JPS6170873A - Solid-state image pickup device - Google Patents
Solid-state image pickup deviceInfo
- Publication number
- JPS6170873A JPS6170873A JP59192854A JP19285484A JPS6170873A JP S6170873 A JPS6170873 A JP S6170873A JP 59192854 A JP59192854 A JP 59192854A JP 19285484 A JP19285484 A JP 19285484A JP S6170873 A JPS6170873 A JP S6170873A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- imaging device
- electrode
- state imaging
- polycrystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000004065 semiconductor Substances 0.000 claims abstract description 12
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 8
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 239000010703 silicon Substances 0.000 claims abstract description 5
- 238000003384 imaging method Methods 0.000 claims description 33
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 22
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 12
- 239000012780 transparent material Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims 2
- 150000002736 metal compounds Chemical class 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 19
- 239000000758 substrate Substances 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 abstract description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 229910020968 MoSi2 Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 229910016006 MoSi Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 244000241257 Cucumis melo Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 229910008814 WSi2 Inorganic materials 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は電荷結合素子(以下canと呼ぶ)やX−Yア
ドレス機能を有するMOSマトリックス構成の信号走査
機能を有する半導体回路基板と非晶質シリコンを用いた
光電変換膜とを組み合わせた構成の固体撮像装置(以下
積層型固体撮像装置と呼ぶ)に関するものでTv左カメ
ラ利用されるものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention utilizes a charge coupled device (hereinafter referred to as CAN) and a semiconductor circuit board having a signal scanning function in a MOS matrix configuration having an X-Y address function and amorphous silicon. This relates to a solid-state imaging device (hereinafter referred to as a stacked solid-state imaging device) configured in combination with a photoelectric conversion film, and is used in the Tv left camera.
従来例の構成とその問題点
現在、シリコンを主成分とする水素化非晶質シリコン(
以下非晶質シリコンと呼ぶ)を光電変換膜として利用す
る際、1つの電極としてn型やP型の多結晶シリコン電
極を用いた非晶質シリコンは逆方向の暗電流が少なく、
かつ、順方向電流がよいというすぐれた特性を示す。例
えばこのn型多結晶シリコンを電極として用いた積層型
固体撮像装置の一例を第1図に示す。第1図は走査デノ
(イスとしてCODを用いた積層型固体撮像装置の一絵
素の断面図を示したものである。The structure of conventional examples and their problems Currently, hydrogenated amorphous silicon (which has silicon as its main component)
When using amorphous silicon (hereinafter referred to as amorphous silicon) as a photoelectric conversion film, amorphous silicon that uses an n-type or p-type polycrystalline silicon electrode as one electrode has less dark current in the opposite direction.
In addition, it exhibits excellent characteristics such as good forward current. For example, FIG. 1 shows an example of a stacked solid-state imaging device using this n-type polycrystalline silicon as an electrode. FIG. 1 shows a cross-sectional view of one pixel of a stacked solid-state imaging device using a COD as a scanning device.
P型半導体基板1oに、n型ダイオード領域11、およ
びnウェル12を形成する。このnウェル12には一部
電位障壁を形成し、さらにその上に酸化膜14を介して
2相駆動で転送動作を行なわせるためのゲート電極13
を形成している。An n-type diode region 11 and an n-well 12 are formed in a P-type semiconductor substrate 1o. A potential barrier is partially formed in this n-well 12, and a gate electrode 13 is further formed on the n-well 12 via an oxide film 14 to perform a transfer operation by two-phase drive.
is formed.
ゲート電極13はダイオード部11からnウェル12に
信号を読み込むためのゲート電極でもある。The gate electrode 13 is also a gate electrode for reading a signal from the diode section 11 into the n-well 12.
