[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6178067A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6178067A
JPS6178067A JP59200248A JP20024884A JPS6178067A JP S6178067 A JPS6178067 A JP S6178067A JP 59200248 A JP59200248 A JP 59200248A JP 20024884 A JP20024884 A JP 20024884A JP S6178067 A JPS6178067 A JP S6178067A
Authority
JP
Japan
Prior art keywords
electrolyte
fuel
resin particles
cation exchange
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59200248A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Mukoyama
向山 吉之
Osamu Hirai
修 平井
Yuji Kobayashi
雄二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP59200248A priority Critical patent/JPS6178067A/en
Publication of JPS6178067A publication Critical patent/JPS6178067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent flow-out and replenishment of electrolyte and improve cell characteristic by using cation exchange resin particles excessively bridged as electrolyte. CONSTITUTION:Strong acid cation exchange resin particle 10 are made electrolyte and the resin constituting resin particles 10 have bridge formation agent of 0.8-5 molar % as constituting compound. As the bridge formation degree of general strong acid cation exchange resin particles 10 is 8-10 molar %, the bridge formation degree of the above strong acid cation exchange resin particles 10 is relatively low. Then, they can be swelled well and can have better ion conductivity to prevent flow-out and replenishment of electrolyte, and cell characteristic can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低架橋度であり、従って、水膨潤性が大きく
、水に不溶性である強酸性陽イオン交換樹脂粒子を′−
電解質して用いた燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides highly acidic cation exchange resin particles that have a low degree of crosslinking, have high water swelling properties, and are insoluble in water.
This article relates to a fuel cell using an electrolyte.

(従来の技術) 水素などのガス状燃料又はメタノール、ヒドラジンなど
の液体燃料を使用し、酸素、空気などのガス状酸化剤又
は過酸化水素などの液体酸化剤を使用した燃料電池が各
徨電源として検討され、既に実用化されている。
(Prior art) A fuel cell that uses a gaseous fuel such as hydrogen or a liquid fuel such as methanol or hydrazine, and a gaseous oxidant such as oxygen or air or a liquid oxidant such as hydrogen peroxide is used as a power source for each power source. It has been considered and has already been put into practical use.

このような燃料電池のうち、約100℃以下の雰囲気下
に使用されるものとして、アルカリ性電解液型燃料電池
又は酸性電解液型燃料電池が知られている。これらの燃
料電池における電解質としては、苛性カリ、苛性ソーダ
、水酸化リチウムの水溶液あるいは希硫酸などが多い。
Among such fuel cells, alkaline electrolyte fuel cells and acidic electrolyte fuel cells are known as those used in an atmosphere of about 100° C. or lower. The electrolyte used in these fuel cells is often caustic potash, caustic soda, an aqueous solution of lithium hydroxide, or dilute sulfuric acid.

これは、低温における電子伝導度の高い電解質としては
、上記のような強電解質の水溶液が最も使い易いからで
るる。
This is because an aqueous solution of the strong electrolyte mentioned above is the easiest to use as an electrolyte with high electronic conductivity at low temperatures.

一方、這解質として、水の存在下で解離する有機高分子
電解質を用いた燃料電池も知られている(W開昭59−
23473号公報)。
On the other hand, fuel cells using organic polymer electrolytes that dissociate in the presence of water as electrolytes are also known (W.
23473).

(発明が解決しようとする問題点) 上記した強電解質を用いた燃料電池は2強電解質が腐蝕
性の強いものであるため、電池の構成材料が制限される
だけでなく、電解液が電池外に漏れないように充分注意
する必要がある。従って。
(Problems to be Solved by the Invention) In fuel cells using the above-mentioned strong electrolyte, the two strong electrolytes are highly corrosive, so not only are the constituent materials of the battery limited, but the electrolyte is It is necessary to be very careful not to leak. Therefore.

電解液の漏れ対策が不可欠である。Measures against electrolyte leakage are essential.

またl解質の液体を使用する場合、燃料又は酸化剤もま
た液体でるると、電解液室に留まるべき電解質が、液体
燃料又は液体酸化剤との間に濃度勾配による希釈現象に
よって多孔質の燃料極又は酸化剤極を通って、燃料室又
は酸化剤室に流出する現象が起こる。この対策として、
一般に、燃料室に電解液で希釈した燃料混合物を使用し
、上記濃度勾配を小さくする方法が採用されている。
In addition, when a liquid solute is used, if the fuel or oxidizer also becomes liquid, the electrolyte that should remain in the electrolyte chamber becomes porous due to the dilution phenomenon due to the concentration gradient between the liquid fuel or liquid oxidizer. A phenomenon occurs in which the fuel flows through the fuel electrode or oxidizer electrode into the fuel chamber or oxidizer chamber. As a countermeasure for this,
Generally, a method is adopted in which a fuel mixture diluted with an electrolyte is used in the fuel chamber to reduce the concentration gradient.

しかし、この場合、燃料の濃度が小さくなること。However, in this case, the concentration of fuel will be smaller.

燃料よりも電解液を循環するために動力が消費されるこ
とによ)エネルギー効率が低下する。
Energy efficiency decreases (because more power is consumed circulating the electrolyte than fuel).

!酸液に無機粉末を混合してペースト状とする例もわる
が、it電解質、燃料極又は酸化剤極を通過するもので
ある以上、この方法では根本的な対策とはならない。
! Although it is possible to mix an inorganic powder into an acid solution to form a paste, this method is not a fundamental countermeasure since it passes through an IT electrolyte, a fuel electrode, or an oxidizer electrode.

