JPS6169269A - Image pickup device - Google Patents
Image pickup deviceInfo
- Publication number
- JPS6169269A JPS6169269A JP59192028A JP19202884A JPS6169269A JP S6169269 A JPS6169269 A JP S6169269A JP 59192028 A JP59192028 A JP 59192028A JP 19202884 A JP19202884 A JP 19202884A JP S6169269 A JPS6169269 A JP S6169269A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- noise
- component
- input signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processing Of Color Television Signals (AREA)
- Picture Signal Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はテレビカメラなど撮像装置に関するものである
。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an imaging device such as a television camera.
従来例の構成とその問題点
近年テレビカメラなどの撮像装#は撮像素子の改良など
により高感度化されつつある。特にENG用、家庭用な
ど照明が十分に侍らない所で用いられるものに対して高
感度化すなわち低ノイズ化の要望が強い。2. Description of the Prior Art Structure and Problems In recent years, imaging devices such as television cameras have become more sensitive due to improvements in imaging elements. In particular, there is a strong demand for higher sensitivity, that is, lower noise, for those used in places where there is insufficient lighting, such as for ENG and home use.
以下に従来の撮像装置について説明する。第1図は従来
の単板式の撮像装置の構成を示す図である61はイメー
ジセンサで光学像を電気信号に変換する。A conventional imaging device will be described below. FIG. 1 is a diagram showing the configuration of a conventional single-chip imaging device. Reference numeral 61 is an image sensor that converts an optical image into an electrical signal.
電気信号に変換されたイメージ七/すよりの信号を2の
色分離回路によりRGEの3原色信号に変換し、3のマ
トリックス回路により輝度信号Y。The image 7/side signal converted into an electric signal is converted into three primary color signals of RGE by the color separation circuit 2, and the luminance signal Y is converted by the matrix circuit 3.
と2つの色差信号R−YとB−Yに変換する。and converted into two color difference signals R-Y and B-Y.
2つの色差信号はそれぞれS/N改善回路4.5により
S/N比を上げて、輝度信号とともにエンコーダ6によ
りNTSC信号に変換され、出力される。The S/N ratio of each of the two color difference signals is increased by the S/N improvement circuit 4.5, and the signal is converted into an NTSC signal by the encoder 6 along with the luminance signal, and then output.
単板式カラーカメラでは、高感度化及び高解像度化をは
かるため、モザイク色フィルタは第3図に示すような補
色系の色素を用いることか一般的である。Wは全色光透
過、Yeは赤色光(以下R)と緑色光(以下G)Cyは
青色光(以下B)とG全透過する色フィルタであり、そ
れぞれの原色光R,Bの分離は次式のように行なう。In a single-chip color camera, in order to achieve high sensitivity and high resolution, a mosaic color filter generally uses complementary color pigments as shown in FIG. W is a color filter that transmits all color light, Ye is a color filter that transmits red light (hereinafter R) and green light (hereinafter G), and Cy is a color filter that transmits blue light (hereinafter B) and all G. The separation of each primary color light R and B is as follows. Do it like a ceremony.
R=W−Cy + Y e −G (11
B = W −Y e + Cy −G
(2〕Y = W + Y e
+ Cy + G (3)この様な色分
離を行なう方式ではRGBの色素を?
用いる原色系の色フィルタを用いるものに対して輝
度信号においてな、光の利用率が上るためS/N比の高
い信号が得られるが、RとBの原色信号に対しては逆に
信号量が下りS/Nが悪くなる。たとえば原色系のフィ
ルタを用いた場合、撮像素子の飽和レベルと等しい原色
信号が得られるが、W。R=W-Cy+Ye-G (11
B = W −Y e + Cy −G
(2) Y = W + Y e
+ Cy + G (3) In this type of color separation method, what RGB pigments are used?
Compared to those using primary color filters, a signal with a high S/N ratio can be obtained because the light utilization rate increases in the luminance signal, but on the contrary, the signal amount decreases for the R and B primary color signals. decreases and the S/N deteriorates. For example, if a primary color filter is used, a primary color signal equal to the saturation level of the image sensor can be obtained, but W.
Ye 、Cy 、Gの場合、(4)式の条件では(1ン
式よりただしW=1(飽和レベル)とする。In the case of Ye, Cy, and G, the condition of equation (4) is (from equation 1, however, W=1 (saturation level).
小文字は各3原色に分解したときのレベルを示す。Lowercase letters indicate the level when separated into each of the three primary colors.