16はLOOO5絶縁膜であり、その下にチャンネル・
ストップ領域としてP 層16が形成\されている。1
7は段差緩和を目的とするPSG等の低融点ガラスでそ
の一部を除いてダイオード部13と絵素に分割されたn
型多結晶シリコン電極18とを電気的に接続する多結晶
シリコン電極19が埋め込まれている。2oは光電変換
膜としての非晶質シリコンで、光導電!2oの上には透
明電極21が形成され、透明電極21側より入射光22
が入射する。16 is a LOOO5 insulating film, with a channel and
A P layer 16 is formed as a stop region. 1
7 is a low melting point glass such as PSG for the purpose of alleviating the level difference, and except for a part of it, it is divided into a diode part 13 and a picture element.
A polycrystalline silicon electrode 19 electrically connected to the molded polycrystalline silicon electrode 18 is embedded. 2o is amorphous silicon as a photoelectric conversion film, and is photoconductive! A transparent electrode 21 is formed on 2o, and incident light 22 is directed from the transparent electrode 21 side.
is incident.
上記のような構成の積層型固体撮像装置では強い入射光
の場合、上記光導電膜20を通過し、半導体回路基板1
o中にて電荷を発生し、画像として縦に白い帯状に拡が
る現象(以下これをスミアと呼ぶ)があり、これは固体
撮像板の実用化にあたり最大の課題となっていた。In the stacked solid-state imaging device configured as described above, in the case of strong incident light, it passes through the photoconductive film 20 and is exposed to the semiconductor circuit board 1.
There is a phenomenon in which charges are generated in the solid-state imaging plate and the image spreads in the form of a vertical white band (hereinafter referred to as smear), and this has been the biggest problem in putting solid-state imaging plates into practical use.
第2図に従来例での照度特性及びスミア量を示す。第2
図で21は照度特性を示し、22は撮像画面で垂直長さ
の青サイズのスポット光を照射したときのスミアによる
出力の照度特性を示す。今、飽和出力の6%程度のスミ
アが画像上検知され問題となり、特性22の6%値を見
ると飽和光量の約4倍までという使用制限が生じる。FIG. 2 shows the illuminance characteristics and smear amount in a conventional example. Second
In the figure, reference numeral 21 indicates illuminance characteristics, and reference numeral 22 indicates illuminance characteristics of the output due to smear when a blue-sized spot light having a vertical length is irradiated on the imaging screen. Currently, smear of about 6% of the saturated output is detected on the image and becomes a problem, and looking at the 6% value of characteristic 22, there is a usage restriction of up to about 4 times the saturated light amount.
発明の目的
本発明は上記問題であるスミアの抑止を目的としたもの
でかつ多結晶シリコン電極と非晶質シリコンを用いた光
電変換膜特性を有効に引き出すことのできる積層型固体
撮像装置を提供するものである。Purpose of the Invention The present invention aims to suppress the above-mentioned problem of smearing, and provides a stacked solid-state imaging device that can effectively bring out the characteristics of a photoelectric conversion film using a polycrystalline silicon electrode and amorphous silicon. It is something to do.
発明の構成
すなわち、本発明は、半導体回路基板への光のもれ込み
を阻止するために高融点金属または高融点金属シリサイ
ドを非晶質シリコンと半導体回路基板の間に挿入した構
成である。In other words, the present invention has a structure in which a high melting point metal or a high melting point metal silicide is inserted between amorphous silicon and a semiconductor circuit board in order to prevent light from leaking into the semiconductor circuit board.
実施例の説明 以下に図面を用いて本発明の詳細な説明する。Description of examples The present invention will be described in detail below using the drawings.
実施例1
第3図に本発明の一実施例にかかる固体撮像装置の単位
絵素の断面形状を示す。Embodiment 1 FIG. 3 shows a cross-sectional shape of a unit pixel of a solid-state imaging device according to an embodiment of the present invention.
積層型固体撮像装置の光電変換機能及び転送機能は従来
例の構成と同じである。The photoelectric conversion function and transfer function of the stacked solid-state imaging device are the same as those of the conventional example.