以上のような問題点を解決するものとして、有機高分子
電解質を2解質として利用した燃料電池が提案さnてい
る。この燃料電池は、上記した電解液を用いることによ
る問題点を解決するものではめるが9本発明者らが詳細
に検討したところ。
In order to solve the above-mentioned problems, a fuel cell using an organic polymer electrolyte as two electrolytes has been proposed. This fuel cell is intended to solve the problems caused by using the electrolytic solution described above, and the present inventors have studied this in detail.

有機高分子電解質の性質によ゛つて、その特性に差がメ
ジ、優れた燃料電池とするためには、さらにその特性の
向上が望まれる。
There are considerable differences in the properties of organic polymer electrolytes depending on their properties, and further improvement of their properties is desired in order to create an excellent fuel cell.

以上のように、電解液を用いる燃料電池には。As mentioned above, fuel cells that use electrolyte.

腐蝕性の強い強電解質物質を使用することによる問題点
がワク。有機高分子電解質を用いる燃料電池は、さらに
その特性の向上が望まれる。
Problems arise from the use of highly corrosive strong electrolyte materials. Fuel cells using organic polymer electrolytes are desired to have further improved characteristics.

(問題点を解決するための手段) 本発明は、電解質をはさんで対向する燃料極及び酸化剤
極との間で電気化学的反応分生起させ電気エネルギーを
直接取り出すものにおいて、該電解質が水の存在下で解
離する強酸性陽イオン交換樹脂粒子でろって、該樹脂粒
子を構成する樹脂が。
(Means for Solving the Problems) The present invention is a device for directly extracting electrical energy by causing an electrochemical reaction between a fuel electrode and an oxidizer electrode that face each other with an electrolyte in between, in which the electrolyte is water The resin constituting the resin particles is strongly acidic cation exchange resin particles that dissociate in the presence of.

樹脂の構成成分として架橋剤を0.8〜5モルチ有する
ものでめる燃料電池に関する。
The present invention relates to a fuel cell using a resin having 0.8 to 5 mol of a crosslinking agent as a constituent component.

本発明の強酸性陽イオン交換樹脂粒子とは、架橋性の重
合性単量体(架橋剤)と非架橋性の重合性単量体との共
重合体の粒子でろって、該共重合体全構成する架橋性の
重合性単量体を0.8〜5モルチ含むものに、スルホン
酸基等の電解質全構成するための官能基を導入したもの
でるる。
The strongly acidic cation exchange resin particles of the present invention are particles of a copolymer of a crosslinkable polymerizable monomer (crosslinking agent) and a non-crosslinkable polymerizable monomer. This product contains 0.8 to 5 moles of a crosslinkable polymerizable monomer, and a functional group such as a sulfonic acid group for forming the entire electrolyte is introduced therein.

上記架橋性の重合性単量体としては、ジビニルベンゼン
、ジビニルトルエン、ジビニルナフタレン、ジビニルフ
ェノール、フタル酸ジアリル、7フル酸ジアリル、エチ
レングリコールジメタクリレート、エチレングリコール
ジアクリレート等がろる。
Examples of the crosslinkable polymerizable monomer include divinylbenzene, divinyltoluene, divinylnaphthalene, divinylphenol, diallyl phthalate, diallyl heptafluoride, ethylene glycol dimethacrylate, and ethylene glycol diacrylate.

上記非架橋性の重合性単量体としては、スチレ/lモノ
エチルビニルベンゼン、ビ;ルトルエ/Iα−メチルス
チレン等のスチレン系単量体、ビニルナフタレン、ビニ
ルフェナンスレン、インプレン等の脂肪族オレフイ/、
アクリル酸エチル、アクリル酸ブチル、アクリル酸2−
ヒドロキンエチル等のアクリル酸エステル、メタクリル
酸メチル。
Examples of the non-crosslinkable polymerizable monomers include styrenic monomers such as styrene/l monoethylvinylbenzene, bi;letoluet/Iα-methylstyrene, and aliphatic monomers such as vinylnaphthalene, vinylphenanthrene, and imprene. Orefui/,
Ethyl acrylate, butyl acrylate, acrylic acid 2-
Acrylic esters such as hydroquine ethyl, methyl methacrylate.

メタクリル酸エチル、メタクリル酸ブチル1メタク!J
ル酸2−ヒドロキシエチル等のメタクリル酸エステル、
アクリロニトリル、メタクリロニトリル等のシアン化ビ
ニル、フマル酸ジエチル等の二塩基醗のジエステル、ビ
ニルフラン、ビニルイミダゾール。ビニルフェノール、
ビニルフェノールアセテート、酢酸ビニル等がるる。
Ethyl methacrylate, butyl methacrylate 1 methacrylate! J
methacrylic acid esters such as 2-hydroxyethyl chlorate;
Vinyl cyanide such as acrylonitrile and methacrylonitrile, dibasic diesters such as diethyl fumarate, vinylfuran, and vinyl imidazole. vinylphenol,
Vinylphenol acetate, vinyl acetate, etc.

上記共重合体の製造法としては、ラジカル重合開始剤の
存在下に架橋性の重合性単量体と非架橋性の重合性単量
体を重合させる方法であれば、任意の重合法が採用され
るが1重合終了と共に、場合によりさらに分級するだけ
で望ましい粒径の粒子として得られる水性@満貫合法が
最も好ましい。
Any polymerization method can be used to produce the above copolymer as long as it is a method of polymerizing a crosslinkable polymerizable monomer and a non-crosslinkable polymerizable monomer in the presence of a radical polymerization initiator. However, the most preferred is the aqueous @full-through method, in which particles of a desired particle size can be obtained by simply further classifying the particles upon completion of one polymerization.