R=−)((r+g+b)−(g+b)+(r十g)
ql (s)=+r
となり、R=rとなる原色系より原色信号のレベルが下
ることになり、S/Nの改善が望まれる。R=-)((r+g+b)-(g+b)+(r10g)
ql (s)=+r, and the level of the primary color signal is lower than that of the primary color system where R=r, and an improvement in S/N is desired.
したがって従来の単板式カラー撮像装置においてもS
/ Nの改善を行なっている。第2図に従来例における
S/N改善回路のブロック図を示す。7は減算回路、8
は1H(水平走査期間)遅延回路9は定数回路、10は
クリップ回路である。入力信号と1H前の信号の差をと
る。この信号音Δとすると、Δはノイズ成分と、ライン
間の信号差となる。Δ信号のある値以上のレベルをとる
ものはライン間の信号差とみなし、レベルの小さいもの
けノイズとみなし、Δ信号のレベルの大きな部分をクリ
ップして、ノイズ成分と考えられる部分を分離する。分
離されたノイズ成分に定数σ;1を掛け、N′とし、入
力信号よりこのノイズ成分N′ヲ減算し、ノイズを改善
した信号として出力する。Therefore, even in conventional single-chip color imaging devices, S
/N improvements are being made. FIG. 2 shows a block diagram of a conventional S/N improvement circuit. 7 is a subtraction circuit, 8
is a 1H (horizontal scanning period) delay circuit 9 is a constant circuit, and 10 is a clip circuit. Take the difference between the input signal and the signal 1H ago. If this signal sound Δ is assumed, Δ is a noise component and a signal difference between lines. If the Δ signal has a level higher than a certain value, it is regarded as a signal difference between lines, and is regarded as low-level noise.The part with a high level of the Δ signal is clipped to separate the part that is considered to be a noise component. . The separated noise component is multiplied by a constant σ;1 to obtain N', and this noise component N' is subtracted from the input signal to output a noise-improved signal.
垂直方向Vこ同一の信号が来、且つノイズが小さいとさ
、S/Nの改善は
S / N = 10 Qoq −
−a
となり、+1=0.6で6HMa=0.9で12dB改
善されることになる。When the same signal comes in the vertical direction V and the noise is small, the S/N improvement is S/N = 10 Qoq - -a, which is a 12 dB improvement with +1 = 0.6 and 6HMa = 0.9. It turns out.
しかしこの方式では、1H前の信号との差をとったΔ信
号のレベルがクリップレベル以上になりfC場合、S/
N改善が行なわれない。又S/N改善を重視してクリッ
プ回路を通過する信号レベルを上た場合、垂直方向に色
差信号の解@度が低下し、上下方向の混色が発生し、問
題となる。However, in this method, if the level of the Δ signal calculated by taking the difference from the signal 1H ago exceeds the clip level and fC, the S/
N No improvement is made. Furthermore, if the level of the signal passing through the clip circuit is increased with emphasis on S/N improvement, the resolution of the color difference signal in the vertical direction decreases, causing color mixing in the vertical direction, which poses a problem.
以上のように従来の構成では、S/N改善の効果がより
期待されるS/Hの悪い部分においてS/Nの改善効果
がないという問題点を有し、さらにS/Hの改善効果を
上げた場合、上下方向の解II’度の低下が発生すると
いう問題点を含んでいた。As described above, the conventional configuration has the problem that there is no S/N improvement effect in areas with poor S/H where the S/N improvement effect is expected to be more effective. If it is raised, there is a problem in that the degree of solution II' in the vertical direction decreases.
発明の目的
本発明は上記従来の問題点を解消するもので、色差信号
のS/Nの悪い部分においてもS/Hの改善が期待でき
、且つ垂直方向の色差信号のミ了1雫度の低下が非常に
少ないS/N改善回路を有する撮像装置を提供すること
を目的とする。OBJECTS OF THE INVENTION The present invention solves the above-mentioned problems of the conventional art, and can be expected to improve the S/H even in areas where the S/N of the color difference signal is poor, and also improves the accuracy of the color difference signal in the vertical direction by one drop. It is an object of the present invention to provide an imaging device having an S/N improvement circuit with very little deterioration.
発明の構成
本発明は、入力信号を一定時間遅延させる遅延回路と、
変化成分を検出するi比検出回路と、前記入力信号に対
応した他の信号を用いて前記変化成分よりノイズ成分を
分離し、この分離されたノイズ成分を減算する回路を備
えた撮1!J、装粱であり、撮像素子からの入力信号の
S/Nの悲い場合においても、S/Hの改善を行なうこ
とができる購成七する。Structure of the Invention The present invention includes a delay circuit that delays an input signal for a certain period of time;
Photograph 1, which includes an i-ratio detection circuit that detects a changing component, and a circuit that separates a noise component from the changing component using another signal corresponding to the input signal, and subtracts the separated noise component! J. The present invention is a method that can improve the S/H even when the S/N of the input signal from the image sensor is poor.