転送機能を形成した基板10にPSG17と多結晶シリ
コン電極19を形成し、Mo5i2s 1とn型多結晶
シリコン電極18が絵素単位に分割し、形成され、Si
H4ガスのプラズマCvD法で非晶質シリコン光電膜2
0とDCスパッタ法でI n 2 X S n x
Os (0≦xく2)の透明電極21を形成し、固体撮
像装置とする。A PSG 17 and a polycrystalline silicon electrode 19 are formed on the substrate 10 on which a transfer function has been formed, and Mo5i2s 1 and an n-type polycrystalline silicon electrode 18 are divided into pixel units and formed.
Amorphous silicon photoelectric film 2 by H4 gas plasma CVD method
0 and I n 2 x S n x by DC sputtering method
A transparent electrode 21 of Os (0≦x×2) is formed to form a solid-state imaging device.
上記非晶シリコン光電膜2oは多結晶シリコンのムrと
H2ガスによる反応性スパッタ法で作成してもよく、ま
た非晶質シリコン中に不純物としてBや、F、Nなどを
含んでも何ら問題はない。The amorphous silicon photoelectric film 2o may be formed by reactive sputtering using polycrystalline silicon and H2 gas, and there will be no problem even if the amorphous silicon contains impurities such as B, F, and N. There isn't.
また、上記MO8i231はcvn法で形成されるがス
パッタ法で形成してもよく、また、Mo。Furthermore, although the above MO8i 231 is formed by the CVN method, it may also be formed by the sputtering method.
T!L 、Wなどの高融点金属やMoSi2.TaSi
2゜WSi2の高融点金属シリサイド及びそれらの化合
物でもよく、熱的に安定で不透光性で、かつ電極となる
材料であればよい。前記不透光性は膜厚依存性があり、
透過率の高い本実施例のMO8i□の場合の膜厚に対す
る透過率を第4図に示す。41はMo5t2膜厚100
o人、42は1500人。T! High melting point metals such as L, W, MoSi2. TaSi
It may be a high melting point metal silicide such as 2°WSi2 or a compound thereof, as long as it is thermally stable, non-transparent, and can be used as an electrode. The opacity is dependent on film thickness,
FIG. 4 shows the transmittance versus film thickness in the case of MO8i□ of this example, which has a high transmittance. 41 is Mo5t2 film thickness 100
o people, 42 is 1500 people.
43は2000人の透過率を示す。他の高融点金属シリ
サイドも同様の特性を示す。43 indicates the transmittance of 2000 people. Other refractory metal silicides exhibit similar characteristics.
通常のTV左カメラは赤外カットフィルタを用いるため
、波長700nm以上の長波長はカットオフされるため
にMoSi2の膜厚は1500人もあれば光遮蔽の効果
を有している。また、Moなどの高融点金属の場合は1
000人程度の膜厚で上記と同様の光遮蔽の効果を有し
ている。Since a normal TV left camera uses an infrared cut filter, long wavelengths of 700 nm or more are cut off, so a MoSi2 film as thick as 1500 nm has a light shielding effect. In addition, in the case of high melting point metals such as Mo, 1
With a film thickness of about 1,000 mm, it has the same light shielding effect as above.
次にn型多結晶シリコン18はCVD法がスパッタ法で
形成される。本実施例では5in4ガスのCVDで多結
晶シリコンを膜厚1ooo入形成し、該多結晶シリコン
上に8.8モル%のP S e を形成し、1000℃
で30分アニールすることで該多結晶シリコン中にPの
拡散を行ない、psGを除去することでn型多結晶シリ
コン電極18とした。Next, the n-type polycrystalline silicon 18 is formed by CVD or sputtering. In this example, polycrystalline silicon is formed to a thickness of 100% by CVD using 5 in 4 gas, 8.8 mol% P S e is formed on the polycrystalline silicon, and the temperature is increased to 1000°C.
