[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6174262A - Manufacture of cathode for fused salt fuel cell - Google Patents

Manufacture of cathode for fused salt fuel cell

Info

Publication number
JPS6174262A
JPS6174262A JP59195028A JP19502884A JPS6174262A JP S6174262 A JPS6174262 A JP S6174262A JP 59195028 A JP59195028 A JP 59195028A JP 19502884 A JP19502884 A JP 19502884A JP S6174262 A JPS6174262 A JP S6174262A
Authority
JP
Japan
Prior art keywords
cathode
metal
nickel
sintering
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59195028A
Other languages
Japanese (ja)
Other versions
JPH0570266B2 (en
Inventor
Tsutomu Iwaki
勉 岩城
Akihiro Hosoi
昭宏 細井
Junji Niikura
順二 新倉
Hisaaki Giyouten
久朗 行天
Teruyo Sakakibara
榊原 照代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59195028A priority Critical patent/JPS6174262A/en
Publication of JPS6174262A publication Critical patent/JPS6174262A/en
Publication of JPH0570266B2 publication Critical patent/JPH0570266B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain a cathode which has superior property, a long life and easy manufacturing by including a metal in a cell, which works as a cathode, together with a binding agent adhered by coating to a conductive porous material, if necessary, pressurized without sintering. CONSTITUTION:A layer made of a metal such as nickel and a binding agent is formed at least on one of the faces of a conductive porous material consisting of screen, expanding metal, panting metal or foaming metal etc. and is included in a cell without sintering process. If more strength is needed, it may well be pressurized after it is dried. Highpolymer materials, for example,car boxymethlcellulose, polyvinylalcohol, polyvinyl chloride and polyethlene etc. are used as binding agents. Thereby, it enables to get a enough strength as a pole and enables also to keep a good efficiency for a long time because it is not sintered at high temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、600〜700℃程度で作動する溶融塩燃料
電池用カソードの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a cathode for a molten salt fuel cell that operates at about 600 to 700°C.

従来の技術 溶融炭酸塩等の溶融塩を電解質として用いる燃料電池は
、池のリン酸系や固体電解質系とともに、エネルギーの
多様化、省石油対策、省エネルギーな゛どの一環として
の発電方式の改革に貢献できるものと期待され、精力的
な開発が進められてきている。これらのうちでも溶融炭
酸塩燃料電池は、リン酸系のような白金族触媒を必要と
しないし、固体電解質系はどには高温度を要しない利点
を有している。また、600℃近傍で作動するので、効
率向上の目的で利用する廃熱も良質であり、この廃熱の
回収利用は、省エネルギーの立場から極義 めで有意ゞであるといえる。しかし、電極の一層の高性
能化、とくに長寿命化、その他構成材料の耐食性の向上
、経済性の確保などの課題が多く残っている。
Conventional technology Fuel cells that use molten salts such as molten carbonate as electrolytes, along with phosphoric acid and solid electrolyte systems, are being used to reform power generation methods as part of energy diversification, oil conservation measures, and energy conservation. It is expected that this technology will make a significant contribution, and vigorous development efforts are underway. Among these, molten carbonate fuel cells have the advantage that they do not require platinum group catalysts such as phosphoric acid-based catalysts, and do not require high temperatures compared to solid electrolyte-based fuel cells. Furthermore, since it operates at around 600°C, the waste heat used for the purpose of improving efficiency is of high quality, and the recovery and use of this waste heat can be said to be extremely significant from the standpoint of energy conservation. However, many issues remain, such as further improving the performance of the electrode, especially extending its life, improving the corrosion resistance of other constituent materials, and ensuring economic efficiency.

溶融炭酸塩燃料電池のカソードとしては、リチウム化し
た酸化ニッケルが焼結体の形で利用されているのが最も
一般的である。なお、アノードとしてはニッケルの焼結
体、電解質にはいわゆるタイルに保持されたアルカリ炭
酸塩が用いられている。
Lithiated nickel oxide is most commonly utilized in sintered form as the cathode in molten carbonate fuel cells. A sintered body of nickel is used as the anode, and an alkali carbonate held in a so-called tile is used as the electrolyte.