実施例の説明
第4図は本発明の第1の実施例における撮像装置のブロ
ック図を示すものである。第4図において11ばA/D
変換器、12:はD/A変換器、13、i4はS /
N改善回路である。DESCRIPTION OF EMBODIMENTS FIG. 4 shows a block diagram of an imaging apparatus in a first embodiment of the present invention. In Figure 4, 11 A/D
Converter, 12: D/A converter, 13, i4: S/
This is an N improvement circuit.
以上のように構成し友本実権例の撮像装置について以下
その動作全説明する。イメージセッサ1よりの光電変換
された信号を、A/D変換部11てよりディジタル信号
に変換する。イメージ七/すの色フィルタは、従来例の
ものと同様で第3図に示すものである。したがって色分
離も(1)〜(3)式の方法で行なう。マトリックス回
路3により輝度信号と2つの色差信号に変模し、2つの
色差信号に対して、輝度信号を用いてS/N改善を行な
う。The entire operation of the image pickup apparatus constructed as described above according to Tomomoto's example will be explained below. A photoelectrically converted signal from the image processor 1 is converted into a digital signal by an A/D converter 11. The color filter of Image 7/S is the same as that of the conventional example and is shown in FIG. Therefore, color separation is also performed using the methods (1) to (3). The matrix circuit 3 transforms the signal into a luminance signal and two color difference signals, and performs S/N improvement on the two color difference signals using the luminance signal.
S/N改善回路の詳細なブロック図を第6図に示す。1
5はクリップ回路であり、16はクリップ−1制御回路
である。入力信号5in(本実殉例では色差信号)から
、後述するノイズ分離回路てより分離し之ノイズNnを
引き、出力信号Sonとする。A detailed block diagram of the S/N improvement circuit is shown in FIG. 1
5 is a clip circuit, and 16 is a clip-1 control circuit. A noise Nn separated by a noise separation circuit, which will be described later, is subtracted from an input signal 5 inches (color difference signal in this example) to obtain an output signal Son.
添字のnは水平走査の順@を示す。変化検出回路け1H
前の出力信号5On−1と入力信号Sinとの差をとり
、変化成分をΔ。とする。Jn?′iライ/間の信号の
差成分と、入力信号に含まれるノイズ成分になる。Δ0
の信号の差成分とノイズ成分の分@は制御入力(C0N
T、IN)f用いて行なう。The subscript n indicates the order of horizontal scanning. Change detection circuit 1H
The difference between the previous output signal 5On-1 and the input signal Sin is taken, and the change component is Δ. shall be. Jn? 'i/' and a noise component included in the input signal. Δ0
The difference component and noise component of the signal @ is the control input (C0N
T, IN) f.
ノイズ分離回路の制御入力としてはS/Nの良い
。Good S/N as control input for noise separation circuit
.
輝度信号を用い、クリノブ制御卸回路により、ilt制
御入力(輝度信号)のライ/間の差成分jYf検出し、
差成分の大小によりクリップ回路のクリップレベルの制
御を行なう。輝度信号のライン間の差成分ΔYの大きい
部分ではクリ、ブ回路を通過する信号の振巾(閾値)を
小さくし、Δ 信号に含まれる差成分がクリップ回路を
通過するレベルに下げる。輝度信号のライン間の゛差成
分の小さい部分ではクリップ回路を通過する信号の振巾
(閾値)を大きくし、大振巾のノイズに対してもクリッ
プされない様にしノイズ成分を分離する。この分離した
ノイズを減算することによりS/N比の低い条件時のS
/N改善効果を落さないようにすることが可能である。Using the luminance signal, detect the difference component jYf between the ilt control input (luminance signal) by the Kurinob control wholesale circuit,
The clip level of the clip circuit is controlled depending on the magnitude of the difference component. In a portion where the line-to-line difference component ΔY of the luminance signal is large, the amplitude (threshold) of the signal passing through the clipping circuit is reduced to a level at which the difference component included in the Δ signal passes through the clipping circuit. The amplitude (threshold value) of the signal passing through the clipping circuit is increased in a portion where the difference component between lines of the luminance signal is small, and the noise component is separated so that even large amplitude noise is not clipped. By subtracting this separated noise, the S
/N It is possible to avoid reducing the improvement effect.