このような水性8!濁重合法としては9例えば1%開昭
55−94902号公報に記載される方法が望ましい方
法として採用できる。水性′!@渇重合に際り、  ト
ルエン、インアミルアルコール等の水に不溶性の有機溶
剤を存在させることにより、得られる粒子は、多孔性と
なる。多孔性粒子は1粒子の膨潤、従ってイオン定導住
に好ましい影響を与えると考えられる。
Water-based 8 like this! As the turbidity polymerization method, for example, the method described in 1% Japanese Patent Publication No. 1983-94902 can be employed as a desirable method. aqueous'! @During the dry polymerization, the particles obtained become porous by the presence of a water-insoluble organic solvent such as toluene or inamyl alcohol. It is believed that porous particles have a favorable influence on the swelling of one particle and therefore on the ionization.

以上の製造法において、架橋度は、架橋性の重合性単量
体の使用割合によって、泣予後は、′@濁重合条件によ
って、多孔度は、上記水に不溶性の有機溶剤の使用量に
よって調整できる。
In the above production method, the degree of crosslinking is adjusted by the ratio of crosslinkable polymerizable monomer used, the prognosis is adjusted by the turbidity polymerization conditions, and the porosity is adjusted by the amount of the water-insoluble organic solvent used. can.

以上のような共重合体のうち、架橋性の重合性単量体と
してジビニルベンゼン及び非架橋性の重合性単量体とし
てスチレン系単量体を使用して得られるスチレン−ジビ
ニルベンゼン系共重合体がスルホン酸基を導入しやすく
、また、製造が容易でるるため特に好ましい。
Among the above copolymers, styrene-divinylbenzene copolymer obtained by using divinylbenzene as a crosslinking polymerizable monomer and a styrene monomer as a non-crosslinking polymerizable monomer. Coalescence is particularly preferred because it facilitates the introduction of sulfonic acid groups and facilitates production.

上記官能基を導入する方法としては1例えば。For example, one method for introducing the above-mentioned functional group is as follows.

スルホン酸基を導入するには、上記共重合体粒子t−*
硫酸、クロルスルホン酸などのスルホン化剤と反応させ
ることにより行なわれる。また、上記共重合体の製造時
に、スチレンスルホン酸等のスルホン化された重合性単
量体を共重合させてもよい。
In order to introduce a sulfonic acid group, the above copolymer particles t-*
This is carried out by reaction with a sulfonating agent such as sulfuric acid or chlorosulfonic acid. Furthermore, during the production of the above copolymer, a sulfonated polymerizable monomer such as styrene sulfonic acid may be copolymerized.

上記強酸性陽イオン交換樹脂粒子は、イオン交換容量が
、2〜smeq/gでろるのが好ましい。
The strongly acidic cation exchange resin particles preferably have an ion exchange capacity of 2 to smeq/g.

イオン交換容量が小さすぎるとイオ7電導度が小さくな
シすぎ、大きすぎると官能基の導入が困難になる。官能
基としてスルホン酸基を導入するとさは、上記し之共重
合体の原料としてベンゼン環を有するモノマーを適当な
イオン交換容量が可能な量だけ使用するのが好咳しい。
If the ion exchange capacity is too small, the ion conductivity will be too low, and if it is too large, it will be difficult to introduce functional groups. When a sulfonic acid group is introduced as a functional group, it is preferable to use a monomer having a benzene ring as a raw material for the above-mentioned copolymer in an amount that allows a suitable ion exchange capacity.

上記強酸性陽イオン交換樹脂粒子は、乾燥状態での粒径
が0.5μm〜50μmでろるのが好ましい。
The strongly acidic cation exchange resin particles preferably have a dry particle size of 0.5 μm to 50 μm.

粒径は小さい程、単位重鷲当シの表面積が大きくなプ、
イオン電導度が高くなり電解質として好ましいが、小さ
すぎると製造が困難になると共に取シ扱い作業性が低下
する。一方8粒径が大きすぎると逆にイオン電導性が低
下しやすくなる。
The smaller the particle size, the larger the surface area of the unit weight.
It has high ionic conductivity and is preferable as an electrolyte, but if it is too small, it becomes difficult to manufacture and the handling efficiency decreases. On the other hand, if the particle size is too large, the ionic conductivity tends to decrease.

上記強酸性隣イオン交換樹脂粒子は、そのまま使用して
もよいが、水との混合物として使用するのが好ましく、
特に、ペースト状とされるのが好ましい。
The above-mentioned strongly acidic ion exchange resin particles may be used as is, but it is preferable to use them as a mixture with water.
In particular, it is preferable to form it into a paste form.

ベースト状とするには、該粒子を高濃度で水に分散させ
ることにより、又は、該粒子の水分e液に増稠剤として
炭化ケイ素微粉末、シリカ微粉末等の絶縁性無機粉末を
混合することによ)行なわれる。
To form a base, the particles are dispersed in water at a high concentration, or an insulating inorganic powder such as fine silicon carbide powder or fine silica powder is mixed as a thickener into the water e-liquid of the particles. especially)

本発明に係る燃料電池の購造は、電解質をはさんで燃料
極と酸化剤極が対向するものでろれば。
The fuel cell according to the present invention can be purchased as long as the fuel electrode and the oxidizer electrode face each other with an electrolyte in between.