前記のカソードは、ニッケル焼結体のままで電池に組込
み、電解質に含まれている炭酸リチウムと大気中の酸素
によって、電池を作動温度あるいはそれ以上の高温度に
保つことにより、リチウム化と酸化とを同時に行なわせ
る方法がある。その池に改良された方法として、あらか
じめニッケル焼結体と水酸化リチウムとを空気中で加熱
してリチウム化した酸化ニッケル焼結体とする方法や、
ニッケル粉末と水酸化リチウムとでリチウム化シた酸化
ニッケル粉末を製造し、これを焼結する方法などが提案
されている。
The cathode is assembled into the battery as a nickel sintered body, and lithium and oxidation are carried out by keeping the battery at operating temperature or higher using lithium carbonate contained in the electrolyte and oxygen in the atmosphere. There is a way to do both at the same time. As an improved method, a nickel sintered body and lithium hydroxide are heated in advance to form a lithiated nickel oxide sintered body,
A method has been proposed in which lithiated nickel oxide powder is produced using nickel powder and lithium hydroxide, and this is sintered.

このようにリチウム化した酸化ニッケルには、酸化ニッ
ケルにはないすぐれた電導性を示し、しかも酸化性雰囲
気中での炭酸塩に対する耐食性もあり、酸素のイオン化
反応もスムースに行わせる性質をもつことから採用され
ているのである。
Lithiated nickel oxide exhibits excellent electrical conductivity that nickel oxide does not have, and also has corrosion resistance against carbonates in oxidizing atmospheres, and has the property of smoothly performing oxygen ionization reactions. It has been adopted since.

発明が解決しようとする問題点 前記の従来のカソードの製法では、電極の形状は、リチ
ウム化した酸化ニッケルが焼結により結合して保たれて
いるので、導電性や反応性の点ではほぼ問題がないとこ
ろまで向上しているが、いずれの方法も製法がやや複雑
でちるとともに、強度の向上を中心に検討されてきたの
で、作動中の温度によりさらに焼結が進み、供給する酸
化ガスの拡散や反応生成物の反応部分からの速やかな除
去に問題が生じ、電池性能が低下するなどの問題があっ
た。
Problems to be Solved by the Invention In the conventional cathode manufacturing method described above, the shape of the electrode is maintained by bonding lithiated nickel oxide through sintering, so there are almost no problems in terms of conductivity or reactivity. However, since the manufacturing methods of both methods are somewhat complicated and have been studied mainly to improve strength, sintering progresses further due to the temperature during operation, and the amount of oxidizing gas supplied is reduced. Problems arise in diffusion and rapid removal of reaction products from the reaction part, leading to problems such as a decrease in battery performance.

本発明は、このようなカソードの問題点を解決し、特性
の優秀な、しかも長寿命で製法も簡単なカソードを提供
するものである。
The present invention solves these problems with cathodes and provides a cathode that has excellent characteristics, has a long life, and is easy to manufacture.

問題点を解決するための手段 本発明は、カソードとして働く材料、例えば、ニッケル
、マンガン、銅、コバルト、鉄など特に好ましくはニッ
ケルを結着剤とともにスクリーン。
SUMMARY OF THE INVENTION The present invention provides a method of screening materials that act as cathodes, such as nickel, manganese, copper, cobalt, iron, and particularly preferably nickel, together with a binder.

エキスバンドメタル、パンチングメタル、発泡状メタル
などの多孔体に塗着し、必要ならば加圧を加えて焼結せ
ずに電池に組み込むことを特徴とする。
It is characterized by being applied to porous materials such as expanded metal, punched metal, and foamed metal, and if necessary, being incorporated into batteries without applying pressure and sintering.