By annealing for 30 minutes, P was diffused into the polycrystalline silicon, and psG was removed to form an n-type polycrystalline silicon electrode 18.
また、Pのイオン注入でn型多結晶シリコンを形成して
もよい。Alternatively, n-type polycrystalline silicon may be formed by P ion implantation.
以上のような構成の固体撮像装置に使用される光電膜の
光電変換特性の測定概略図を第6図aに示す。基板1o
上に絶縁層17を介してMO8i、231とn型多結晶
電極18を形成し、さらに非晶質シリコン2oと透明電
極21を形成し、MoSi231と透明電極21間に電
源62よシミ圧印加を行ない、電流計61により第6図
すに示すように暗電流63と光22(本測定では2.6
5LXの光)を照射したときの光電流53を測定した。FIG. 6a shows a schematic diagram for measuring the photoelectric conversion characteristics of the photoelectric film used in the solid-state imaging device configured as described above. Board 1o
MO8i, 231 and an n-type polycrystalline electrode 18 are formed on the insulating layer 17 via an insulating layer 17, and an amorphous silicon 2o and a transparent electrode 21 are further formed. The dark current 63 and the light 22 (in this measurement, 2.6
The photocurrent 53 when irradiated with 5LX light) was measured.
比較のために上記n型多結晶シリコン電極18がなく、
MoSi231に直接非晶質シリコン20を形成したと
きの暗電流を66に示す。For comparison, there is no n-type polycrystalline silicon electrode 18,
66 shows the dark current when amorphous silicon 20 is directly formed on MoSi 231.
ここに示す暗電流が多いと固体撮像装置で固定パターン
・ノイズの多い画像となる。If the dark current shown here is large, a solid-state imaging device will produce an image with a fixed pattern and a lot of noise.
第6図に本実施例の照度特性61とスミア量62を示す
。スミアの5%値を見ると飽和光量の64倍であり、ス
ミアの改善がなされている。FIG. 6 shows illuminance characteristics 61 and smear amount 62 of this embodiment. Looking at the 5% value of smear, it is 64 times the saturated light amount, indicating that smear has been improved.
ここで本発明の特徴をまとめると次表のように示される
。Here, the characteristics of the present invention are summarized as shown in the following table.
実施例2
第7図に本発明の他の実施例にかかる積層型固体撮像装
置の一絵素の断面形状を示す。Embodiment 2 FIG. 7 shows a cross-sectional shape of one pixel of a stacked solid-state imaging device according to another embodiment of the present invention.
ここでPSGl 7中に格子形状に他の電極及び半導体
領域とは電気的に絶縁された状態で埋め込まれた膜厚1
o00人の’rayo以外の構成は実施例1で示した構
成と同じである。ただし不透光性材料31は膜厚1oo
o人のMoで形成されている。Here, the film thickness 1 is embedded in the PSGl 7 in a lattice shape while being electrically insulated from other electrodes and semiconductor regions.
The configuration of o00 other than 'rayo' is the same as that shown in the first embodiment. However, the film thickness of the non-transparent material 31 is 1OO.
It is made up of o Mo people.
第8図は光遮蔽を目的としたT1ア0とMO31の平面
的位置関係を示したものである。FIG. 8 shows the planar positional relationship between T1A0 and MO31 for the purpose of light shielding.
第9図に本実施例による構成の積層型固体撮像装置の照
度特性91及びスミア量92を示す。FIG. 9 shows illuminance characteristics 91 and smear amount 92 of the stacked solid-state imaging device configured according to this embodiment.
以上のように本実施例ではスミアを飽和光量の約300
0倍にも抑止することができ、固体撮像装置の使用照度
範囲を大巾に向上させたものである。As described above, in this embodiment, the smear is set to about 300
It is possible to suppress the illuminance by a factor of 0, greatly improving the usable illuminance range of the solid-state imaging device.
