[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6170982A - Cultivation control of microorganism with recombinant gene - Google Patents

Cultivation control of microorganism with recombinant gene

Info

Publication number
JPS6170982A
JPS6170982A JP59191603A JP19160384A JPS6170982A JP S6170982 A JPS6170982 A JP S6170982A JP 59191603 A JP59191603 A JP 59191603A JP 19160384 A JP19160384 A JP 19160384A JP S6170982 A JPS6170982 A JP S6170982A
Authority
JP
Japan
Prior art keywords
culture
genetically modified
tank
concentration
cultivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59191603A
Other languages
Japanese (ja)
Other versions
JPH0455671B2 (en
Inventor
Norio Shimizu
清水 範夫
Yoji Otahara
緒田原 蓉二
Kiyoshi Fujiwara
清志 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59191603A priority Critical patent/JPS6170982A/en
Priority to EP85107678A priority patent/EP0165613B1/en
Priority to DE8585107678T priority patent/DE3585176D1/en
Publication of JPS6170982A publication Critical patent/JPS6170982A/en
Priority to US07/205,603 priority patent/US5674678A/en
Publication of JPH0455671B2 publication Critical patent/JPH0455671B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:The change in concentration of oxygen dissolved in the culture medium is used as an index, the induction substance and nutrients are simultaneously added to effect high-efficiency cultivation of a recombined microorganism. CONSTITUTION:The culture medium and the seed are charged in the cultivation tank 1 and the culture mixture is stirred with the air fed into the mixture from the pipe 12. D0 sensor 11 and D0 meter 10 are used to measure the D0 concentration in the culture medium and a signal is sent to the metering pumps 6 and 7, when the D0 concentration steeply rises, so that Casamino acid is sent from the substrate tank 4 and the inducer IA from the tank 5 to the cultivation tank 1 simultaneously in certain amounts, respectively. Then, cultivation is continued for a certain time, cell bodies are recovered from the medium and the useful substance such as beta-galactonedase produced in the cell bodies is isolated and purified.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は動物、植物及び微生物等から得た目的遺伝子を
導入した微生物を効率よく培養し、目的遺伝子産物を大
量に生産する方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for efficiently culturing microorganisms into which a target gene obtained from animals, plants, microorganisms, etc. has been introduced, and producing a target gene product in large quantities. .

〔発明の背景〕[Background of the invention]

檀 ある程の複合プラスミドは、培養中に誘導物質を添加す
ることにより遺伝子が発現することが知られている。た
とえば丁NatureJ vot、 291 +503
〜506頁、 11 June 1981参照。
It is known that genes of complex plasmids can be expressed by adding an inducer during culture. For example, Ding NatureJ vot, 291 +503
See p. 506, 11 June 1981.

最近、宿主微生物のベクタープラスミドに有用物質の生
産情報を有する遺伝子を組込んだ複合プラスミドを保持
する宿主微生物を用いて、該微生物に上記有用物質を大
量生産させる遺伝子組換え技術が発展してきた。この技
術により既にヒトインターフェロンやインスリン等−が
生産されつつあシ、大腸菌は宿主微生物として利用され
ている。
Recently, genetic recombination technology has been developed that uses a host microorganism that carries a complex plasmid in which a gene having production information for a useful substance has been integrated into the vector plasmid of the host microorganism, and allows the microorganism to mass-produce the above-mentioned useful substances. Human interferon, insulin, etc. are already being produced using this technology, and E. coli is being used as a host microorganism.

しかし、目的遺伝子を保持する遺伝子組換え菌を用いて
目的の生産物を大量に工業生産する方法はまだ開発され
ておらず、遺伝子組換え菌の効率的な培養方法の開発が
急がれている。
However, a method for industrially producing a desired product in large quantities using genetically modified bacteria carrying the target gene has not yet been developed, and there is an urgent need to develop efficient cultivation methods for genetically modified bacteria. There is.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、遺伝子組換え菌の効率的な培養方法を
提供することにある。
An object of the present invention is to provide an efficient method for culturing genetically modified bacteria.

〔発明の概要〕[Summary of the invention]

本発明は、目的遺伝子、ベクター及びプロモータから成
る複合プラスミドを細胞内に保持し、かつ目的遺伝子の
発現能を有する微生物を培養し、目的遺伝子を発現させ
その生産物を採取するに際し、培養中の溶存酸素(Do
 )濃度変化を指標とし、誘導物質と栄養物質を同時に
添加することにある。
The present invention maintains a complex plasmid consisting of a target gene, a vector, and a promoter in cells, and cultivates a microorganism capable of expressing the target gene, and when expressing the target gene and collecting the product, Dissolved oxygen (Do
) The trick is to use the change in concentration as an indicator and add the inducer and nutrients at the same time.