作用 本発明の最も簡単な工程としては、ニッケルと結着剤溶
液とのペーストを芯材に塗着し、スリットを通過させる
ことにより表面を平滑化し、乾燥する工程により製造す
る方法である。強度をさらに要する場合には、乾燥後に
加圧を加えてもよい。
Function The simplest process of the present invention is to apply a paste of nickel and a binder solution to the core material, smooth the surface by passing it through a slit, and dry it. If further strength is required, pressure may be applied after drying.

また、さらに取扱いの上で強度を必要とする場合には、
結着剤として溶液の池の熱可塑性の樹脂粉末をも加えて
おき、表面の平滑化後、あるいは加圧後にこの樹脂粉末
が溶融する温度以上に加熱することも好ましい。結着剤
としてはカルホキ/メチルセルロース、ポリビニルアル
コール、ポリ塩化ビニル、ポリエチレンなど公知の高分
子材料が用いられる。
In addition, if additional strength is required for handling,
It is also preferable to add a thermoplastic resin powder as a binder and heat the resin powder to a temperature higher than the temperature at which the resin powder melts after the surface is smoothed or pressurized. As the binder, known polymeric materials such as carhoki/methyl cellulose, polyvinyl alcohol, polyvinyl chloride, and polyethylene are used.

が、電池の作動中に一層焼結が進み、多孔度が減少して
力゛ノード中への気体の拡散や電解質の分布の点で問題
が生じ、そのために性能が低下することに鑑み、電池に
組立てる1祭には何らの焼結も行わず、作’lilHM
a度への昇温中あるいは作動時の温度でリチウム化した
ニッケル酸化物に転化するとともに軽く焼結が生じるよ
うにすることにより、製法の簡易化と同時に長寿命化も
可能にするものである。
However, as the battery undergoes further sintering during operation, the porosity decreases, creating problems in terms of gas diffusion and electrolyte distribution within the power node, thereby reducing battery performance. No sintering was performed during the first assembly, and the production
By converting into lithiated nickel oxide and causing light sintering during heating to a degree or at operating temperature, it is possible to simplify the manufacturing process and extend the lifespan. .

本発明による電極において、多孔性の導電体に塗着して
いるニッケル粉末を主体とする層は、電池の作動温度と
して好ましい600〜70o℃に昇温する際に、内部に
存在している結着剤は、分解し結着剤の機能は失ってし
まう。したがってこれらへ結着剤の役割は、電極の電池
組立て前までの操作中での強度を持たせるだめのもので
ある。
In the electrode according to the present invention, the layer mainly composed of nickel powder applied to the porous conductor is able to absorb the crystals present inside when the temperature is raised to 600 to 70oC, which is the preferred operating temperature of the battery. The adhesive decomposes and loses its binding function. Therefore, the role of the binder is to provide strength to the electrodes during operation prior to battery assembly.

したがって、このように加熱により結着の機能は失って
しまうが、今度はニッケルがリチウム化したニッケル酸
化物になり、さらにこの作!vJ温度でゆっくりと焼結
が始まり、これによって電極としての強度が十分になり
、また高湿度での焼結をしていないので、従来の焼結式
電極に比べると焼結の進行が極めて緩慢であるから長期
にわたって良好な性能を維持するのである。
Therefore, although the binding function is lost by heating, the nickel now becomes lithiated nickel oxide, and this work! Sintering begins slowly at vJ temperature, which provides sufficient strength as an electrode, and because it is not sintered in high humidity, sintering progresses extremely slowly compared to conventional sintered electrodes. Therefore, it maintains good performance over a long period of time.

このように本発明では、カソードとして働き、しかも6
00〜700℃で軽く焼結する材料であれば、たとえば
コバルト、マンガン、鉄、銅などの粉末も使いうるが、
性能、耐食性などの点でニッケルが最もよい。
In this way, in the present invention, the 6
Powders of cobalt, manganese, iron, copper, etc. can also be used as long as they are lightly sintered at temperatures of 00 to 700°C.
Nickel is the best in terms of performance and corrosion resistance.