実施例3
第9図に本発明の他の実施例にかかる積層型固体撮像装
置の単位絵素の断面形状を示す。Embodiment 3 FIG. 9 shows a cross-sectional shape of a unit pixel of a stacked solid-state imaging device according to another embodiment of the present invention.
半導体回路基板は実施例1と同様の構成である。The semiconductor circuit board has the same structure as in the first embodiment.
ダイオード領域11と電気的に接続された高融点金属T
&31を絵素単位に分割し、かつゲート電極13とは絶
縁層32を介して膜厚1000人で形成されている。さ
らに段差緩和を目的としたPSGl7が形成され、Ta
31を補う形で光遮蔽を目的としたMO30が格子状に
形成され、該MO300表面は絶縁層33で覆われてい
る。そしてPSGl7の一部を開口し、TIL31と電
気的に接絶され、各絵素に分割されたn型子結晶シリコ
ン電標33が形成されている。そして、非晶質シリコン
光電変換膜20を介し、透明電極21を形成し、積層型
固体撮像装置が作成される。Refractory metal T electrically connected to diode region 11
&31 is divided into picture elements, and the gate electrode 13 is formed with a film thickness of 1000 mm through an insulating layer 32. Furthermore, PSGl7 is formed for the purpose of alleviating the step difference, and Ta
31, an MO 30 for the purpose of light shielding is formed in a lattice shape, and the surface of the MO 300 is covered with an insulating layer 33. Then, a part of the PSGl7 is opened, and an n-type child crystal silicon electrode 33 is formed which is electrically disconnected from the TIL 31 and divided into each picture element. Then, a transparent electrode 21 is formed via the amorphous silicon photoelectric conversion film 20, and a stacked solid-state imaging device is created.
第10図はTa31とM2B5の光遮蔽を目的としたと
きの平面的位置関係を示したものである。FIG. 10 shows the planar positional relationship between Ta31 and M2B5 for the purpose of light shielding.
本構成の積層型固体撮像装置は実施例1と同等のスミア
に対する光遮蔽効果を有している。The stacked solid-state imaging device with this configuration has the same light shielding effect against smear as in the first embodiment.
発明の効果
以上、述べてきたように高融点金属か高融点金属シリサ
イドを光遮蔽構成に用いることで非晶質シリコン光電膜
の電極として光透過の多結晶シリコン電極を用いること
が可能となり、光電変換特性に有利とすることができる
。As described above, by using a high-melting point metal or a high-melting point metal silicide in the light shielding structure, it becomes possible to use a light-transmitting polycrystalline silicon electrode as an electrode for an amorphous silicon photoelectric film. This can be advantageous for conversion characteristics.
しかも、従来固体撮像装置で大きな問題となっているス
ミア抑止が飽和光量の約3000倍まで可能である。Moreover, smear suppression, which has been a major problem in conventional solid-state imaging devices, can be suppressed up to about 3000 times the saturation light amount.
以上述べてきたように本発明によって、スーミア抑止が
行なえた積層型固体撮像装置を提示することができ、そ
の産業上の意義は極めて高いものである。As described above, the present invention makes it possible to provide a stacked solid-state imaging device in which soumia can be suppressed, and its industrial significance is extremely high.