以上の様に入力信号に対応する第2の信号を用いること
により、S/N比の低い部分のS/N改善効果と高め、
且つ垂直方向に信号差のある部分においても上下方向に
ボケのない信号を得ることを可能とする。S/N改善を
行なった後、2つの色差信号と輝度信号をエノコーダ6
により必要とされるコンポジット信号に変換する。最後
にンA変換部12によりリアナログ信号に変換し、必要
とされる帯域変換全行なって出力する。As described above, by using the second signal corresponding to the input signal, the S/N ratio can be improved and increased in the low S/N ratio area.
Moreover, it is possible to obtain a signal without blurring in the vertical direction even in a portion where there is a signal difference in the vertical direction. After performing S/N improvement, the two color difference signals and the luminance signal are sent to the enocoder 6.
into the composite signal required by Finally, the signal is converted into a real analog signal by the N-A converter 12, and the signal is output after performing all necessary band conversions.
以上の様に本実箔例の撮1象装置によれば、色差信号の
SlN比が悪くなる撮像条件下においても、S/N比の
良い輝度信号を用いて、色差信号のS/N比を改善し、
従来の様に色差信号のS/N比の悪い条件で色差信号の
S/N比が改善されないとか、上下方向の解像度が低下
するという問題点を改善した撮像装置を得ることができ
る。As described above, according to the one-image imaging device of this actual foil example, even under imaging conditions where the SIN ratio of the color difference signal is poor, the S/N ratio of the color difference signal can be improved by using the luminance signal with a good S/N ratio. improve the
It is possible to obtain an imaging device that improves the conventional problem that the S/N ratio of the color difference signal is not improved under conditions where the S/N ratio of the color difference signal is poor, and that the resolution in the vertical direction is reduced.
以下本発明の第2の実施例について、図面上参照しなが
ら説明する。第6図は本発明の第2の実施例全示す撮像
装置のS/N改善回路のブロック図である。17は信号
変換回路、18はクリップ回路、19は信号逆変換回路
である。その他7の減算回路、8の1H遅延回路、9の
定数回路、16のクリップ制御回路は第1の実施例と同
様である。A second embodiment of the present invention will be described below with reference to the drawings. FIG. 6 is a block diagram of an S/N improvement circuit of an image pickup apparatus according to a second embodiment of the present invention. 17 is a signal conversion circuit, 18 is a clip circuit, and 19 is a signal inverse conversion circuit. The other 7 subtraction circuits, 8 1H delay circuits, 9 constant circuits, and 16 clip control circuits are the same as in the first embodiment.
上記の様に構成された第2の実施例の撮像装置について
以下その動作全説明する。撮像装置のその他の構成は、
第4図の第1の実施例のものと同様であり、異なる部分
は13のS/N改善回路である。したがって以下の説明
はS / N改善回路;でついて説明を行なう。第1の
実■例のS/N改善回路と異なるのはJnIK号のクリ
ソゲ方法である。The entire operation of the second embodiment of the imaging apparatus configured as described above will be explained below. Other configurations of the imaging device are as follows:
This embodiment is similar to that of the first embodiment shown in FIG. 4, and the only difference is 13 S/N improvement circuits. Therefore, the following explanation will be based on the S/N improvement circuit. What is different from the S/N improvement circuit of the first example is the chrysoge method of No. JnIK.
第1の実施例ではクリップ巾のみを可変にし、直接Δ。In the first embodiment, only the clip width is made variable, and Δ is directly changed.
信号の振巾制限を行なり之が、この第2の実施例ではΔ
。信号を周波数別又はパター7別に変換し、それぞれク
リノグレ反ルを可変する点である。Δ (g号を周波数
又はパター/別に変換を行ない、クリップレベルを撮像
状態に合せて可変させノイズと信号成分を分離しS/N
比を改善する方法も合せて出願中であり、この方式にお
いても従来のものと比較して十分な効果をあげることが
可能である。本発明では、クリップレベルの閾値を相関
の高い他の信号(本実捲例では輝度信号)を用いて可変
させることにより、ノイズと信号成分の分離を十分に行
ない、信号のS/N比の改善をさらに上げることを可能
としている。今17の信号変換部の特性を(61式に示
すものとすると、それぞれの変換によシ各信号成分は第
7図に示すようになる。Although the amplitude of the signal is limited, in this second embodiment, Δ
. The point is that the signal is converted for each frequency or for each putter 7, and the clinogre reel is varied for each. Δ (convert the g signal separately to the frequency or pattern, change the clip level according to the imaging condition, separate the noise and signal components, and increase the S/N
A method to improve the ratio is also pending, and this method can also achieve sufficient effects compared to conventional methods. In the present invention, by varying the clip level threshold using another highly correlated signal (luminance signal in this example), noise and signal components are sufficiently separated, and the S/N ratio of the signal is improved. This allows for further improvements. Assuming that the characteristics of the 17 signal converters are shown in equation 61, each signal component after each conversion becomes as shown in FIG.
