JPS6177665A - High tenacity zirconia sintered body - Google Patents
High tenacity zirconia sintered bodyInfo
- Publication number
- JPS6177665A JPS6177665A JP59199236A JP19923684A JPS6177665A JP S6177665 A JPS6177665 A JP S6177665A JP 59199236 A JP59199236 A JP 59199236A JP 19923684 A JP19923684 A JP 19923684A JP S6177665 A JPS6177665 A JP S6177665A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- toughness
- mol
- zirconia
- zro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高靭性ジルコニア焼結体に関し、さらに詳しく
はZrO□に安定化剤としてY2O,及びCeOを含む
ZrOt−Y2O− CeO系のジルコニアとAt
2 0 、とよりなり、高強度で待に特定温度領域にお
ける長時間の使用による経時劣化の極めて少い高靭性ノ
ルコニア焼結体に関するものである。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a high-toughness zirconia sintered body, and more specifically to ZrOt-Y2O-CeO-based zirconia containing ZrO□ and Y2O as a stabilizer, and CeO. At
20, and relates to a high-strength, high-toughness norconia sintered body that exhibits extremely little deterioration over time due to long-term use in a specific temperature range.
ジルコニア焼結体は高温領域の立方晶から正方晶を経て
単斜晶に相移転をするがその際体積変化を伴い、特に正
方品から単斜晶への相移転の体積変化が大き(、そのた
め焼結体がこの体積変化により破壊してしまうという欠
点がある。この欠点を取り除くために、Z「0、にCa
O+ MtlO+ Y 20、などを固溶させて、転移
を起こさせないようにし、常温でも立方晶からなる安定
化ジルコニア、あるいは立方晶と単斜晶よりなる部分安
定化ジルコニアが数多く発表されている。また、準安定
相である正方晶を常温で焼結体内に存在させた部分安定
化ジルコニアが高強度を示すことが発表されている。こ
のように常温において主として正方品または立方晶から
なる焼結体を得るための安定化剤としては従来上り主と
してY2O3が用いられ高靭性、高強度を発現している
。しかし、この主として正方晶からなる部分安定化ジル
コニアは、高温相を低温域までもたらした結果生ずる準
安定相であるため、その構造や性質が経時変化をし、特
に200℃ないし400°Cという比較的低温における
加熱により単斜晶へ相転移を起こし強度の経時劣化が極
めて大きい。A zirconia sintered body undergoes a phase transition from cubic to tetragonal to monoclinic in the high-temperature range, but this is accompanied by a change in volume, and the volume change during the phase transition from tetragonal to monoclinic is particularly large (because of this, There is a drawback that the sintered body is destroyed due to this volume change.In order to eliminate this drawback, Ca
A large number of stabilized zirconias made of cubic crystals or partially stabilized zirconias made of cubic and monoclinic crystals have been published by dissolving O + MtlO + Y 20, etc. in solid solution to prevent transitions. Furthermore, it has been announced that partially stabilized zirconia, in which a metastable phase of tetragonal crystals exists in a sintered body at room temperature, exhibits high strength. As described above, Y2O3 has conventionally been used as a stabilizer to obtain a sintered body mainly consisting of tetragonal or cubic crystals at room temperature, and it exhibits high toughness and strength. However, this partially stabilized zirconia, which is mainly composed of tetragonal crystals, is a metastable phase resulting from bringing a high temperature phase to a low temperature range, so its structure and properties change over time, especially when compared to temperatures between 200°C and 400°C. Heating at extremely low temperatures causes a phase transition to monoclinic crystals, resulting in extremely large deterioration of strength over time.
このような部分安定化ジルコニア焼結体の経時変化が安
定化剤の組成や焼結体の組繊あるいは結晶粒径に依存す
ることから、安定化剤としてのY−OhfAを特定し、
主として正方品からなる焼結体を得、その焼結体の製造
過程において結晶粒度を制御することにより、特定温度
域における経時劣化が少ない高強度、高靭性の焼結体が
報告されている(ネテ開昭56−13456’4)。Since the aging of such a partially stabilized zirconia sintered body depends on the composition of the stabilizer, the composition of the sintered body, or the crystal grain size, we identified Y-OhfA as a stabilizer,
It has been reported that by obtaining a sintered body mainly consisting of square parts and controlling the crystal grain size during the manufacturing process of the sintered body, a sintered body with high strength and high toughness that exhibits little deterioration over time in a specific temperature range ( Nete Kai 56-13456'4).
また、At203がZ r O2に固溶・分散すること
によって正方品のZ r Otが単斜晶に転移する温度
を下げZ r Ovの粒成長を抑制するとの知見に基づ
き、Z r O2−Y r Ov系ジルコニアにAt
201成分を加えることにより、強度が改善されること
が報告されている(特開昭58−32066)、さらに
、このZrO,−Y2O,系のノルフニ7にAt20
、を固溶・分散させた焼結体の製作工程において、Z
r O2、安定化剤、At 203の各成分の水溶性塩
を所定の割合にt昆合し共沈して得られた原料を用いる
ことによってマイクロポアのほとんどない強度のすぐれ
た焼結体が得られることが開示されている(特開昭58
−369761. 一方ノルコニア系焼結体の製造に用
いられる微粉末の製造方法として、ジルコニア塩水溶液
の加熱加水分解によって生成する単斜ノルコニア2次粒
子ゾルを■いる方法が発表され、極めて易焼結性の粉末
を得て、1300°Cの常圧下での焼結でほとんど理論
密度に近い焼結体が与乏られることが開示されている(
特開昭58−135131)。In addition, based on the knowledge that At203 is dissolved and dispersed in Z r O2, it lowers the temperature at which the tetragonal Z r Ot transforms to monoclinic and suppresses the grain growth of Z r Ov. r At to Ov-based zirconia
It has been reported that the strength is improved by adding the 201 component (Japanese Unexamined Patent Publication No. 58-32066).