本発明では培養制御方法を示す具体例として、プロモー
タにtrpプロ七−夕を用い、それにβ−gat(β−
ガラクトシダーゼ)遺伝子を連結した複合プラスミドを
保持する大腸菌による培養制御方法を示す。
In the present invention, as a specific example showing the culture control method, TRP pro Tanabata is used as a promoter, and β-gat (β-
A method for controlling culture using E. coli carrying a complex plasmid in which the galactosidase (galactosidase) gene is linked is shown.

trpグロモータとβ−gat遺伝子を連結した複合プ
ラスミドp′r几EZ 1の構造を第1図に示す。
The structure of the composite plasmid p'rEZ1 in which the trp glomotor and the β-gat gene are linked is shown in FIG.

trpプロモータ部分は大腸菌のtrpオペロンのプロ
モータ、trpL(ソーダペプタイド)及びtrpE(
アントラニル酸合成酵素)の先端部分の一部を含む約5
 Q Q b p (base pairs 、塩基対
)、のDNA断片であり、pBR322プラスミドのE
aoRI部位に挿入したものである。
The trp promoter part is the promoter of the E. coli trp operon, trpL (soda peptide) and trpE (
Approximately 5 including part of the tip of anthranilate synthase)
Q Q b p (base pairs), a DNA fragment of the pBR322 plasmid E
It was inserted into the aoRI site.

一方、β−gat遺伝子はpMC1403(J、 Ba
 −cteriol、vot、 143+ 971〜9
80頁、1980)よ〕切多山した6、 2 k bの
大きさのもので、trpプロモータのBcoRI部位と
pBR322の5atI部位間に挿入した。
On the other hand, the β-gat gene was expressed in pMC1403 (J, Ba
-cteriol, vot, 143+ 971~9
80, 1980)] with a size of 6.2 kb and was inserted between the BcoRI site of the trp promoter and the 5atI site of pBR322.

以上述べた構造の複合プラスミドpTREZ lを染色
体上のβ−gat遺伝子欠損株である大腸菌M2B5株
に導入し、β−gatを生産する遺伝子組換え菌を造成
した(微工研寄第7650号)。β−gat生産はtr
pプロモータの制御下にあり、プロモータの機能を有効
に利用してβ−gal生産を向上させた。
The composite plasmid pTREZl having the structure described above was introduced into Escherichia coli M2B5 strain, which is a chromosomal β-gat gene-deficient strain, to create a genetically modified bacterium that produces β-gat (Feikoken No. 7650). . β-gat production is tr
It is under the control of the p promoter and effectively utilizes the function of the promoter to improve β-gal production.

trpプロモータを有する複合プラスミドは培養中にI
A(3−β−インドールアクリル酸)を添加することに
より、遺伝子が発現することが知られている(Natu
re 、 vot、291 、503〜506頁、19
81)。これは遺伝子の転写を抑制するりプレツナがI
Aにより不活性化されるため、RNAポリメラーゼによ
るmRNAの合成が開始されるからである。
The complex plasmid containing the trp promoter is
It is known that genes are expressed by adding A (3-β-indole acrylic acid) (Natural
re, vot, 291, pp. 503-506, 19
81). This suppresses the transcription of the gene or pretuna I
This is because since it is inactivated by A, synthesis of mRNA by RNA polymerase is started.

本発明者らはβ−gaLを生産する遺伝子組換え菌を用
いてβ−gatを効率よく生産させ−るため、培養制御
方法について種々検討し、β−gatを大量に生産させ
ることに成功し、本発明を完成するに至った。
In order to efficiently produce β-gat using a genetically modified bacterium that produces β-gaL, the present inventors investigated various culture control methods and succeeded in producing large amounts of β-gat. , we have completed the present invention.