また、電池に組立てた後のリチウム化金属酸化物の形成
を容易にするために、これら金属に水酸化リチウムや炭
酸リチウムを加えたものを用いてもよい。
Furthermore, in order to facilitate the formation of lithiated metal oxides after assembly into a battery, lithium hydroxide or lithium carbonate may be added to these metals.

実施例 カーボニルニッケル粉末5oogとポリエチレン粉末4
0gを十分混合し、これにカルボキシメチルセルロース
の2重量%水溶液を加えてペースト状にする。
Example Carbonyl nickel powder 50g and polyethylene powder 4
0g were mixed thoroughly, and a 2% by weight aqueous solution of carboxymethyl cellulose was added thereto to form a paste.

このペーストを厚さ0.11聾、孔径2. Own 、
孔間隔2.5間のニッケル製のパンチングメタルの両面
に塗着し、1.3+mのスリット間を通して表面を平滑
にする。これを100 Kp / crdの圧力で軽く
加圧し、ついで140℃で20分間加熱して、加えたポ
リエチレンを溶解させる。この加熱時の雰囲気は空気中
でよい。
This paste has a thickness of 0.11mm and a pore size of 2mm. Own,
Coat it on both sides of nickel punching metal with a hole spacing of 2.5 m, and smooth the surface by passing it through the slits of 1.3+ m. This is lightly pressurized at a pressure of 100 Kp/crd and then heated at 140° C. for 20 minutes to dissolve the added polyethylene. The atmosphere during this heating may be air.

このような簡単な工程で得られたニッケル多孔体をその
まま電池に組み込む。なお、このニッケル多孔体は充分
な強度を有していて、取扱い中に破損などの現象はまっ
たく認められない。
The porous nickel material obtained through such a simple process is incorporated into a battery as it is. Note that this nickel porous body has sufficient strength, and no phenomena such as breakage are observed during handling.

この電極をカソードとし、燃料極には、公知のニッケル
を主とする焼結式電極を用いた。また、電解質およびそ
の保持体としては、炭酸リチウムと炭酸カリウムとの混
合塩を56重量%、アルミン酸リチウム粉末45重量%
を含むペーストタイプの構造のものを用いた。
This electrode was used as a cathode, and a known sintered electrode mainly made of nickel was used as a fuel electrode. In addition, as the electrolyte and its carrier, 56% by weight of a mixed salt of lithium carbonate and potassium carbonate and 45% by weight of lithium aluminate powder were used.
A paste-type structure containing the following was used.

燃料ガスとしては、水素80%、炭酸ガス20係、酸化
剤としては、空気65%、炭酸ガス35チの混合気体を
それぞれ用いた。なお、いずれも容積比である。また、
作動温度は660〜660℃である。
As the fuel gas, a mixed gas of 80% hydrogen and 20% carbon dioxide was used, and as the oxidizing agent, a mixture of 65% air and 35% carbon dioxide was used. Note that all figures are volume ratios. Also,
The operating temperature is 660-660°C.

前記の本発明によるカソードを用いた電池をAとし、水
酸化リチウムを含浸したニッケル焼結多孔体を用いる従
来型の燃料電池Bを次の条件で比較した。
A battery using the cathode according to the present invention was referred to as A, and a conventional fuel cell B using a nickel sintered porous body impregnated with lithium hydroxide was compared under the following conditions.