In the manufacturing process of a sintered body in which Z is dissolved and dispersed, Z
A sintered body with excellent strength and almost no micropores can be produced by combining the water-soluble salts of each component (rO2, stabilizer, and At203) in a predetermined ratio and using the raw material obtained by coprecipitation. It is disclosed that the obtained
-369761. On the other hand, as a method for producing fine powder used in the production of norconia-based sintered bodies, a method has been announced in which a monoclinic norconia secondary particle sol produced by heating and hydrolysis of a zirconia salt aqueous solution is used. It is disclosed that sintering at 1300°C under normal pressure produces a sintered body with almost theoretical density (
JP 58-135131).
Ce OrはZ r O2の安定化剤の−であるが、相
平衡状態図よりCent Zr0z系はY+0i−Z
rO□系に比較して、幅広い高温正方品領域を有してお
り、CeO,−ZrOz系の焼結体において、Ce O
r含量10〜12モル%で高い強度と、Y、O,系より
も熱的に安定であることが発表されている(1983年
窒業基礎討論会IA6.10頁)。また、Y2O5Zr
O,系にCe O2を添加することによって、広い組成
範囲で正方品のみからなる焼結体が得られ、Ce0=の
同時添加によって長時間の熱エーノングによっても安定
で高靭性を発現する焼結体が得られることが明らかにさ
れている(1984年5月窯業協会年会、124P46
3)。Ce Or is the - of the stabilizer of Z r O2, but from the phase equilibrium diagram, the Cent Zr0z system is Y+0i-Z
Compared to the rO
It has been announced that it has high strength with an r content of 10 to 12 mol % and is more thermally stable than Y, O, systems (1983 Nitrogen Industry Basic Conference IA, p. 6.10). Also, Y2O5Zr
By adding CeO2 to the O, system, sintered bodies consisting only of square pieces can be obtained over a wide composition range, and the simultaneous addition of Ce0= allows for sintering that is stable and exhibits high toughness even after long-term thermal enlongation. (May 1984 Ceramics Association Annual Meeting, 124P46)
3).
しかしながら、安定化剤としてのY 2031を特定し
焼結体の結晶粒度を制御したジルコニア焼結体において
、特定温度域における経時劣化が改善されたとはいえイ
ツトリアで安定化されたZr0zは熱的にはきわめて不
安定である上強度的にもまだ不充分であり、溝遣材とし
ての用途は限られたものとなる。また、At 20 s
を固溶・分散させたY20 ) −Z r O2系ジル
コニア焼結体も常温では高強度を有するものの熱的安定
性は同様に極めて不十分で本質的に改善されていないた
めに、実際の使用に際して強度の低下及び結晶岨聰の劣
化とし1うプ
重大な欠点やある。このY2O5ZrO+系にAffi
xO3を固溶分散した系において焼結用粉末の調製に当
って水溶性塩の共沈によって得られる粉末を原料とする
焼結体も常温において高強度が得られるものの、熱的に
は何ら改善されず不安定である。However, in a zirconia sintered body in which Y 2031 was specified as a stabilizer and the grain size of the sintered body was controlled, although aging deterioration in a specific temperature range was improved, Zr0z stabilized with ittria was thermally is extremely unstable and still has insufficient strength, so its use as a groove material is limited. Also, At 20 s
Although the Y20) -ZrO2-based zirconia sintered body in which Y20)-ZrO2 is solid-dissolved and dispersed has high strength at room temperature, its thermal stability is similarly extremely insufficient and essentially unimproved, making it difficult to use in actual use. There are serious drawbacks such as a decrease in strength and deterioration of the crystal structure. Affi to this Y2O5ZrO+ system
Sintered bodies made from powders obtained by co-precipitation of water-soluble salts in the preparation of sintering powders in systems in which xO3 is dispersed as a solid solution also have high strength at room temperature, but there is no improvement in thermal performance. It is unstable.
また従来上り、易焼結体のジルコニア粉末の:A製方法
は、ノルコニウムの塩の水溶液を用−また共沈法が最も
一般的な製造方法であるが、また池の方法としてジルコ
ニアのゾルを使用した微粉末の製造方法が開示されてい
る。しかしながらこれらの原料調製方法によっても、得
られる焼結体は、密度、強度、靭性の点において満足す
べきものではなく、原料粉体のy4製方法の検8↑によ
って、マイクロポアのない焼結体を提供しうる粉体が得
られれば、これらの特性が一段と向上するものと思われ
る。また安定化剤としてCe O2を含む系すなわちC
e O2−Z r O2M及びY 20、− Z ro
2− CeO2系の焼結体は強度が不充分であり、熱
的安定性を示すものの、いずれも満足なものでなく、更
に一段と強度及び熱的安定性特に水等の存在下における
熱的安定性かえられれば、ジルコニアffl 粘体とし
て大いに利用範囲を拡大することができると考えられろ
1本発明は、この上うなY 20 yによって安定化さ
れた高靭性ジルコニアの熱的特性を飛躍的に改善し1機
械的特性に優れがっ熱劣化のない熱的にきわめて安定な
焼結体を提供するものである。In addition, the conventional manufacturing method for easily sinterable zirconia powder uses an aqueous solution of norconium salt, and the coprecipitation method is the most common manufacturing method. A method of manufacturing the fine powder used is disclosed. However, even with these raw material preparation methods, the obtained sintered bodies are not satisfactory in terms of density, strength, and toughness. It is believed that these properties would be further improved if a powder capable of providing these properties could be obtained. In addition, a system containing CeO2 as a stabilizer, that is, C
e O2-Z r O2M and Y 20, - Z ro
2- CeO2-based sintered bodies have insufficient strength, and although they exhibit thermal stability, they are not satisfactory, and even more important are the strength and thermal stability, especially the thermal stability in the presence of water, etc. If its properties are changed, it is thought that the range of use of zirconia as a viscous material can be greatly expanded.1 The present invention furthermore dramatically improves the thermal properties of high-toughness zirconia stabilized by Y 20 y. 1) It provides a thermally extremely stable sintered body that has excellent mechanical properties and is free from thermal deterioration.