第1図は従来例での多結晶シリコン電極を用いた積層型
固体撮像装置の単位絵素部分の断面図、第2図は従来例
の固体撮像装置の照度特性とスミア発生照度を示す図、
第3図は本発明の一実施例にかかる積層型固体撮像装置
の高融点金属シリサイドで光遮蔽を施した単位絵素部分
の断面図、第4図は光遮蔽に用いられるMoSi2の分
光透過特性図、第5図(&)はMoSi 2と多結晶シ
リコンを電極とした非晶質シリコンの特性測定概略図、
第6図(b)は光電変換特性図、第6図は一実施例の固
体撮像装置の照度特性とスミア量を示す図、第7図は絶
縁層中にも光遮蔽を施した本発明の他の実施例の積層型
固体撮像装置の単位絵素部分の断面図、第8図は光遮蔽
の数絵素部分の平面概略構成図、第9図は本実施例での
固体撮像装置の照度特性とスミア量を示す図、第10図
は光遮蔽を施した本発明の他の実施例の積層型固体撮像
装置の単位絵素部分の断面図、第11図は光遮蔽の数絵
素部分の平面概略構成図である。
18・・・・・・n型多結晶シリコン電極、2o・・・
・・・非晶質シリコン光電膜、21・・・・・・透明電
極、30・・・・・・高融点金属光遮蔽膜、31・・・
・・・高融点金属または高融点金属シリサイド電極。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
す1浅<Lx)
N4図
5次 瓜(n町
第5図
卵麦口eR<v>
第6図
第7図
伏22
11 fQ f3 1ご
7υ第 8 図
3ヅ
署1 9 口4
マ膏、 L <Lx)
@101mFIG. 1 is a cross-sectional view of a unit pixel portion of a conventional stacked solid-state imaging device using a polycrystalline silicon electrode, and FIG. 2 is a diagram showing the illuminance characteristics and smear-generating illuminance of the conventional solid-state imaging device.
FIG. 3 is a cross-sectional view of a unit pixel portion light-shielded with high-melting-point metal silicide in a stacked solid-state imaging device according to an embodiment of the present invention, and FIG. 4 is a spectral transmission characteristic of MoSi2 used for light shielding. Figure 5 (&) is a schematic diagram of characteristic measurement of amorphous silicon using MoSi 2 and polycrystalline silicon as electrodes,
FIG. 6(b) is a photoelectric conversion characteristic diagram, FIG. 6 is a diagram showing the illuminance characteristics and smear amount of a solid-state imaging device of one embodiment, and FIG. A sectional view of a unit pixel portion of a stacked solid-state imaging device according to another embodiment, FIG. 8 is a schematic plan view of a several pixel portion for light shielding, and FIG. 9 is an illuminance diagram of a solid-state imaging device according to this embodiment. A diagram showing the characteristics and amount of smear, FIG. 10 is a cross-sectional view of a unit pixel portion of a stacked solid-state imaging device according to another embodiment of the present invention with light shielding, and FIG. 11 is a several pixel portion with light shielding. FIG. 18...N-type polycrystalline silicon electrode, 2o...
... Amorphous silicon photoelectric film, 21 ... Transparent electrode, 30 ... High melting point metal light shielding film, 31 ...
...High melting point metal or high melting point metal silicide electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. 2 Fig. 1 shallow <Lx) N4 Fig. 5 Melon (n town Fig. 5 egg barley eR<v> Fig. 6 Fig. 7 lower 22 11 fQ f3 1 go
7υ No. 8 Figure 3ヅ Station 1 9 Mouth 4 Salmon, L < Lx) @101m
Claims (4)
された信号電荷を出力する半導体回路基板と、上記ダイ
オード領域の一部で開口し、かつ上記半導体回路基板上
に形成された絶縁膜と、上記開口部を介して上記ダイオ
ード領域と電気的に接続し、単位絵素に分割されて上記
絶縁膜上に形成された多結晶シリコン電極と、上記多結
晶シリコン電極および上記絶縁膜上に水素化非晶質シリ
コンを主成分とする光導電膜を介して形成された透明電
極と、上記ダイオード領域と電気的に接続された多結晶
シリコン電極との間に不透光性材料を備えることを特徴
とする固体撮像装置。(1) A diode region and a semiconductor circuit board that outputs the signal charge accumulated in the diode region, an insulating film having an opening in a part of the diode region and formed on the semiconductor circuit board, and the opening. A polycrystalline silicon electrode is electrically connected to the diode region through the diode region and is divided into unit pixels and formed on the insulating film, and a hydrogenated amorphous electrode is formed on the polycrystalline silicon electrode and the insulating film. A solid state characterized by comprising an opaque material between a transparent electrode formed via a photoconductive film mainly composed of silicon and a polycrystalline silicon electrode electrically connected to the diode region. Imaging device.