電流密度100mA/dの時の作動試験結果を第1図に
示す。第1図に示すように作動時間500時間までは特
性において大きな差は見られないが、それ以降特性にお
いて差が見られる。本発明によるカソードを用いた電池
Aは、1o○○時間経過までは0.82V/セルの端子
電圧を示しているが、従来型Bは、○、soV/セルと
なり性能が劣化している。さらに2000時間では、そ
れぞれ0.74■と0,7vである。この原因としてB
におけるカソードは、リチウムをドープしたニッケルの
焼結体であるため、時間の経過とともに本発明の電極よ
りも焼結が進み易く、このために電、極面積の減少や、
いわゆる三相界面の減少を招き、結果として電圧低下が
起こる。この現象は時間の経過とともに増大している。
Figure 1 shows the results of the operation test at a current density of 100 mA/d. As shown in FIG. 1, there is no significant difference in the characteristics up to 500 hours of operation, but after that, a difference is seen in the characteristics. Battery A using the cathode according to the present invention shows a terminal voltage of 0.82 V/cell until 1 o○○ hours have elapsed, whereas conventional type B has a terminal voltage of 0.82 V/cell, showing deterioration in performance. Furthermore, at 2000 hours, they are 0.74 and 0.7v, respectively. The cause of this is B
Since the cathode is a sintered body of nickel doped with lithium, sintering progresses more easily over time than the electrode of the present invention, resulting in a decrease in electrode area,
This leads to a reduction in the so-called three-phase interface, resulting in a voltage drop. This phenomenon is increasing over time.

これに対して本発明のカソードにおいては、ニッケル粉
末を発泡状ニッケルに担持させた構成で焼結していない
ので、時間経過によっても過焼結が准みにくく、したが
ってBと比べて電圧の低下の度合が減少しているものと
思われる。すなわち、  ・本発明のカソードでは、こ
の作動中で、の軽い焼結で電瞳が働いているので、公知
の焼結体のようにすでに高温度で十分焼結した場合と異
なり、過焼結が極めてゆっくり進むのみであることがあ
げられる。つまり、焼結が進み過ぎると多孔度、孔径と
も小さくなり、気体や電解質の拡散が阻害され、また電
極と電解質と気体による三F目帯も減少し、性能が劣化
するが、本発明によるものではこのような悪影響を受け
る度合が少ないのである。
On the other hand, in the cathode of the present invention, the nickel powder is supported on foamed nickel and is not sintered, so over-sintering is difficult to achieve over time, and therefore the voltage drop is lower than that of B. It seems that the degree is decreasing. In other words, in the cathode of the present invention, the electric pupil is working with light sintering during this operation, so unlike the case where the cathode is already sufficiently sintered at a high temperature like a known sintered body, there is no oversintering. It can be pointed out that this progresses only extremely slowly. In other words, if sintering progresses too much, both the porosity and the pore diameter become small, which impedes the diffusion of gas and electrolyte, and also reduces the third F zone between the electrode, electrolyte, and gas, resulting in performance deterioration. Therefore, the degree of such adverse effects is small.

第2図は、これら電池A、Hの運転200時間(100
mA/、i連続放電)後に調べた電流−電圧特性である
。図より明らかなように、本発明のような焼結工程を加
えない簡単な方法によるカソードを用いても、初期にお
ける特性は従来の・焼結式に比べて劣ることはないこと
がわかる。
Figure 2 shows the operation of these batteries A and H for 200 hours (100 hours).
This is the current-voltage characteristic examined after continuous discharge (mA/, i continuous discharge). As is clear from the figure, even if a cathode made by a simple method without adding a sintering process as in the present invention is used, the initial characteristics are not inferior to those of the conventional sintering method.

発明の効果 以上のように、本発明によれば、簡単な工程で作動時で
の焼結の進み過ぎを抑制して長寿命の溶融塩燃料電池用
カソードを得ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a cathode for a molten salt fuel cell with a long life by suppressing excessive sintering during operation through a simple process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は異なるカソードを用いた燃料電池の連続放電時
の電圧の比較を示す図、第2図は電流−電圧特性の比較
を示す図である。
FIG. 1 is a diagram showing a comparison of voltages during continuous discharge of fuel cells using different cathodes, and FIG. 2 is a diagram showing a comparison of current-voltage characteristics.