C問題前を解決するための手段〕
本発明の高靭性ジルコニア焼結体は、Zr0t−Y O
1.5 CeO2M組成から成り、Y O1,sを0
゜5〜15モル%、Ce O2を0.5〜15モル%を
含む岨戊頌域において、YOl、、及C/ Ce Or
の総量が3.5〜15.5 モル%であり、残部なZr
01とする主として正方晶より成る部分安定化ノルフェ
アに0.5〜70mfi%の範囲でAt 203を含み
、焼結体の平均結晶粒子径が3μ以下であることを特徴
とするものである。Means for Solving Problem C] The high toughness zirconia sintered body of the present invention is made of ZrOt-YO
1.5 Consists of CeO2M composition, Y O1,s is 0
YOl, , and C/Ce Or
The total amount of Zr is 3.5 to 15.5 mol%, and the balance is Zr.
The sintered body is characterized in that partially stabilized norphea mainly composed of tetragonal crystals, designated as 01, contains At 203 in a range of 0.5 to 70 mfi%, and the average crystal grain size of the sintered body is 3 μm or less.
この部分安定化ジルコニアは、Z r Ozのゾルおよ
び/または水溶性の塩をY 20 s 、Ce O2の
水溶液の塩と共に溶液の状態で均一に混合した後、沈澱
の形で分離して得られた原料を用いろことを特徴とする
ものである。This partially stabilized zirconia is obtained by uniformly mixing a sol and/or a water-soluble salt of Z r Oz with a salt of an aqueous solution of Y 20 s and CeO2 in a solution state, and then separating it in the form of a precipitate. It is characterized by the fact that it uses fresh raw materials.
また、前記の部分安定化ジルコニアに含まれるAt 2
0 v成分はZr02t YzOl、Cent成分と溶
液状態で混合する際にゾルおよび/またはアルミニウム
の塩を水溶性の状態で均一に混合した後、沈澱の形で分
離して得られる原料を用いることを持金とするものであ
る。Furthermore, At 2 contained in the above partially stabilized zirconia
When mixing the 0 v component with Zr02t YzOl and the Cent component in a solution state, use a raw material obtained by uniformly mixing a sol and/or aluminum salt in a water-soluble state and then separating it in the form of a precipitate. It is meant to be kept as money.
本発明の高靭性ジルコニア焼結体は、従来のYHO5Z
r O2−へtzoz系の高91性ノルコニア焼結体
組成にCeo2成分を新たに添加することにより、従来
より熱的に不安定とされろ温度頌域での長時間にわたる
熱劣化試験後も、はとんど変化がなく、極めて高い強度
を示す、待に劣化の激しいとされる熱水中においでも着
しく高い安定性を示す、これはCartの添加によって
安定化された正方晶ジルコニアの結晶構造が、従来のY
2O3によって安定化された正方晶ジルコニアよりも、
ジルコニアの高温安定相である立方晶の結晶構造により
近くなっているためであると考えられる。本発明におい
てYO1.5およびCeO2の各組成範囲を限定した理
由は次の通りである。YO,、、が0.5 モル%以
下では安定化剤としての添加の効果が無いがらであり、
YO1.5が15モル%を越えると曲げ強度、靭性等の
機械的特性が急激に低下するからである。Ce O2が
0.5 モル%以下では熱的に不安定で添加の効果がな
いからであり、CeO□15モル%を越えると靭性及び
曲げ強度等の機械的特性が失われるからである。また、
Y O、、、及びCeO2の総量が3.5%以下である
ときはZrO,−Y i O−−Ce Oz系において
正方晶が得られる範囲から外れるからであり、YO1.
5及びCe O2の総量が15.5 モル%以下になる
と靭性・曲げ強度等の機械的特性が低下するからである
。The high toughness zirconia sintered body of the present invention is different from the conventional YHO5Z
By newly adding the Ceo2 component to the rO2-hetzoz-based high-91 norconia sintered body composition, it is more thermally unstable than before, even after long-term thermal deterioration tests in the temperature range. This is a tetragonal zirconia crystal stabilized by the addition of Cart. The structure is conventional Y
than tetragonal zirconia stabilized by 2O3.
This is thought to be because the crystal structure is closer to the cubic crystal structure, which is the high-temperature stable phase of zirconia. The reason why the composition ranges of YO1.5 and CeO2 are limited in the present invention is as follows. If YO,... is less than 0.5 mol%, its addition as a stabilizer has no effect;
This is because if YO1.5 exceeds 15 mol %, mechanical properties such as bending strength and toughness will decrease rapidly. This is because if CeO2 is less than 0.5 mol%, it is thermally unstable and its addition has no effect, and if CeO□ exceeds 15 mol%, mechanical properties such as toughness and bending strength are lost. Also,
This is because when the total amount of YO1.
This is because if the total amount of 5 and CeO2 is less than 15.5 mol%, mechanical properties such as toughness and bending strength will deteriorate.