点金属もしくは高融点金属化合物を用いることを特徴と
する特許請求の範囲第1項記載の固体撮像装置。(2) The solid-state imaging device according to claim 1, wherein a high melting point metal or a high melting point metal compound such as Mo, Ta, or W is used as the non-transparent material.
、WSi_2などの高融点金属シリサイドを用いること
を特徴とする特許請求の範囲第1項記載の固体撮像装置
。(3) MoSi_2, TaSi_2 as non-transparent materials
The solid-state imaging device according to claim 1, characterized in that a high melting point metal silicide such as WSi_2 is used.
蔽を目的として不透光性材料が埋め込まれていることを
特徴とする特許請求の範囲第1項記載の固体撮像装置。(4) The solid-state imaging device according to claim 1, wherein an opaque material is embedded in the insulating film formed on the semiconductor circuit board for the purpose of shielding light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59192854A JPS6170873A (en) | 1984-09-14 | 1984-09-14 | Solid-state image pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59192854A JPS6170873A (en) | 1984-09-14 | 1984-09-14 | Solid-state image pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6170873A true JPS6170873A (en) | 1986-04-11 |
Family
ID=16298073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59192854A Pending JPS6170873A (en) | 1984-09-14 | 1984-09-14 | Solid-state image pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6170873A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08250696A (en) * | 1995-03-10 | 1996-09-27 | Toshiba Corp | Solid-state image sensor and manufacture thereof |
WO2014156174A1 (en) * | 2013-03-29 | 2014-10-02 | 富士フイルム株式会社 | Solid state imaging element, and imaging device |
-
1984
- 1984-09-14 JP JP59192854A patent/JPS6170873A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08250696A (en) * | 1995-03-10 | 1996-09-27 | Toshiba Corp | Solid-state image sensor and manufacture thereof |
WO2014156174A1 (en) * | 2013-03-29 | 2014-10-02 | 富士フイルム株式会社 | Solid state imaging element, and imaging device |
JP2014209530A (en) * | 2013-03-29 | 2014-11-06 | 富士フイルム株式会社 | Solid-state image sensor and imaging device |
US9559148B2 (en) | 2013-03-29 | 2017-01-31 | Fujifilm Corporation | Solid-state imaging device and imaging apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3645585B2 (en) | Charge coupled device type solid-state imaging device having overflow drain structure | |
JPH04286361A (en) | Solid-state image sensing device | |
JPH1140841A (en) | Optical sensor | |
US6326653B1 (en) | Solid-state image sensor and method of fabricating the same | |
EP0031071B1 (en) | Solid state image sensor | |
TWI251330B (en) | CMOS image sensor and method for producing the same | |
JPS6170873A (en) | Solid-state image pickup device | |
JPH0449787B2 (en) | ||
JPH0430192B2 (en) | ||
JPS6149465A (en) | Solid-state image pickup device | |
JPS6064467A (en) | Solid-state image sensor | |
JPH08204165A (en) | Multilayered solid-state image sensing device | |
JP3207448B2 (en) | Image reading device | |
JPS6213066A (en) | Photoelectric converter | |
JP2856774B2 (en) | Solid-state imaging device | |
JPH0794699A (en) | Solid state image sensor | |
KR840002185B1 (en) | Photo device | |
Baji et al. | Solid-State Color Image Sensor Using Hydrogenated Amorphous Silicon | |
JPS62190870A (en) | Solid-state image pickup device and manufacture thereof | |
KR830001554B1 (en) | Solid-state imaging device | |
KR840002282B1 (en) | Solid-state imaging device | |
JPS5870685A (en) | Solid-state image pickup device | |
JPS63152167A (en) | Solid state image sensor | |
JPS60102769A (en) | Solid image pick-up device | |
JPS60167366A (en) | Manufacture of solid-state image pickup device |