特に制限はないが1本発明に係る燃料電池の概略図を示
す第1図を用いて説明する。
Although there are no particular limitations, the following description will be made with reference to FIG. 1, which is a schematic diagram of a fuel cell according to the present invention.

゛燃料室1には、メタノール、ヒドラジン等の液体燃料
又は水素ガス等の気体燃料が燃料室人口2から流入させ
られ、酸化剤室3には酸素、空気などの酸化剤が敏化剤
室人口4から供給される。燃料極5と酸化剤極6との間
には、電解質層7と隔膜8が設けられている。電解質層
7には1表面にイオン基9が化学結合した強酸性場イオ
ン交換樹脂粒子10が存在する。粒子表面のイオン基9
は水の存在下で対イオンLL’1i−Fl!を離する。
゛Liquid fuel such as methanol or hydrazine or gaseous fuel such as hydrogen gas flows into the fuel chamber 1 from the fuel chamber 2, and oxidizers such as oxygen or air flow into the oxidizer chamber 3 from the desensitizer chamber. Supplied from 4. An electrolyte layer 7 and a diaphragm 8 are provided between the fuel electrode 5 and the oxidizer electrode 6. In the electrolyte layer 7, strongly acidic field ion exchange resin particles 10 having ionic groups 9 chemically bonded to one surface are present. Ionic group on particle surface 9
is the counterion LL'1i-Fl! in the presence of water. Release.

この対イオン11は、電池反応に伴って電解質層7内を
移動し、酸化剤極6で消費されるが、同種のイオンが燃
料極5で発生し、補充される。対イオン11は具体的に
は、酸性t7+1質でろるので、水素イオンである。隔
膜8は、必ずしも必要でないが、燃料が燃料極5.電解
質層7を通って酸化剤極6に到達すると電池反応を起こ
さすく酸化または燃焼してしまい、燃料効率が低下する
のを防止するいは抑制するために設けるのが好ましい。
The counter ions 11 move within the electrolyte layer 7 as a result of the cell reaction and are consumed at the oxidizer electrode 6, but ions of the same type are generated at the fuel electrode 5 and replenished. Specifically, the counter ion 11 is a hydrogen ion because it is an acidic t7+1 substance. Although the diaphragm 8 is not necessarily required, the fuel is connected to the fuel electrode 5. When the oxidizer reaches the oxidizer electrode 6 through the electrolyte layer 7, it is likely to cause a cell reaction and be oxidized or burned, which is preferably provided to prevent or suppress a decrease in fuel efficiency.

その位置は燃料極5と酸化剤極6の間でろれば特に限定
されない。この隔膜8としては1例えば電解質が酸性で
めるので、カチオン交換膜が用いられる。メタノール燃
料電池の電池反応は9次の通りでろる。
Its position is not particularly limited as long as it is between the fuel electrode 5 and the oxidizer electrode 6. As the diaphragm 8, for example, a cation exchange membrane is used since the electrolyte is acidic. The cell reaction of a methanol fuel cell is as follows.

燃料極(負砥) CH30H+HzO−+CO2+6H”+66−酸化剤
極(正極) ’ 02+ 6H”+ 66−→3H20第2図は本発
明の一実施例によるメタノール・空気燃料電池の単セル
の構成を示す一部岐断斜視図である。この単セルは“侶
気室を形成し、かつ果電体を兼ねるグラファイト[のセ
パレータ12゜そのセパレータ12に隣接して空気、極
132次いでイオン交換膜14.保持枠15に固定され
たメタノール極16及びそれに塗布又は担持された電解
質層17.メタノールタンク18から毛細管作体を兼ね
るグラフアイ)IIJのセパレータ20を順次重ねて構
成されている。セパレータ12には溝21を形成して空
気通路としている。電解質をメタノール極等に担持する
Kはペースト状とすると容易になる。ペースト状の電解
質を前述のような保持枠15の付いたメタノール極16
の対向面。
Fuel electrode (negative abrasive) CH30H+HzO-+CO2+6H"+66-Oxidizer electrode (positive electrode) '02+ 6H"+ 66-→3H20 Figure 2 shows the configuration of a single cell of a methanol/air fuel cell according to an embodiment of the present invention. FIG. 2 is a partially cutaway perspective view. This single cell consists of a graphite separator 12 that forms an air chamber and also serves as a photovoltaic body, an air electrode 132 adjacent to the separator 12, an ion exchange membrane 14, and a methanol electrode fixed to a holding frame 15. 16 and an electrolyte layer 17 applied or supported thereon.Separators 20 of Graphite IIJ, which also serve as a capillary structure, are sequentially stacked from the methanol tank 18. Grooves 21 are formed in the separators 12 to serve as air passages. It is easier to support the electrolyte on the methanol electrode etc. if it is in the form of a paste.
opposite side.

及び/または空気極15の対向面、イオン交換膜14の
片面または両面に塗布すれば容易に薄型の電解質層を作
成することができる。また9本発明においては燃料タン
クから燃料室へのメタノールができ、この場合、従来の
電解質物質の水溶液を使用するメタノール電池のように
燃料と電解質の混合物(アノライトという)の供給、循
環を行なわせるポンプなどの補助機構をなくすことがで
きる。従って電池の傳造が簡単になる他、動力が不要に
なるのでエネルギーの利用効率も高まる。すなわち1本
発明では電解質が水に不溶性の粒子であるので、多孔質
の燃料極を通過し得す、そのために電解質が希釈される
ことがないので燃料をアノライトにする必要がない。従
って、メタノール単独または反応に必要な少量の水を添
加し之メタノールを燃料として使用できるので、この場
合は。
And/or by applying it to the opposing surface of the air electrode 15 and one or both surfaces of the ion exchange membrane 14, a thin electrolyte layer can be easily created. In addition, in the present invention, methanol is produced from the fuel tank to the fuel chamber, and in this case, a mixture of fuel and electrolyte (called an anolite) is supplied and circulated as in a conventional methanol battery that uses an aqueous solution of an electrolyte. Auxiliary mechanisms such as pumps can be eliminated. This not only simplifies the construction of batteries, but also increases the efficiency of energy use since no power is required. That is, in the present invention, since the electrolyte is a water-insoluble particle, it can pass through the porous fuel electrode, and therefore the electrolyte is not diluted, so there is no need to use an anorite as the fuel. Therefore, in this case, methanol can be used alone or with the addition of a small amount of water necessary for the reaction.