本発明の組成を有するジルコニア焼結体は主として正方
品より成る部分安定化ジルコニアであるので、高強度・
高靭性を示す6本来正方晶は皐安定相であるため試料表
面の研削によりて一部が単斜晶へ伝移を生じ表面層の残
留圧縮応力により焼結体の強化に寄与する。この強化の
程度は研削による表面粗さと焼結体の粒径に依存してい
る。このため本発明による主として正方品より成る部分
安定化ジルコニアとはX線回折による結晶相の測定にお
いて鏡面状態で90重呈%以上が正方品系および/また
は立方晶系で占められ正方品系と立方晶系の比が1=4
以上であるZr0zのことをいう。正方晶系と立方晶
系の合量比が90%以下では靭性が低くなるため正方品
系と正方品系の介猜比は9()%以上であることが必要
で、正方品系と立Ji品系の比が1:4 以下では靭性
が低いためこの比率は1:4以上であることが必要であ
る。Since the zirconia sintered body having the composition of the present invention is partially stabilized zirconia mainly composed of square pieces, it has high strength and
Since the tetragonal crystal, which exhibits high toughness, is a stable phase, part of it transforms into a monoclinic crystal by grinding the sample surface, and the residual compressive stress in the surface layer contributes to the strengthening of the sintered body. The degree of this strengthening depends on the surface roughness caused by grinding and the grain size of the sintered body. Therefore, the partially stabilized zirconia mainly composed of tetragonal crystals according to the present invention is characterized in that, in the measurement of the crystal phase by X-ray diffraction, more than 90% of the crystal phase in the mirror state is occupied by the tetragonal system and/or the cubic system. The ratio of the system is 1=4
The above refers to Zr0z. If the total ratio of tetragonal and cubic crystal systems is less than 90%, the toughness will be low, so it is necessary that the cracking ratio between the tetragonal and cubic systems is 9()% or more. If the ratio is less than 1:4, the toughness will be low, so this ratio needs to be 1:4 or more.
本発明のジルコニア焼結体には0.5 〜70重贋%の
範囲でAt 20 sを含むので靭性及び強度にも優れ
ている。これは八Q、0.の焼結助剤的効果により欠陥
の除去に役立ちまたアルミナ添加により弾性率が上昇し
破壊エネルギーの増大に寄与しているためと考えられる
。Al□0.の添加量を0.5〜70重景ガロ数値限定
した理由は、八N + Oyが0゜5!I!量%以下で
あると添加効果が乏しく、70重量%以上では、靭性あ
るZ「02の含有量を低め強度、靭性共に充分な値が得
られなくなるからである。Since the zirconia sintered body of the present invention contains At 20 s in a range of 0.5 to 70% by weight, it has excellent toughness and strength. This is 8Q, 0. This is thought to be because the effect of alumina as a sintering aid helps remove defects, and the addition of alumina increases the elastic modulus, contributing to an increase in fracture energy. Al□0. The reason for limiting the addition amount to 0.5 to 70 heavy weight galore is that 8N + Oy is 0°5! I! If the amount is less than 70% by weight, the addition effect will be poor, and if it is more than 70% by weight, the content of Z'02, which has toughness, will be lowered and sufficient values for both strength and toughness will not be obtained.
本発明の焼結体は平均結晶粒子径が3μ以下であること
が必要である。平均結晶粒子が3μを越乏ると正方品系
が単斜晶系1こ変り靭性を低下する。The sintered body of the present invention needs to have an average crystal grain size of 3 μm or less. When the average crystal grain size exceeds 3μ, the tetragonal structure changes to a monoclinic structure and the toughness decreases.
本発明の部分安定化ジルコニアはZrO2のゾルおよび
/または水溶性の塩をY2O5,CeO□の水溶性の塩
と共に溶液の状態で均一・に混合した後沈澱の形で分離
して得られた原料を用いるので、ZrO2にY2O,及
びCc O2成分が均一に分散し極めて微粒子から成る
易焼結性の粉体を原料とすることが出来る。その結果、
微粒、均一なll織を有し、マイクロポアのほとんどな
い焼結体が得られ、強度及び熱的安定性についても所期
の値が得られる。The partially stabilized zirconia of the present invention is a raw material obtained by uniformly mixing a ZrO2 sol and/or a water-soluble salt with a water-soluble salt of Y2O5 and CeO□ in a solution state, and then separating it in the form of a precipitate. Since Y2O and CcO2 components are uniformly dispersed in ZrO2, an easily sinterable powder consisting of extremely fine particles can be used as a raw material. the result,
A sintered body having fine grains, a uniform I/L texture, and almost no micropores can be obtained, and desired values of strength and thermal stability can also be obtained.
本発明のAt 20 s成分は、Z ro 2.Y 2
0 y−CeO2成分と、溶液状態で混合する際にゾル
お上り/またはアルミニウムの塩を水溶性の状態で均一
に混合した後沈澱の形で分離して得られる原料を用いる
ので、%、O,粉子をジルコニア焼結体の中に、微粒均
一に分散することが出来る。その結果前記したようなジ
ルコニア焼結体へのAI 203添加の効果が充分に得
られるものである。The At 20 s component of the present invention has Z ro 2. Y 2
0 When mixing the y-CeO2 component in a solution state, we use a raw material obtained by homogeneously mixing the sol/aluminum salt in a water-soluble state and then separating it in the form of a precipitate. , fine particles can be uniformly dispersed in the zirconia sintered body. As a result, the effect of adding AI 203 to the zirconia sintered body as described above can be fully obtained.
また、本発明のジルコニア焼結体のZ r O2はその
1部以上全部迄HfO,によって置換しても全く同様の
特性を示すものである。Furthermore, even if one or more of the Z r O2 in the zirconia sintered body of the present invention is replaced with HfO, it exhibits exactly the same characteristics.
以下に、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.
