality of MOS cells on the surface of a semiconductor substrate and having bonding pads for a source and a gate on the surface of the substrate, wherein the bonding pad for the source or the bonding pad for the gate is provided on the surface of the substrate. MO on the substrate surface directly below
A power MOSFET characterized in that a diode is formed so as to reduce the current flowing through an internal diode parasitic to the SFET. 2. The power MOSFET according to claim 1, wherein the diode is formed by the same diffusion process as the diffusion layer forming each cell of the MOSFET.
JP59201764A 1984-09-28 1984-09-28 Power mosfet Pending JPS6180860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201764A JPS6180860A (en) 1984-09-28 1984-09-28 Power mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201764A JPS6180860A (en) 1984-09-28 1984-09-28 Power mosfet

Publications (1)

Publication Number Publication Date
JPS6180860A true JPS6180860A (en) 1986-04-24

Family

ID=16446544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201764A Pending JPS6180860A (en) 1984-09-28 1984-09-28 Power mosfet

Country Status (1)

Country Link
JP (1) JPS6180860A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164474A (en) * 1986-12-26 1988-07-07 Matsushita Electronics Corp Vertical mos field-effect transistor
JPH02283074A (en) * 1989-04-25 1990-11-20 Fuji Electric Co Ltd Semiconductor integrated circuit device
JPH0521804A (en) * 1991-07-12 1993-01-29 Matsushita Electric Works Ltd Insulated gate type field effect semiconductor device
EP0567341A1 (en) * 1992-04-23 1993-10-27 Siliconix Incorporated Power device with isolated gate pad region
US5304831A (en) * 1990-12-21 1994-04-19 Siliconix Incorporated Low on-resistance power MOS technology
US5404040A (en) * 1990-12-21 1995-04-04 Siliconix Incorporated Structure and fabrication of power MOSFETs, including termination structures
JP2006253636A (en) * 2005-02-10 2006-09-21 Sanken Electric Co Ltd Semiconductor element
WO2010061244A1 (en) * 2008-11-27 2010-06-03 Freescale Semiconductor, Inc. Power mos transistor device and switch apparatus comprising the same
WO2010061245A1 (en) 2008-11-27 2010-06-03 Freescale Semiconductor, Inc. Power mos transistor device
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US9882044B2 (en) 2014-08-19 2018-01-30 Vishay-Siliconix Edge termination for super-junction MOSFETs

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164474A (en) * 1986-12-26 1988-07-07 Matsushita Electronics Corp Vertical mos field-effect transistor
JPH02283074A (en) * 1989-04-25 1990-11-20 Fuji Electric Co Ltd Semiconductor integrated circuit device
US5304831A (en) * 1990-12-21 1994-04-19 Siliconix Incorporated Low on-resistance power MOS technology
US5404040A (en) * 1990-12-21 1995-04-04 Siliconix Incorporated Structure and fabrication of power MOSFETs, including termination structures
US5429964A (en) * 1990-12-21 1995-07-04 Siliconix Incorporated Low on-resistance power MOS technology
US5521409A (en) * 1990-12-21 1996-05-28 Siliconix Incorporated Structure of power mosfets, including termination structures
JPH0521804A (en) * 1991-07-12 1993-01-29 Matsushita Electric Works Ltd Insulated gate type field effect semiconductor device
EP0567341A1 (en) * 1992-04-23 1993-10-27 Siliconix Incorporated Power device with isolated gate pad region
US5430314A (en) * 1992-04-23 1995-07-04 Siliconix Incorporated Power device with buffered gate shield region
US5445978A (en) * 1992-04-23 1995-08-29 Siliconix Incorporated Method of making power device with buffered gate shield region
JP2006253636A (en) * 2005-02-10 2006-09-21 Sanken Electric Co Ltd Semiconductor element
JP4572795B2 (en) * 2005-02-10 2010-11-04 サンケン電気株式会社 Insulated gate bipolar transistor
WO2010061244A1 (en) * 2008-11-27 2010-06-03 Freescale Semiconductor, Inc. Power mos transistor device and switch apparatus comprising the same
WO2010061245A1 (en) 2008-11-27 2010-06-03 Freescale Semiconductor, Inc. Power mos transistor device
US8530953B2 (en) 2008-11-27 2013-09-10 Freescale Semiconductor, Inc. Power MOS transistor device and switch apparatus comprising the same
US8604560B2 (en) 2008-11-27 2013-12-10 Freescale Semiconductor, Inc. Power MOS transistor device
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US9935193B2 (en) 2012-02-09 2018-04-03 Siliconix Technology C. V. MOSFET termination trench
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US10229988B2 (en) 2012-05-30 2019-03-12 Vishay-Siliconix Adaptive charge balanced edge termination
US9882044B2 (en) 2014-08-19 2018-01-30 Vishay-Siliconix Edge termination for super-junction MOSFETs
US10340377B2 (en) 2014-08-19 2019-07-02 Vishay-Siliconix Edge termination for super-junction MOSFETs

Similar Documents

Publication Publication Date Title
JP2692350B2 (en) MOS type semiconductor device
JPH0955498A (en) High-voltage resistant ic, high-voltage resistant junction terminal structure used for the ic and high-voltage mis transistor
US5910664A (en) Emitter-switched transistor structures
JP2003224278A (en) Insulated gate semiconductor device and its manufacturing method
JPS61182264A (en) Vertical type mos transistor
JPH02275675A (en) Mos type semiconductor device
JPH04291767A (en) Conductivity modulation mosfet
JP3216743B2 (en) Protection diode for transistor
JPS6180860A (en) Power mosfet
JPH0247874A (en) Manufacture of mos semiconductor device
JPH04251983A (en) Semiconductor device
JP2937185B2 (en) High breakdown voltage MOS type semiconductor device
US6627961B1 (en) Hybrid IGBT and MOSFET for zero current at zero voltage
EP0253353A2 (en) Composite semiconductor device
JPS6180858A (en) Power mosfet
JPH03129764A (en) Semiconductor device
JPH08130312A (en) Lateral semiconductor device and its use
JPH04363068A (en) Semiconductor device
JPH0349257A (en) Semiconductor device
JPS60177675A (en) Insulated gate semiconductor device
JPH01280359A (en) Insulated-gate type semiconductor device
KR910003275B1 (en) Semiconductor device and its manufacture method
JPH0244776A (en) Insulated gate type bipolar transistor
JPH10154812A (en) High withstand voltage semiconductor device
JPS6237816B2 (en)