trpプロモータでは誘導物質IAを添加すればプロモ
ータが働き始めるのであるが、その添加時期の決定が目
的遺伝子産物の生産にきわめて重要である。IA添加時
期としては上記文献のように培養1時間目に添加する方
法や菌体濃度を指標とする方法(特開昭58−1417
96号公報)がある。本発明者らはこれらの方法に対し
菌体の生凧活性状態に適したIA添加を可能にするため
、DOa度変比変化標としてIAを添加する方法を見い
出した。撹拌機回転数と通気量を一定とし一〇培養する
と菌体の増殖にしたがい、DOTIk度が低下し、それ
にともない基質のグルコース濃度も菌による消費により
低下する。つぎに1基質が消費された時点で急激にDO
が上昇する。この時点でIAとβ−gatの合成材料と
なる栄養物質を同時に添加することにより、β−gal
を大量に生産させるのである。つまシ、基質の消費によ
る菌体増殖が停止し九時点でIAと栄養物質を添加する
ことにより、最大の菌体濃度でβ−gat生産を開始さ
せることができるのである。
The trp promoter starts working when the inducer IA is added, and determining the timing of its addition is extremely important for producing the target gene product. As for the timing of IA addition, the method of adding IA at the first hour of culture as in the above-mentioned literature, or the method of using the bacterial cell concentration as an index (Japanese Patent Application Laid-open No. 58-1417
Publication No. 96). The present inventors have discovered a method of adding IA as a DOa ratio change indicator in order to enable the addition of IA suitable for the live kite activity state of the bacterial cells to these methods. After culturing for 10 days with the stirrer rotation speed and aeration rate constant, the DOTIk degree decreases as the bacterial cells proliferate, and the glucose concentration of the substrate also decreases due to consumption by the bacteria. Next, when one substrate is consumed, DO suddenly
rises. At this point, by simultaneously adding IA and nutritional substances that are the synthesis materials for β-gat,
is produced in large quantities. By adding IA and nutrients at the 9th point after the bacterial cell growth due to consumption of the substrate has stopped, β-gat production can be started at the maximum bacterial cell concentration.

本発明における最適IA添加量は第2図に示すように1
5μg/−であつ念。これから、15μg/−程度IA
を培養中に添加すれば良いと考えられる。また、IAと
同時に添加する栄養物質は第1表に示すようにカザミノ
酸が効果的であり、グルコースではβ−gatの生産は
低下した。カザミノ酸はアミノ酸の混合物であるから、
トリプトファン以外のアミノ酸またはそれらの混合物を
添加しても同様な結果が得られる。カザミノ酸の添加量
は多い方が生産量は向上するが、培養時間は長くする必
要がある。
The optimum IA addition amount in the present invention is 1 as shown in Figure 2.
5μg/- is a good idea. From now on, about 15μg/- IA
It is considered that it is sufficient to add it during culture. Furthermore, as shown in Table 1, casamino acids were effective as nutritional substances added at the same time as IA, and glucose decreased the production of β-gat. Casamino acids are a mixture of amino acids, so
Similar results can be obtained by adding amino acids other than tryptophan or mixtures thereof. The larger the amount of casamino acid added, the higher the production amount, but the culture time needs to be longer.

第1表 本発明ではtrpプロモータを有する複合プラスミドの
場合を説明したが、誘導剤としてIPTG(isopr
opyl−β−]) −thiogalactosid
e)を添加するtaCプロモータなどの場合にも同様に
適用できる。
Table 1 In the present invention, the case of a complex plasmid having a trp promoter has been explained, but the inducer is IPTG (isopr
opyl-β-]) -thiogalactosid
The same can be applied to the case of adding e) to the taC promoter.