吸い上げt方式でも充分なメタノールが供給できる。Sufficient methanol can also be supplied using the suction t method.

なお、第2図において、矢印Aは空気の流れ。In addition, in FIG. 2, arrow A indicates the flow of air.

Bは電池反応によって生じる水蒸気及び空気の流れ、C
は燃料の流れ、Dは電池反応によって生じる炭酸ガスの
流れ、Eは電池から放出される炭酸ガスの流れでるる。
B is the flow of water vapor and air generated by the battery reaction, C
is the flow of fuel, D is the flow of carbon dioxide generated by the cell reaction, and E is the flow of carbon dioxide released from the cell.

第3図は第2図に示した単セルを積層して構成した燃料
電池の一実廓例の外観を示す斜視図である。単セルの起
電力が0.6vであれば、20個の単セルを直列に接続
すると起電力12Vの燃料電池が構成される。第3図に
おいて第2図と同じ符号は同じもの全意味する。積層さ
れた多数のセルは電池ケース22に納められ、正の端子
23及び負の端子24がとりつけられる。燃料はボート
25から燃料タンク26に補給される。以上において、
酸化剤極、燃料極としては、カーボン繊維の不織布等の
多孔性電極が使用される。
FIG. 3 is a perspective view showing the appearance of an example of a fuel cell constructed by stacking the single cells shown in FIG. 2. If the electromotive force of a single cell is 0.6V, connecting 20 single cells in series constitutes a fuel cell with an electromotive force of 12V. In FIG. 3, the same symbols as in FIG. 2 have the same meanings. A large number of stacked cells are housed in a battery case 22, and a positive terminal 23 and a negative terminal 24 are attached. Fuel is supplied from the boat 25 to the fuel tank 26. In the above,
As the oxidizer electrode and the fuel electrode, porous electrodes such as carbon fiber nonwoven fabric are used.

(作用) 本発明に係る燃料電池は、電解質として9強酸性陽イオ
ン交換樹脂粒子でろって、該樹脂粒子を構成する樹脂が
、樹脂の構成成分として架橋剤を0、8〜5モルチ有す
るものを使用する。以下、樹脂中の架橋剤の割合を架橋
度という。一般に知られている強酸性陽イオン交換樹脂
粒子の架橋度は8〜10モル俤であるので、これに対し
て1本発明の強酸性陽イオン交換樹脂粒子の架橋度は、
かなり低いものである。従って、水に膨潤しやすく。
(Function) The fuel cell according to the present invention is composed of 9 strongly acidic cation exchange resin particles as an electrolyte, and the resin constituting the resin particles has 0.8 to 5 mol of a crosslinking agent as a constituent component of the resin. use. Hereinafter, the proportion of the crosslinking agent in the resin will be referred to as the degree of crosslinking. Generally known strongly acidic cation exchange resin particles have a degree of crosslinking of 8 to 10 moles, so on the other hand, the degree of crosslinking of the strongly acidic cation exchange resin particles of the present invention is:
This is quite low. Therefore, it easily swells in water.

イオン電導性がよくなシ、よって電池特性が良好になる
。架橋度が0.8モルチ未満では、実質的に水に可溶性
のポリスチレンスルホン酸が存在するため、硫酸程でな
いとしても電解質漏れの問題がろる。5モル%を超える
と膨潤性が乏しくなり。
Good ionic conductivity and therefore good battery characteristics. When the degree of crosslinking is less than 0.8 molar, water-soluble polystyrene sulfonic acid is substantially present, so the problem of electrolyte leakage is worse, even if it is not as bad as sulfuric acid. If it exceeds 5 mol%, the swelling property becomes poor.

イオン電導性が低下する。架橋度は、好ましくは。Ionic conductivity decreases. The degree of crosslinking is preferably:

1.6〜4モルチである。It is 1.6 to 4 molti.

(実施例) 実凡例1 (1)電解質粒子の合成 温度計、バイメタル式リレー、還流冷却器。(Example) Actual legend 1 (1) Synthesis of electrolyte particles Thermometer, bimetallic relay, reflux condenser.

ホモミキサー(■特殊機化製 卓上M型機)を備えた3
t!の四つロセパラブルフラスコにスチレン179g、
60%ジビニルベンゼン(ジビニルベンゼン6 ol:
モノビニルエチルベンゼン40チの混合物を意味する。
3 equipped with a homo mixer (Tabletop M type machine made by Tokushu Kika)
T! 179g of styrene in four separable flasks,
60% divinylbenzene (divinylbenzene 6 ol:
It means a mixture of 40 units of monovinylethylbenzene.

以下、同様)13G、)シェフ115g。過酸化ベンゾ
イル(BPO’) 10 g。
The same applies hereafter) 13G,) Chef 115g. Benzoyl peroxide (BPO') 10 g.