(′Jこ地間1)
イ:Lられる粉末がIll’!1表及V第2表の割合に
なるように、純度9”:)、996のオキン塩化ノルフ
ニウム溶液の加水分解によって得られたノルコニアシル
溶液に、純度99.9 %の塩化イツトリウム、純度9
9.9 %の塩化セリウムを加えて均一に混合した溶液
を凝結させ、沈澱とし、これを脱水乾燥し、850”C
にて仮焼して部分安定化ジルコニア粉末を得た。この粉
末は35m”/gの比表面積を示す。この粉末に平均粒
径0.3μ、純度99゜9 %のAt 203 を第1
表及び第2表の割合で加え、湿式混合後乾燥させた粉末
を1 、5 ton/ am2の圧力t”!? Jf
的ニrR型L、1400−1650℃ノlr:L度で大
気中2時間焼成した。得られた焼結体の平均結晶粒子径
は全て3μ以下であった。('J Kojima 1) I: The powder that is L is Ill'! To the norconiacyl solution obtained by hydrolysis of the okine norfnium chloride solution of purity 9":) and 996, yttrium chloride of purity 99.9% and purity 9" were added to the norconiacyl solution obtained by hydrolysis of okine norfnium chloride solution of purity 9":) so as to have the proportions shown in Tables 1 and 2.
9.9% cerium chloride was added and the uniformly mixed solution was coagulated to form a precipitate, which was dehydrated and dried at 850"C.
The mixture was calcined to obtain partially stabilized zirconia powder. This powder exhibits a specific surface area of 35 m"/g. At 203 with an average particle size of 0.3 μ and a purity of 99°9% was first added to this powder.
Add the powder in the proportions shown in Tables and Table 2 and dry it after wet mixing at a pressure of 1.5 ton/am2 t"!? Jf
The sample was fired in the atmosphere at 1400-1650°C for 2 hours. The average crystal grain size of the obtained sintered bodies was all 3 μm or less.
得られた焼結体は、3X4X40mmに切断研摩加工し
、抗折強度、破壊靭性、熱劣化試験後の焼結本表面の結
晶相及び抗折強度を測定した。なお、各物性の測定方法
として、抗折強度は、JIS規俗に従い、3X4X40
mm試料片を用い、スパン3011 クロスヘッド速度
0.5 mml論inの3点曲げにより10本の平均値
を示した。破壊靭性は、マイクロ・インデンテーンラン
法により、荷重50Kgで圧痕を入れて測定を行ない、
KIC値は新涼らの式を用いた。結晶相の定量測定は、
X繰回折法により行なった。すなわち、ダイヤモンドベ
ーストにで鏡面研摩しr:、試料片の単斜晶の(111
)面と(11丁)面の積分強度IN と正方品の(1
111面及び立方晶の(111)面の積分強度I T、
I Cより単斜晶量は、(単斜晶量)= −」L−Y
1O0・・・・・・(1)の式により決定1戸IC”L
M
した、犬に焼結体を微粉砕し、X線回折により同条件で
単斜晶ZrO2と立方晶Z r Orの積分強度■^、
IC9:Fcめな、すなわち、この粉砕の過程で焼結体
中に存在していた正方晶Z「0.は機械的応力によりす
べて単斜晶Z「0.へ変態すると考えらY1O0・・・
・・・(2)により決定し、これより次に正方品、鼠を
決定した。熱劣化試験は、300℃の電気炉内に250
0時間保持した後、試料を取り出し、物性を測定した。The obtained sintered body was cut and polished to a size of 3×4×40 mm, and the flexural strength, fracture toughness, crystal phase of the sintered body surface after the thermal deterioration test, and flexural strength were measured. In addition, as a method for measuring each physical property, the bending strength is 3X4X40 according to JIS regulations.
The average value of 10 specimens was determined by three-point bending at a span of 3011 mm and a crosshead speed of 0.5 mm. Fracture toughness was measured by making an indentation with a load of 50 kg using the micro-indente run method.
The KIC value was calculated using Shinryo et al.'s formula. Quantitative measurement of crystalline phase is
The analysis was carried out using the X-repetition diffraction method. That is, the monoclinic (111
) surface and (11 pieces) surface and the (1
The integrated intensity I T of the 111 plane and the cubic (111) plane,
From I C, the amount of monoclinic crystal is (amount of monoclinic crystal) = −”L−Y
1O0・・・・・・Determined by the formula (1) 1 unit IC”L
The integrated intensity of monoclinic ZrO2 and cubic ZrOr was determined by X-ray diffraction under the same conditions after pulverizing the sintered body.
IC9: Fc, that is, it is thought that all the tetragonal Z'0. existing in the sintered body during this pulverization process transforms into monoclinic Z'0. due to mechanical stress, Y1O0...
... (2) was determined, and from this, square items and mice were determined next. Thermal deterioration test was carried out at 250°C in an electric furnace at 300°C.
After holding for 0 hours, the sample was taken out and its physical properties were measured.
熱劣化試9.tlのlit斜晶呈は、試料表面のX線回
折により同様に上記(1)式より求めた。Heat deterioration test 9. The lit oblique crystallization of tl was similarly determined from the above equation (1) by X-ray diffraction of the sample surface.
第1表の試料No1〜36では八t203の組成を25
重量%に固定し、Y O、、Sを0.5モル%から15
モル%まで順次段階的に増やしなからCe O2を種々
のモル%で添加したものである。また、第2表の試料N
o37〜No671%はYl、、のモル%を4%に固定
し、At 203のm1%を0.5 %から80%まで
順次段階的に増やしなからceo2を種々のモル%で添
加したらのである。表1及び表2の結果より明らかな様
に、本発明の高靭性ノルコニア焼結体は、従来のY、O
,のみによって安定化されている焼結体に比べ、At
101成分の多少に関係なくCe0=添加により正方品
から3p斜品への転移が大幅に抑制されており、特定温
度領域における長時間の熱劣化試験後も、高い強度を保
持していることが確認された。また、本発明の組成の範
囲外となる比較例が、単斜晶への転移が抑制されず、熱
劣化試験後の強度が劣ることが判明した。In samples Nos. 1 to 36 in Table 1, the composition of 8t203 was 25
YO, S was fixed at 0.5 mol% to 15% by weight.