上記した培養制御方法、つ−1りD(M1度の上昇時に
誘導物質と栄養物質を同時に添加して遺伝子産物の生産
を向上させる方法は遺伝子組換え菌及び通常の微生物培
養において知られておらず、本発明者らにより初めて見
い出されたものであるうつぎに本発明方法を実施するに
必要な装置の一例を第3図に示す。培養槽1内に培地と
種菌を入れ、導管12により培養槽1内に空気を吹込み
つつ攪拌機2によ)培養液を攪拌しながら遺伝子組換え
菌を培養する。この時、培養槽1に設置した溶存酸素セ
ンナ11と溶存酸素計10を用いて培養液の溶存酸素濃
度を測定する。測定したデータは制御用電子計算機3に
送られ、溶存酸素濃度の変化を監視する。溶存酸素濃度
が急激に上昇した時点で定量ポンプ6及び7に信号を送
り、基質槽4からカザミノ酸を添加槽5からIAを同時
に一定量培養槽1に供給する。その後一定時間培養し、
培養液中の菌体を回収し、菌体内に生産されたβ−ga
t等の有用物質を分離精製することにより製品とするの
である。符号8,9は導管である。
The above-mentioned culture control method (method of improving gene product production by simultaneously adding an inducer and a nutrient when the M1 degree increases) is not known for culturing genetically modified bacteria or normal microorganisms. First, an example of the apparatus necessary to carry out the method of the present invention, which was discovered for the first time by the present inventors, is shown in Fig. 3.A culture medium and seed bacteria are placed in a culture tank 1, and cultured through a conduit 12. Genetically modified bacteria are cultured while blowing air into tank 1 and stirring the culture solution using stirrer 2. At this time, the dissolved oxygen concentration of the culture solution is measured using the dissolved oxygen sensor 11 and dissolved oxygen meter 10 installed in the culture tank 1. The measured data is sent to the control electronic computer 3, and changes in dissolved oxygen concentration are monitored. When the dissolved oxygen concentration rapidly increases, a signal is sent to the metering pumps 6 and 7, and a constant amount of casamino acid from the substrate tank 4 and IA from the addition tank 5 are simultaneously supplied to the culture tank 1. After that, culture for a certain period of time,
Collect the bacterial cells in the culture solution and collect the β-ga produced within the bacterial cells.
Products are produced by separating and purifying useful substances such as t. Reference numerals 8 and 9 are conduits.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例について具体的に説明するが、本
発明はこれによりなんら限定されるものではない。
Next, examples of the present invention will be specifically described, but the present invention is not limited thereto.

実施例1 菌体:複合プラスミドpTREZ1を保持する大腸菌M
2B5株。
Example 1 Bacterial cell: Escherichia coli M carrying complex plasmid pTREZ1
2B5 stock.

培地:M9−カザミノ酸培地、組成はNH4CLl g
 、NazHPO+ 6 g 、KHzPO43g +
 NaC45g 、 MgSO4・7H*OO,Ig 
、 CaCtz ・2Hz015m g 、グルコース
5g、カザミノ酸2.5g、蒸留水1t、pH7,0で
ある。なお、本培地には複合プラスミドを保持する大腸
菌のみを増殖させるため、アンピアリン(Ap)を50
μg / at添加した。
Medium: M9-casamino acid medium, composition: NH4CLl g
, NazHPO+ 6 g, KHzPO43g +
NaC45g, MgSO4・7H*OO, Ig
, CaCtz 2 Hz 015 mg, glucose 5 g, casamino acid 2.5 g, distilled water 1 t, pH 7.0. In addition, in order to grow only E. coli carrying the complex plasmid, this medium contains 50% ampirin (Ap).
Added μg/at.

培養条件:複合プラスミドを保持する大′I31菌を1
00ゴのM9−カザミノ酸培地を入れた500−容振と
いうフラスコ20本に接種し、振とり培養機により、振
幅7cm、&とう回数115回/m。
Culture conditions: 1 large 'I31 bacterium carrying the complex plasmid
The inoculation was carried out in 20 500-shake flasks containing 00 Go's M9-casamino acid medium, using a shaking culture machine at an amplitude of 7 cm and a number of shakes of 115 times/m.

37Cで一晩培養した。この培養菌体を遠心分離により
回収し、50dのM9−カザミノ酸培地に懸濁した。こ
れを種菌として2tのM9−カザミノ酸培地の入った5
tジヤー7アーメンタに接種して培養を開始した。この
際消泡剤としてレオコン1705W(ライオン製)を2
滴添加した。培養は温度37C,pH7,2,撹拌機回
転数80Orpm。
Cultured overnight at 37C. The cultured cells were collected by centrifugation and suspended in 50 d of M9-casamino acid medium. This was used as a starter and 2 tons of M9-casamino acid medium was added.
The cells were inoculated into J. 7 Armenta and culture was started. At this time, as an antifoaming agent, use 2 times of Rheocon 1705W (manufactured by Lion).
Added dropwise. The culture was carried out at a temperature of 37C, a pH of 7.2, and a stirrer rotation speed of 80 rpm.

通気量2t7=で6時間実施した。The test was carried out for 6 hours at an air flow rate of 2t7.