10チ難溶性りん酸三カルシウム(TCP)懸濁液30
0 ml 、イオン交換水1400mJ’に仕込みホモ
ミキサー中で高速剪断の伴った攪拌下に分散させナカラ
、マントルヒーターで70℃に昇温し、I2i度金一定
に保って、1時間重合させた。次て反応溶液をあらかじ
め用意した温度計、・くイメタル式リレー、還流冷却器
、H型羽根攪拌器全備えた四つ口31セパラブルフラス
コに素速く移し1重金属度を80〜85℃に保ちながら
攪拌速度500〜600 Q)mでさらに4時間重合さ
せた。生成した多孔性球状粒子を口過し希塩酸液で洗浄
した後乾燥させた。この粒子を顕微鏡で観察すると。
10 hardly soluble tricalcium phosphate (TCP) suspension 30
0 ml was added to 1,400 mJ' of ion-exchanged water, dispersed under stirring with high-speed shearing in a homomixer, heated to 70°C using a Nacala mantle heater, and polymerized for 1 hour while keeping the I2i temperature constant. Next, the reaction solution was quickly transferred to a four-necked 31 separable flask equipped with a thermometer prepared in advance, a metal relay, a reflux condenser, and an H-shaped blade stirrer, and the heavy metal content was maintained at 80-85℃. While stirring, the polymerization was further carried out for 4 hours at a stirring speed of 500 to 600 Q) m. The produced porous spherical particles were passed through the mouth, washed with dilute hydrochloric acid solution, and then dried. When these particles are observed under a microscope.

10μm〜20μmのものが50%以上でめった。More than 50% of the samples had a diameter of 10 μm to 20 μm.

上記粒子全量と、ジクロルエタン3009゜97%硫1
I21200 mlをフラスコに入れ、油浴上で80℃
に昇温し、4時間反応させスルホン化した。スルホン化
物を口過し、水洗後アセトン洗浄し、ふたたび水洗して
電解質用強酸性陽イオン交換樹脂粒子け)を得た。この
もののイオン交換容量は、 4.3 meq/ gでめ
った(架橋度3.3モルチ)。
Total amount of the above particles and dichloroethane 3009°97% sulfur 1
Pour 200 ml of I21 into a flask and heat at 80°C on an oil bath.
The temperature was raised to 1, and the mixture was reacted for 4 hours to effect sulfonation. The sulfonated product was passed through the mouth, washed with water, acetone, and washed again with water to obtain strongly acidic cation exchange resin particles for electrolyte. The ion exchange capacity of this product was 4.3 meq/g (degree of crosslinking 3.3 molti).

(2)燃料電池 樹脂粒子(11の水分散液に増稠剤として適当量のシリ
コンカーバイトe扮末を添加し、よく混練してペースト
状の電解質を得た。このペースト状電解質を第2図に示
すメタノール極16とカチオン交換膜14の間の電解質
保持枠15内に介在させて燃料電池の単セルを得た。こ
の単セルの電流(Il−電圧(■特性を第4図に示した
(2) Fuel cell resin particles (A suitable amount of silicon carbide e powder was added as a thickener to the aqueous dispersion of step 11 and kneaded well to obtain a paste-like electrolyte. This paste-like electrolyte was used as a second A single cell of a fuel cell was obtained by interposing it in the electrolyte holding frame 15 between the methanol electrode 16 and the cation exchange membrane 14 shown in the figure.The current (Il-voltage) of this single cell is shown in FIG. Ta.

このように電解質を水不溶性でかつ粒状の強散性陽゛イ
オン交換樹脂とすることによって電解質が電極を通過し
て外部に流出しなくなったので、取扱いが容易になった
と共に、長時間運転しても電池出力の低下が起こらなく
なった。ま九、上記強酸性陽イオン交換樹脂粒子は適度
な膨潤性を有し。
By making the electrolyte a water-insoluble, granular, strongly dispersible cation exchange resin, the electrolyte does not pass through the electrodes and leak out to the outside, making it easier to handle and allowing for long-term operation. However, the battery output no longer decreases. Ninth, the strongly acidic cation exchange resin particles have appropriate swelling properties.

電池特性が良好でめった。さらに電解質が燃料室へ流出
しなくなったので、燃料に電解質全混入させる必要がな
くなシ、その結果第311に示した積層電池において燃
料のみの供給のための電極間の短絡がなくなり、また燃
料供給用のポンプが不要になり、電池出力、燃料効率が
向上すると共に。
The battery characteristics were very good. Furthermore, since the electrolyte no longer flows out into the fuel chamber, there is no need to mix all the electrolyte into the fuel, and as a result, in the stacked battery shown in No. 311, there is no short circuit between the electrodes for supplying only fuel, and the fuel This eliminates the need for a supply pump, improving battery output and fuel efficiency.

燃料供給が簡単になった。Fuel supply made easy.

実施例2 (1)電解質粒子の合成 スチレン1869.60%ジビニルベンゼン6.5gを
用いる以外は実施例1と同様な反応を行ない、スチレン
ーモノビニルエチルベ/ゼ/−シビニルペ/ゼン共重合
樹脂粒子(粒径10μm〜20μmのものが50%以上
)を得た。このものをさらに実施例1と同様く反応させ
て、電解質用強酸性陽イオン交換樹脂粒子fnlを得之
。このもののイオン交換容量は、4.3meQ/gでろ
つfc(架橋度1.6モル%)。
Example 2 (1) Synthesis of electrolyte particles The same reaction as in Example 1 was carried out except that 6.5 g of styrene 1869.60% divinylbenzene was used, and styrene-monovinyl ethylbe/ze/-sivinylpe/zene copolymer resin particles were prepared. (50% or more of the particles had a particle size of 10 μm to 20 μm). This product was further reacted in the same manner as in Example 1 to obtain strongly acidic cation exchange resin particles fnl for electrolyte. The ion exchange capacity of this product was 4.3 meQ/g, and the degree of crosslinking was 1.6 mol%.