Ce O2 was added in various mol % in a stepwise manner up to mol %. Also, sample N in Table 2
For o37 to No671%, the mole% of Yl was fixed at 4%, and the m1% of At203 was increased stepwise from 0.5% to 80%, and CEO2 was added in various mole%. . As is clear from the results in Tables 1 and 2, the high toughness norconia sintered body of the present invention
, compared to the sintered body stabilized only by At
Regardless of the amount of the 101 component, the transition from a square product to a 3p diagonal product is significantly suppressed by the addition of Ce0, and the product maintains high strength even after a long-term thermal deterioration test in a specific temperature range. confirmed. In addition, it was found that the comparative example, which falls outside the composition range of the present invention, did not suppress the transition to monoclinic crystal and had poor strength after the thermal deterioration test.
(実施例2)
得られる粉末が第3表の割合になるように純度99.9
%のオキシ塩化シルコニ9ム溶液の加水分解によりて得
られたジルコニアゾル溶液に純度99.9%の塩化イツ
トVウム、純度99.9%の塩化セリウムを加乏、さら
に純度99%以上のアルミニウムイソプロピレートより
調整したアルミナゾルを加元て均一に混合した溶液を凝
結させ、沈澱としてこれを脱水乾燥し、800℃にて[
焼して原料粉体を得た。この粉末は200Aの一次粒子
径を示す、この粉体を1 、5 ton/ am”の
圧力で等方的に成形し、1400〜1650℃の温度で
大気中2時間焼成した。得られた焼結体について実施例
1と同様な測定をイ〒なった。また比較のため比表面M
i25+s”/gの99%以上の純度のZr01粉末を
用いて、これにCeO2,y、0.を第3表の割合にな
るように加え、平均粒径0.3μ、純度99.9%のA
l2O、をm3表の割合になるように加えて、湿式混合
後乾燥させた粉末を用い、同様に成形、焼成した試料の
結果を示した。第3表の結果より、ゾルから調製した原
料を用いた焼結体は、マイクロポアを含まず、各成分の
均一な分散により、粉末混合のものに比較し、高密度、
高強度、熱的にもより高い安定性を示していることが判
る。(Example 2) The purity was adjusted to 99.9 so that the powder obtained had the proportions shown in Table 3.
A zirconia sol solution obtained by hydrolyzing a silconium oxychloride solution of 99.9% purity and 99.9% purity cerium chloride, and further added aluminum with a purity of 99% or more. Add alumina sol prepared from isopropylate to coagulate the uniformly mixed solution, dehydrate and dry this as a precipitate, and precipitate at 800°C.
A raw material powder was obtained by baking. This powder has a primary particle size of 200 A. This powder was isotropically molded at a pressure of 1.5 ton/am" and fired in the air at a temperature of 1400 to 1650°C for 2 hours. The solids were measured in the same manner as in Example 1. For comparison, the specific surface M
Using Zr01 powder with a purity of 99% or more of i25+s''/g, CeO2,y,0. A
The results are shown for a sample in which 12O was added in the proportion shown in the m3 table, and the powder was wet-mixed and then dried, and then molded and fired in the same manner. From the results in Table 3, the sintered body using the raw material prepared from the sol does not contain micropores and has a uniform dispersion of each component, resulting in a higher density and higher density compared to the powder mixture.
It can be seen that it exhibits high strength and higher thermal stability.
(実施例3)
実施例1の方法により311Slた焼結体を用い、オー
トクレーブを使用して、145℃の蒸留水中において、
熱劣化試験を行ない、焼結体試料表面の単斜晶量を開定
し第1図に示した1図中の試料番号の力?コは順に(Y
O、、、モル%、CeOモル%。(Example 3) Using a 311Sl sintered body by the method of Example 1, using an autoclave, in distilled water at 145 ° C.
A thermal deterioration test was carried out to determine the amount of monoclinic crystal on the surface of the sintered sample. (Y)
O, , mol%, CeO mol%.
At20,11t%)を示し、NoA、NoBは比較例
のY2O、のみによる部分安定化ジルコニア/2結体で
ある。その結果、本発明のCe O2、At 201成
分を含む特定温度171域における熱劣化のほとんどな
い焼結体は、熱水中においても者しく高い安定性を示す
ことが判った。At20, 11t%), and NoA and NoB are partially stabilized zirconia/2 solids made only of Y2O in the comparative example. As a result, it was found that the sintered body of the present invention, which contains CeO2 and At201 components and has almost no thermal deterioration in a specific temperature range of 171, exhibits markedly high stability even in hot water.
なお、以上に示した本発明の高靭性ジルフニア焼結体の
実施例はいずれも大気中で1400−1650℃で数時
間焼成することにより所望の特性を得たものであるが、
真空中、水素中、酸素中での雰囲気焼成、ホットプレス
、HIPk4のセテミ7クスの焼成技術を用いることに
よっても同様の結果が得られるものである。In addition, in all of the examples of the high-toughness zilphnia sintered bodies of the present invention shown above, the desired characteristics were obtained by firing at 1400-1650°C for several hours in the air.
Similar results can be obtained by using atmosphere firing in vacuum, hydrogen, or oxygen, hot pressing, or HIPk4 cetemic firing techniques.