結果:第4図に示すように、培養1.5時間0頃にDO
濃度が急激に上昇したので、工Aとカザミノ酸をそれぞ
れ15μg/−、Z5mg/−添加した。IAとカザミ
ノ酸添加時のβ−gat生産量は16.6U/−であっ
たが、培養6時間当には1.3倍の21.8U/Wtに
向上した。IAとカザミノ酸添加後は菌体濃度はほとん
ど増加せず、添加したカザミノ酸の大部分はβ−gat
生産のために消費されたと考えられる。
Results: As shown in Figure 4, DO
Since the concentration increased rapidly, 15 μg/- and Z5 mg/- of EnA and casamino acid were added, respectively. The β-gat production amount when IA and casamino acids were added was 16.6 U/-, but it increased 1.3 times to 21.8 U/Wt after 6 hours of culture. After adding IA and casamino acids, the bacterial cell concentration hardly increased, and most of the added casamino acids were β-gat.
It is thought that it was consumed for production.

以上の結果から、DO濃度を指標としてIAとカザミノ
酸を添加することにより、β−gat生産量を大幅に向
上できることが明らかになった。
From the above results, it was revealed that β-gat production can be significantly improved by adding IA and casamino acid using DO concentration as an indicator.

実施例2 菌株:実施例1と同様。Example 2 Strain: Same as Example 1.

培地:実施例1と同様。Medium: Same as Example 1.

培養条件:DO濃度上昇時にカザミノ酸を25mg/−
添加した以外は実施例1と同様。
Culture conditions: 25 mg/- of casamino acids when DO concentration increases
Same as Example 1 except that it was added.

結果:第5図に示すように、培養1.5時間0頃にDO
濃度が急激に上昇したので、カザミノ酸をZ5mg/d
添加した。この場合、β−gat生産量及び菌体濃一度
はカザミ、ノ酸添加後はとんど増加しなかった。このこ
とから、β−gal生産向上にはIAの添加が必要であ
ることが分った。
Results: As shown in Figure 5, DO
Since the concentration increased rapidly, casamino acids were added at Z5mg/d.
Added. In this case, the β-gat production amount and bacterial cell concentration hardly increased after addition of Kazami and noic acids. From this, it was found that addition of IA was necessary to improve β-gal production.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の培養制御方法によれば目
的遺伝子を効率よく生産することができる。
As explained above, according to the culture control method of the present invention, a target gene can be efficiently produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は複合プラスミドpTREZ 1の構造図、第2
図はIA添加量とβ−gal生産量の関係を表わす特性
図、第3図は本発明の培養装置例の概略図、第4図はD
o濃度を指標としたIAとカザミノ酸の添加実験を表わ
す特性図、第5図はDOa度を指標と、しtカザミノ酸
の添加実験を表わす特性図である。 1・・・培養槽、2・・・攪拌機、3・・・制御用電子
計算機、4・・・基質槽、5・・・添加槽、6.7・・
・定量ポンプ、8.8・・・導管、lO・・・溶存酸素
計、11・・・溶存酸素センナ、12.13・・・導管
Figure 1 is a structural diagram of the composite plasmid pTREZ 1, Figure 2
The figure is a characteristic diagram showing the relationship between IA addition amount and β-gal production amount, Figure 3 is a schematic diagram of an example of the culture device of the present invention, and Figure 4 is D
FIG. 5 is a characteristic diagram showing the addition experiment of IA and casamino acid using the DOa concentration as an index, and FIG. DESCRIPTION OF SYMBOLS 1...Culture tank, 2...Agitator, 3...Control computer, 4...Substrate tank, 5...Addition tank, 6.7...
- Metering pump, 8.8... Conduit, lO... Dissolved oxygen meter, 11... Dissolved oxygen sensor, 12.13... Conduit.

Claims (1)