Claims (2)

【特許請求の範囲】[Claims] (1)導電性多孔体の少なくとも一方の面に、金属と結
着剤とからなる層を形成し、焼結工程を経ずに電池に組
込むことを特徴とする溶融塩燃料電池用カソードの製造
法。
(1) Production of a cathode for a molten salt fuel cell, characterized in that a layer made of metal and a binder is formed on at least one surface of a conductive porous body, and the cathode is incorporated into a battery without going through a sintering process. Law.
(2)導電性の多孔体が、スクリーン、エキスパンドメ
タル、パンチングメタルまたは発泡状メタルである特許
請求の範囲第1項記載の溶融塩燃料電池用カソードの製
造法。
(2) The method for producing a cathode for a molten salt fuel cell according to claim 1, wherein the conductive porous body is a screen, expanded metal, punched metal, or foamed metal.
JP59195028A 1984-09-18 1984-09-18 Manufacture of cathode for fused salt fuel cell Granted JPS6174262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59195028A JPS6174262A (en) 1984-09-18 1984-09-18 Manufacture of cathode for fused salt fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195028A JPS6174262A (en) 1984-09-18 1984-09-18 Manufacture of cathode for fused salt fuel cell

Publications (2)

Publication Number Publication Date
JPS6174262A true JPS6174262A (en) 1986-04-16
JPH0570266B2 JPH0570266B2 (en) 1993-10-04

Family

ID=16334329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195028A Granted JPS6174262A (en) 1984-09-18 1984-09-18 Manufacture of cathode for fused salt fuel cell

Country Status (1)

Country Link
JP (1) JPS6174262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523059A (en) * 2000-09-16 2004-07-29 エム・テー・ウー・シーエフシー・ソルーションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for manufacturing molten carbonate fuel cell and molten carbonate fuel cell
JP2014220107A (en) * 2013-05-08 2014-11-20 株式会社ワイヤードジャパン Magnesium-air battery and method of manufacturing cathode thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523059A (en) * 2000-09-16 2004-07-29 エム・テー・ウー・シーエフシー・ソルーションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for manufacturing molten carbonate fuel cell and molten carbonate fuel cell
JP2014220107A (en) * 2013-05-08 2014-11-20 株式会社ワイヤードジャパン Magnesium-air battery and method of manufacturing cathode thereof

Also Published As

Publication number Publication date
JPH0570266B2 (en) 1993-10-04

Similar Documents

Publication Publication Date Title
US10301714B2 (en) Process of preparing a chemically pre-formed (CPF) iron negative electrode with water
US2938064A (en) Air-depolarized cell
KR20080083112A (en) Bifunctional air electrode
US10418621B2 (en) Accelerated formation and increased performance in chemically pre-formed (CPF) iron negative electrodes
US10069133B2 (en) Process of preparing a chemically pre-formed (CPF) iron negative electrode with oxidizing gases
EP0448517B1 (en) Carbonate fuel cell anodes
JPH0746610B2 (en) Molten carbonate fuel cell positive electrode and method for producing the same
JPS60746B2 (en) gas electrode
JPS6174262A (en) Manufacture of cathode for fused salt fuel cell
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH02822B2 (en)
JPS6366858A (en) Electrode for molten carbonate fuel cell
JPS60167270A (en) Oxidation electrode for molten salt fuel cell
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JPH0570265B2 (en)
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPS60115165A (en) Manufacture of cathode for fused salt fuel cell
JP2001351619A (en) Nickel positive electrode plate and alkaline battery
JPS61110971A (en) Molten salt fuel cell
EP2951871B1 (en) Iron electrode employing a polyvinyl alcohol binder
JPS5861571A (en) Air cell
BRPI0619404A2 (en) bifunctional air electrode, secondary battery, and method for fabricating a bifunctional air electrode
JPS61248362A (en) Electrode for fused salt fuel cell
JPH065281A (en) Manufacture of porous nickel electrode
JPH04237951A (en) Manufacture of nickel electrode for alkaline storage battery