本発明の高靭性ノルコニア焼結体は従来のY2O5〜Z
r0a AlaOs系の高靭性ノル:y=7a結体組
成体組成O2成分を新たに添加することにより、従来よ
り熱的に不安定とされる温度領域での長時間にわたる熱
劣化V、験後もほとんど変化がなく極めて高い強度を示
す、vfに劣化の激しいとされる熱水中においても者し
く高い安定性を示す、また本発明の高靭性ノルコニア焼
結体は、Z r Oxのゾルを他の添加成分の水溶性の
塩と共に均一に混同した後沈澱の形で分離して得られた
原料な泪いるものであり、さらにAt 20 )成分に
ついでもA! 202のゾルを混合して沈澱の形で分離
して得られる原料を用いるので、マイクロボアを含まず
、各成分の均一な分散により、高密度、高強度で熱的に
もより高い安定性の焼結体を得ることができる。このよ
うに高強度、高靭性と共に熱的安定性をも満足しうる本
発明の高靭性ジルコニアは、切削工具、ダイス、内燃機
関、ポンプ、人工骨、M密機械工兵等への実用化とその
性能向上に大きく寄与するものである。The high toughness norconia sintered body of the present invention is a conventional Y2O5~Z
r0a High toughness of the AlaOs system: y = 7a Aggregate composition composition By newly adding the O2 component, thermal deterioration V over a long period of time in a temperature range that is conventionally considered to be thermally unstable, even after testing. The high-toughness norconia sintered body of the present invention exhibits extremely high strength with almost no change, and exhibits extremely high stability even in hot water where VF is said to cause severe deterioration. It is a raw material obtained by mixing uniformly with the water-soluble salt of the additive component and then separating it in the form of a precipitate. Since the raw material obtained by mixing 202 sols and separating them in the form of precipitate is used, it does not contain micropores and each component is uniformly dispersed, resulting in high density, high strength, and higher thermal stability. A sintered body can be obtained. The high-toughness zirconia of the present invention, which satisfies not only high strength and high toughness but also thermal stability, can be put to practical use in cutting tools, dies, internal combustion engines, pumps, artificial bones, M-density mechanical engineers, etc. This greatly contributes to improved performance.
第1図は実施例3の熱劣化試験の時間と単斜晶の量との
関係を示した図である。FIG. 1 is a diagram showing the relationship between the time of the thermal deterioration test and the amount of monoclinic crystals in Example 3.
Claims (1)
から成り、YO_1_._5を0.5〜15モル%、C
eO_2を0.5〜15モル%まで含む組成領域におい
て、YO_1_._5及びCeO_2の総量が、3.5
〜15.5モル%であり、残部をZrO_2とする主と
して正方晶より成る部分安定化ジルコニアに、0.5〜
70重量%の範囲でAl_2O_3を含む焼結体で、平
均結晶粒子径が3μ以下であることを特徴とする高靭性
ジルコニア焼結体。 2 部分安定化ジルコニアは、ZrO_2のゾルおよび
/または水溶性の塩をY_2O_3、CeO_2の水溶
性の塩と共に溶液の状態で均一に混合した後、沈澱の形
で分離して得られた原料を用いることを特徴とする特許
請求の範囲第1項記載の高靭性ジルコニア焼結体。 3 Al_2O_3は、ZrO_2、Y_2O_3、C
eO_2成分と溶液状態で混合する際に、ゾルおよび/
またはアルミニウムの塩を水溶液の状態で均一に混同し
た後、沈澱の形で分離し得られる原料を用いることを特
徴とする特許請求の範囲第1項記載の高靭性ジルコニア
焼結体。 4 ZrO_2の一部または全部をHfO_2で置換し
た特許請求の範囲第1項記載の高靭性ジルコニア焼結体
。[Claims] 1 ZrO_2-YO_1_. _5-CeO_2 system composition, YO_1_. _5 0.5 to 15 mol%, C
In the composition range containing eO_2 from 0.5 to 15 mol%, YO_1_. The total amount of _5 and CeO_2 is 3.5
~15.5 mol%, with the balance being ZrO_2, partially stabilized zirconia mainly consisting of tetragonal crystals, and 0.5~15.5 mol%
A high-toughness zirconia sintered body containing Al_2O_3 in a range of 70% by weight, and having an average crystal grain size of 3 μm or less. 2. Partially stabilized zirconia uses a raw material obtained by uniformly mixing ZrO_2 sol and/or water-soluble salt with Y_2O_3 and CeO_2 water-soluble salts in a solution state, and then separating it in the form of a precipitate. A high-toughness zirconia sintered body according to claim 1, characterized in that: 3 Al_2O_3 is ZrO_2, Y_2O_3, C
When mixing with the eO_2 component in a solution state, the sol and/or
Alternatively, the high toughness zirconia sintered body according to claim 1, characterized in that a raw material obtained by uniformly mixing an aluminum salt in an aqueous solution and then separating it in the form of a precipitate is used. 4. The high-toughness zirconia sintered body according to claim 1, wherein part or all of ZrO_2 is replaced with HfO_2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59199236A JPS6177665A (en) | 1984-09-22 | 1984-09-22 | High tenacity zirconia sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59199236A JPS6177665A (en) | 1984-09-22 | 1984-09-22 | High tenacity zirconia sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6177665A true JPS6177665A (en) | 1986-04-21 |
JPH0535103B2 JPH0535103B2 (en) | 1993-05-25 |
Family
ID=16404420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59199236A Granted JPS6177665A (en) | 1984-09-22 | 1984-09-22 | High tenacity zirconia sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6177665A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61219756A (en) * | 1985-03-22 | 1986-09-30 | 株式会社ノリタケカンパニーリミテド | Heat-resistant water-stable and high-toughness zirconia sintered body |
EP0257963A2 (en) * | 1986-08-18 | 1988-03-02 | Ngk Insulators, Ltd. | High strength zirconia ceramic |
JPS6381832U (en) * | 1986-11-14 | 1988-05-30 | ||
US4772576A (en) * | 1985-09-06 | 1988-09-20 | Nippon Soda Co., Ltd. | High density alumina zirconia ceramics and a process for production thereof |
US5336521A (en) * | 1991-11-02 | 1994-08-09 | Tioxide Group Services Limited | Metallic oxides |