【特許請求の範囲】 1、目的遺伝子、ベクター及びプロモータより成る複合
プラスミドを細胞内に保持し、かつ目的遺伝子の発現能
を有する微生物を培養し、目的遺伝子を発現させその生
産物を採取する方法において、培養中の溶存酸素濃度変
化を指標とし、誘導物質と栄養物質を同時に添加するこ
とを特徴とする遺伝子組換え菌の培養制御方法。 2、特許請求の範囲第1項において、前記プロモータが
trp(トリプトファン)プロモータであることを特徴
とする遺伝子組換え菌の培養制御方法。 3、特許請求の範囲第1項において、前記誘導物質がI
A(3−β−インドールアクリル酸)であることを特徴
とする遺伝子組換え菌の培養制御方法。 4、特許請求の範囲第1項において、前記栄養物質がカ
ザミノ酸であることを特徴とする遺伝子組換え菌の培養
制御方法。 5、特許請求の範囲第1項において、前記複合プラスミ
ドを保持する微生物が大腸菌(Escherichia
 coli)であることを特徴とする遺伝子組換え菌の
培養制御方法。
[Claims] 1. A method of retaining a complex plasmid consisting of a target gene, a vector, and a promoter in cells, culturing a microorganism capable of expressing the target gene, expressing the target gene, and collecting the product. A method for controlling the culture of genetically modified bacteria, characterized in that an inducer and a nutrient are added at the same time using changes in dissolved oxygen concentration during culture as an indicator. 2. A method for controlling the culture of genetically modified bacteria according to claim 1, wherein the promoter is a trp (tryptophan) promoter. 3. In claim 1, the inducer is I
A (3-β-indole acrylic acid), a method for controlling the culture of a genetically modified bacterium. 4. A method for controlling the culture of genetically modified bacteria according to claim 1, wherein the nutritional substance is casamino acid. 5. In claim 1, the microorganism carrying the complex plasmid is Escherichia coli (Escherichia coli).
A method for controlling the culture of a genetically modified bacterium, characterized in that it is a genetically modified bacterium (coli).
JP59191603A 1984-06-22 1984-09-14 Cultivation control of microorganism with recombinant gene Granted JPS6170982A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59191603A JPS6170982A (en) 1984-09-14 1984-09-14 Cultivation control of microorganism with recombinant gene
EP85107678A EP0165613B1 (en) 1984-06-22 1985-06-21 Process for controlling culture of recombinants
DE8585107678T DE3585176D1 (en) 1984-06-22 1985-06-21 METHOD FOR CONTROLLING THE BREEDING OF RECOMBINANTS.
US07/205,603 US5674678A (en) 1984-06-22 1988-06-02 Process for controlling cultures of recombinants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191603A JPS6170982A (en) 1984-09-14 1984-09-14 Cultivation control of microorganism with recombinant gene

Publications (2)

Publication Number Publication Date
JPS6170982A true JPS6170982A (en) 1986-04-11
JPH0455671B2 JPH0455671B2 (en) 1992-09-04

Family

ID=16277381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191603A Granted JPS6170982A (en) 1984-06-22 1984-09-14 Cultivation control of microorganism with recombinant gene

Country Status (1)

Country Link
JP (1) JPS6170982A (en)

Also Published As

Publication number Publication date
JPH0455671B2 (en) 1992-09-04

Similar Documents

Publication Publication Date Title
JPH078231B2 (en) Culture control method and culture control device
Shimizu et al. Fed-batch cultures of recombinant Escherichia coli with inhibitory substance concentration monitoring
US5139938A (en) Production of substances with an acetic acid-producing and assimilating bacterium inhibited by acetic acid
CN116904379A (en) Gene recombination strain for high yield tetrahydropyrimidine and construction method and application thereof
JPS6287086A (en) Cultivation of genetic recombinant cell
JPS6170982A (en) Cultivation control of microorganism with recombinant gene
CN113801901B (en) Method for producing L-phenylalanine by fermentation
SU974817A1 (en) Method of producing l-treonin
JP2003530823A (en) Method for increasing the yield of recombinant protein in a microbial fermentation process
CN110951760B (en) Protein time-delay expression switch and application thereof in production of glucaric acid
JP4149253B2 (en) Microbial culture method
JPH05199867A (en) New microorganism and production of d-biotin using the same
US5674678A (en) Process for controlling cultures of recombinants
JP3074781B2 (en) Production method of L-lysine by fermentation method
Park et al. Analysis of kinetic paramers for the 3 β-indoleacrylic acid effect on trp promoter in Escherichia coli
JP2677602B2 (en) Method for producing L-sorbose by passage seed culture and apparatus used therefor
Chou Medium for toxin production by Clostridium perfringens in continuous culture
Panda et al. High cell density fermentation of recombinant Vibrio cholerae for the production of B subunit of Escherichia coli enterotoxin
JP2686108B2 (en) Fed-batch culture method and apparatus for microorganisms
SU515781A1 (en) Amidase biosynthesis method
JPH0375159B2 (en)
SU1541257A1 (en) Method of producing i-tryptophan
WO2024113418A1 (en) Anaerobic high-yield l-arginine engineering bacterium, preparation method therefor, and use thereof
JPH0361479A (en) Culture method for microorganism
SU1362021A1 (en) Strain of eschericia coli bacteria as producer of l-treonin