(2)燃料電池 樹脂粒子1ll)を実施例1(2)と同様にしてペース
ト状の電解質にし、単セルを構成した。この単セルの電
流(I)−電圧(■特性を第5図に示した。この電解質
も実施例1(2)と同様に電極外部へ流出せず。
(2) 1 liter of fuel cell resin particles were made into a paste-like electrolyte in the same manner as in Example 1 (2), and a single cell was constructed. The current (I)-voltage (■ characteristics) of this single cell are shown in FIG. 5. This electrolyte also did not flow out to the outside of the electrode, as in Example 1 (2).

電池出力の低下も起こらなかった。さらに、電池特性も
良好でめった。
There was also no decrease in battery output. Furthermore, the battery characteristics were also excellent.

比較例1 (1)  it電解質粒子合成 スチレン1609.60%ジビニルベンゼン32gを用
いる以外は実施例1と同様な反応を行ない、スチレン・
ジビニルベンゼン系樹脂粒子(粒径10μm〜20μm
のものが50チ以上)を得た。このものをさらに実施例
1と同様に反応させ、電解質用強酸性陽イオン交換樹脂
粒子0ff)を得た。このもののイオン交換容量は4.
3meQ/gでめった(架橋度8.3モルチ)。
Comparative Example 1 (1) IT Electrolyte Particle Synthesis The same reaction as in Example 1 was carried out except that 32 g of styrene 1609.60% divinylbenzene was used.
Divinylbenzene resin particles (particle size 10 μm to 20 μm
50 inches or more). This product was further reacted in the same manner as in Example 1 to obtain strongly acidic cation exchange resin particles for electrolyte (0ff). The ion exchange capacity of this product is 4.
It was measured at 3 meQ/g (degree of crosslinking 8.3 mol).

(2)  燃゛科電池 樹脂粒子(III)を実施例1(2)と同様にしてペー
スト状の1!L解質にし、単セルを構成した。この単セ
ルの電流fI)−電圧Y)%性を第6図に示した。この
電解質は架橋度が高いため内部抵抗がかなり大きく電池
特性は不良でめった。
(2) Combustion battery resin particles (III) were prepared in the same manner as in Example 1 (2) to form paste 1! It was made into L solute and a single cell was constructed. The current fI)-voltage Y)% characteristic of this single cell is shown in FIG. Because this electrolyte has a high degree of crosslinking, its internal resistance was quite large, resulting in poor battery characteristics.

(発明の効果) 本発明に係る燃料電池は、適度に架橋された陽イオン交
換樹脂粒子を電解質として使用することにより、電解質
の流出・補充の問題がないだけでなく、優れた電池特性
を示す。
(Effects of the Invention) By using appropriately cross-linked cation exchange resin particles as an electrolyte, the fuel cell according to the present invention not only eliminates problems of electrolyte outflow and replenishment, but also exhibits excellent cell characteristics. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料電池の原理を説明するための概略
図、第2図は本発明による燃料電池の単セルの構成を示
す一部破断斜視図、第3図は単セルを直列に接続して構
成した燃料電池の構造を示す斜視図、第4図から第6図
は本発明の実施例並びに比較例による燃料電池の単セル
の電流−電圧特性を示すグラフである。 符号の説明 1・・・燃料室      2・・・燃料室人口3・・
・酸化剤室     4・・・酸化剤室人口5・・・燃
料極      6・・・酸化剤極7・・・電解質層 
    8・・・隔膜9・・・イオン基 10・・・強酸性場イオン交換樹脂粒子11・・・対イ
オ/     12・・・セパレータ13・・・空気極
      14・・・イオン交換膜15・・・保持枠
      16・・・メタノール極21・・・4  
     22・・・電池ケース23・・・正極端子 
   24・・・負極端子25・・・燃料用ボート  
 26・・・燃料タンクA・・・流入空気の流れ B・・・放出水蒸気及び空気の流れ C・・・燃料の流れ D・・・生成炭酸ガスの流れ E・・・放出炭酸ガスの流れ tl  、メタ/−ルツン7 ¥3の 、14 口 電流(−47S−) − 竿5(2) 電;#(fnAAm’ ) − ¥6閏 o     20   4t)     t。 t5Pj(%Anti )−
Fig. 1 is a schematic diagram for explaining the principle of the fuel cell of the present invention, Fig. 2 is a partially cutaway perspective view showing the configuration of a single cell of the fuel cell according to the present invention, and Fig. 3 is a schematic diagram for explaining the principle of the fuel cell of the present invention. A perspective view showing the structure of a connected fuel cell, and FIGS. 4 to 6 are graphs showing current-voltage characteristics of a single cell of a fuel cell according to an example of the present invention and a comparative example. Explanation of symbols 1...Fuel chamber 2...Fuel chamber population 3...
・Oxidizer chamber 4... Oxidizer chamber population 5... Fuel electrode 6... Oxidizer electrode 7... Electrolyte layer
8... Diaphragm 9... Ionic group 10... Strongly acidic field ion exchange resin particles 11... Counter ion/ 12... Separator 13... Air electrode 14... Ion exchange membrane 15...・Holding frame 16...methanol pole 21...4
22...Battery case 23...Positive terminal
24...Negative terminal 25...Fuel boat
26... Fuel tank A... Flow of incoming air B... Flow of released water vapor and air C... Flow of fuel D... Flow of carbon dioxide produced E... Flow of released carbon dioxide tl , Meta/-Rutsun 7 ¥3, 14 mouth current (-47S-) - Rod 5 (2) Electric; t5Pj(%Anti)-