JP2005097094A (en) * | 2003-08-22 | 2005-04-14 | Matsushita Electric Works Ltd | Zirconia-alumina composite ceramic material |
JP2005131081A (en) * | 2003-10-30 | 2005-05-26 | Kyocera Corp | Living body member and artificial joint using the same |
JP2006056746A (en) * | 2004-08-20 | 2006-03-02 | Kyocera Corp | Alumina-zirconia ceramic and its production method |
JP2006348942A (en) * | 2005-06-16 | 2006-12-28 | Sulzer Metco (Us) Inc | Ceramic abradable material containing alumina dopant |
JPWO2018062452A1 (en) * | 2016-09-30 | 2018-10-04 | 国立大学法人九州大学 | Cerium oxide-stabilized zirconium oxide composition and method for producing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5425523A (en) * | 1977-07-28 | 1979-02-26 | Noritsu Kk | Gas valve control apparatus |
JPS5832066A (en) * | 1981-08-13 | 1983-02-24 | 日本特殊陶業株式会社 | Tenacious zirconia sintered body |
JPS59162173A (en) * | 1983-03-07 | 1984-09-13 | 東ソー株式会社 | Zirconia sintered body |
JPS6060980A (en) * | 1983-06-16 | 1985-04-08 | マツクス−プランク−ゲゼルシヤフト・ツ−ル・フエルデルング・デル・ヴイツセンシヤフテン・エ−・フアウ | Ceramic formed body comprising zirconium dioxide (zro2) and manufacture |
-
1984
- 1984-09-22 JP JP59199236A patent/JPS6177665A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5425523A (en) * | 1977-07-28 | 1979-02-26 | Noritsu Kk | Gas valve control apparatus |
JPS5832066A (en) * | 1981-08-13 | 1983-02-24 | 日本特殊陶業株式会社 | Tenacious zirconia sintered body |
JPS59162173A (en) * | 1983-03-07 | 1984-09-13 | 東ソー株式会社 | Zirconia sintered body |
JPS6060980A (en) * | 1983-06-16 | 1985-04-08 | マツクス−プランク−ゲゼルシヤフト・ツ−ル・フエルデルング・デル・ヴイツセンシヤフテン・エ−・フアウ | Ceramic formed body comprising zirconium dioxide (zro2) and manufacture |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61219756A (en) * | 1985-03-22 | 1986-09-30 | 株式会社ノリタケカンパニーリミテド | Heat-resistant water-stable and high-toughness zirconia sintered body |
US4772576A (en) * | 1985-09-06 | 1988-09-20 | Nippon Soda Co., Ltd. | High density alumina zirconia ceramics and a process for production thereof |
EP0257963A2 (en) * | 1986-08-18 | 1988-03-02 | Ngk Insulators, Ltd. | High strength zirconia ceramic |
JPS6381832U (en) * | 1986-11-14 | 1988-05-30 | ||
US5336521A (en) * | 1991-11-02 | 1994-08-09 | Tioxide Group Services Limited | Metallic oxides |
JP4701654B2 (en) * | 2003-08-22 | 2011-06-15 | パナソニック電工株式会社 | Zirconia-alumina composite ceramic material |
JP2005097094A (en) * | 2003-08-22 | 2005-04-14 | Matsushita Electric Works Ltd | Zirconia-alumina composite ceramic material |
JP2005131081A (en) * | 2003-10-30 | 2005-05-26 | Kyocera Corp | Living body member and artificial joint using the same |
JP4570348B2 (en) * | 2003-10-30 | 2010-10-27 | 京セラ株式会社 | Biomaterial manufacturing method, biomaterial and artificial joint using the same |
JP2006056746A (en) * | 2004-08-20 | 2006-03-02 | Kyocera Corp | Alumina-zirconia ceramic and its production method |
JP2006348942A (en) * | 2005-06-16 | 2006-12-28 | Sulzer Metco (Us) Inc | Ceramic abradable material containing alumina dopant |
JPWO2018062452A1 (en) * | 2016-09-30 | 2018-10-04 | 国立大学法人九州大学 | Cerium oxide-stabilized zirconium oxide composition and method for producing the same |
EP3521263A4 (en) * | 2016-09-30 | 2020-05-27 | Kyushu University, National University Corporation | Cerium-oxide-stabilized zirconium-oxide-based composition, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPH0535103B2 (en) | 1993-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07277814A (en) | Alumina-based ceramic sintered compact | |
JPS60141673A (en) | Zirconia ceramic and manufacture | |
JPS59162173A (en) | Zirconia sintered body | |
US20140011661A1 (en) | Method of making high toughness high strength zirconia bodies | |
JPS6177665A (en) | High tenacity zirconia sintered body | |
JPS6159267B2 (en) | ||
JPS61101462A (en) | Zirconia ceramic | |
JPS6126562A (en) | Zirconia sintered body | |
JPS63156063A (en) | High temperature strength and hot water stability zirconia base ceramics | |
JP2533336B2 (en) | Sintered compact made of partially stabilized zirconium oxide and method for producing the same | |
JP2523487B2 (en) | Sintered compact and manufacturing method thereof | |
JP2517253B2 (en) | Manufacturing method of high strength zirconia sintered body | |
JP2517249B2 (en) | High-strength zirconia-based HIP sintered body | |
JPS6212662A (en) | High toughness zirconia base sintered body | |
JPS6246959A (en) | Heat-stability-resistant high toughness ceramic sintered body and manufacture | |
JPH07215758A (en) | Zirconia sintered compact | |
JPH06219831A (en) | High toughness zirconia-based sintered compact | |
JPH0450269B2 (en) | ||
JPH066512B2 (en) | High toughness silicon nitride sintered body and method for producing the same | |
JPH0811707B2 (en) | Alumina-zirconia sintered body and method for producing the same | |
JPS59190265A (en) | High strength zirconia ceramic | |
JPS60191056A (en) | Partially stabilized zirconia sintered body and manufacture | |
JPH05254933A (en) | Zirconia sintered compact and its production | |
JPH0545547B2 (en) | ||
JPS63139049A (en) | Zirconia ceramics |