Claims (1)

【特許請求の範囲】 1、電解質をはさんで対向する燃料極及び酸化剤極との
間で電気化学的反応を生起させ電気エネルギーを直接取
り出すものにおいて、該電解質が水の存在下で解離する
強酸性陽イオン交換樹脂粒子であつて、該樹脂粒子を構
成する樹脂が、樹脂の構成成分として架橋剤を0.8〜
5モル%有するものである燃料電池。 2、強酸性陽イオン交換樹脂粒子がスルホン化共重合体
粒子である特許請求の範囲第1項記載の燃料電池。
[Scope of Claims] 1. A device that directly extracts electrical energy by causing an electrochemical reaction between a fuel electrode and an oxidizer electrode that face each other with an electrolyte in between, in which the electrolyte dissociates in the presence of water. Strongly acidic cation exchange resin particles, wherein the resin constituting the resin particles contains a crosslinking agent as a constituent component of the resin from 0.8 to 0.8%.
A fuel cell containing 5 mol%. 2. The fuel cell according to claim 1, wherein the strongly acidic cation exchange resin particles are sulfonated copolymer particles.
JP59200248A 1984-09-25 1984-09-25 Fuel cell Pending JPS6178067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59200248A JPS6178067A (en) 1984-09-25 1984-09-25 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59200248A JPS6178067A (en) 1984-09-25 1984-09-25 Fuel cell

Publications (1)

Publication Number Publication Date
JPS6178067A true JPS6178067A (en) 1986-04-21

Family

ID=16421238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59200248A Pending JPS6178067A (en) 1984-09-25 1984-09-25 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6178067A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
JP2002081973A (en) * 2000-09-07 2002-03-22 Aichi Tokei Denki Co Ltd Water meter for wireless meter reading
JP2006120443A (en) * 2004-10-21 2006-05-11 Electric Power Dev Co Ltd Fuel cell
JP2008084592A (en) * 2006-09-26 2008-04-10 Sony Corp Ionic conductor
US8338328B2 (en) 2007-10-02 2012-12-25 Sony Corporation Electrolytic solution and electrochemical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
JP2002081973A (en) * 2000-09-07 2002-03-22 Aichi Tokei Denki Co Ltd Water meter for wireless meter reading
JP2006120443A (en) * 2004-10-21 2006-05-11 Electric Power Dev Co Ltd Fuel cell
JP4652015B2 (en) * 2004-10-21 2011-03-16 電源開発株式会社 Fuel cell
JP2008084592A (en) * 2006-09-26 2008-04-10 Sony Corp Ionic conductor
WO2008041472A1 (en) * 2006-09-26 2008-04-10 Sony Corporation Ion conductor and fuel cell
US8338328B2 (en) 2007-10-02 2012-12-25 Sony Corporation Electrolytic solution and electrochemical device

Similar Documents

Publication Publication Date Title
US3702267A (en) Electrochemical cell containing a water-wettable polytetrafluoroethylene separator
US5346780A (en) Fuel cell and method for producing an electrode used therefor
CN101589496B (en) Polymer electrolyte membrane, method for producing the same, membrane-electrode assembly and solid polymer fuel cell
US4537840A (en) Fuel cell using organic, high-molecular weight electrolyte
JP4036279B2 (en) Proton conductor and fuel cell using the same
JP2002501952A (en) Ion-transmitting membrane for fuel cells
CA2686279A1 (en) Production method for an electrode structure for a solid polymer fuel cell
CN108933258A (en) The preparation method of the all-solid lithium-ion battery of three-dimensional composition metal cathode of lithium
ul Imaan et al. In-situ preparation of PSSA functionalized ZWP/sulfonated PVDF composite electrolyte as proton exchange membrane for DMFC applications
JPS6178067A (en) Fuel cell
CN101512676B (en) Polymer Electrolyte Emulsion and Its Application
JP2005531891A (en) Fuel cell with polymer electrolyte membrane grafted by irradiation
CN101978536B (en) Membrane electrode assembly and fuel cell
US3948681A (en) Fuel cell utilizing direct hydrocarbon oxidation
JP2007329106A (en) Polymer electrolyte, manufacturing method thereof, membrane electrode assembly, and fuel cell
TWI849639B (en) Redox flow battery and electrolyte thereof
CN100477355C (en) Electrolyte film and fuel cell
JP2005276602A (en) Membrane electrode assembly and solid polymer fuel cell
CN113363541B (en) POSS covalent hybridization polybenzimidazole ion exchange membrane and preparation method thereof
JP2002088251A (en) Proton electroconductive polymer composition
JPS59209277A (en) Fuel cell
CN110326144B (en) Polymer electrolyte membrane, method for producing the same, electrochemical cell and flow cell, and composition for polymer electrolyte membrane
JP2007234247A (en) Proton conductive material and its manufacturing method
CN105938916A (en) A preparation method of acrylonitrile-methyl methacrylate copolymer gel electrolyte modified by doping inorganic TiO2 nanoparticles
JP2001160408A (en) Solid polymer electrolyte fuel cell