Do−D3:Δ0の各位
Do′〜D3′:逆変換されたJn
Ko′〜に3′ :クリック葎のに0〜に3第7図aは
、ライン間の差信号Jnの波形である。bはK。の成分
が示す彼杉、第7図c、d。Do-D3: Each part of Δ0 Do'-D3': Inversely transformed Jn Ko'-3': Click 0-3 FIG. 7a shows the waveform of the difference signal Jn between lines. b is K. Fig. 7 c, d.
eはそれぞれに、、に2.に3の成分が示す波形である
。各成分に分に分、解した信号は、それぞれの周波数又
はパターン成分に対応した信号と、各成分に分散したノ
イズによる信号とな9ノイズと1g号パターンの区別は
容易になる。しかしこの場合においても fで示した
クリップレベルの閾値を固定して用いた場合t−40の
に1〜に3の信号はL/ ヘ/l/が小さくノイズとみ
なされる。同様にt=62の場合もに1〜に3の信号は
レベルが小さくノイズとみなされる。これは信号とノイ
ズを分離している閾値が一定のために発生するもので、
閾値を本発明の相関のある他の信号によりコノトロール
することにより、改善が可能である。e is respectively, 2. This is the waveform shown by component 3. The signal divided into each component is a signal corresponding to each frequency or pattern component, and a signal due to noise dispersed in each component. It becomes easy to distinguish between No. 9 noise and No. 1g pattern. However, even in this case, when the clip level threshold indicated by f is used as a fixed value, the signals of 1 to 3 at t-40 are considered to be noise with small L/H/l/. Similarly, in the case of t=62, signals of 1 to 3 have low levels and are considered to be noise. This occurs because the threshold that separates the signal and noise is constant.
Improvements can be made by controlling the threshold with other correlated signals of the present invention.
説明の都合上第7図のt=40前後の波形を拡大して第
8図に示す。たとえばN8図すの輝度信号のライン差の
信号ΔYにより閾値を下げるコノトロールを行なっ友場
合、第8図Cの破線イのような閾値とし、t≦40の領
域において信号のエツジとノイズ成分が分離できる。ま
た第8図dの輝度信号の高周波成分YHにより閾値を下
げるコノトロールした場合、第8図eの破線口のような
閾値とし、t==40前後の領域において信号のエツジ
とノイズ成分が分離できる。この様な閾値の制御を16
のクリップ制御と18のクリップ回路により行なう0以
上示したように、第2の入力信号(本実捲例では色差信
号と相関の強い輝度信号)を用いるととてより、信号と
ノイズの1間値を効果的に変化させ、通常の状態でI′
i閾値を大きくし、大振巾のノイズを通過させ、信号が
変化する輪郭部では閾値を小さくシ、小振巾の輪郭部を
圧縮することにより、ノイズ部と信号部4を確実に分離
することが可能となる。したがってこの分離したノイズ
を減算することによりS/Nの悪い部分にも改善効果が
十分あり、さらに信号の輪郭部においても解像度が低下
しないS/N改善回路を実現することができる。し友が
って以上述べた本発明によシ撮像装置のSlN比が良く
なシ、すなわち高感度な撮像装置を実現することができ
る。For convenience of explanation, the waveform around t=40 in FIG. 7 is enlarged and shown in FIG. For example, if a control is performed to lower the threshold value using the line difference signal ΔY of the luminance signal in Figure N8, the threshold value is set as indicated by the broken line A in Figure 8C, and the edge of the signal and the noise component are separated in the region of t≦40. can. Furthermore, if the threshold value is controlled to be lowered by the high frequency component YH of the luminance signal in Figure 8 d, the threshold value is set as indicated by the broken line in Figure 8 e, and the edge of the signal and the noise component can be separated in the region around t==40. . 16 such threshold control
As shown above, when using the second input signal (in this example, a luminance signal that has a strong correlation with the color difference signal), the difference between the signal and the noise can be reduced. effectively changing the value of I′ under normal conditions.
The noise part and the signal part 4 are reliably separated by increasing the i-threshold value, allowing large-width noise to pass, and reducing the threshold value for contour parts where the signal changes and compressing small-width contour parts. becomes possible. Therefore, by subtracting this separated noise, there is a sufficient improvement effect even in areas with poor S/N ratio, and furthermore, it is possible to realize an S/N improvement circuit in which the resolution does not deteriorate even in the contour areas of the signal. In addition, according to the present invention described above, it is possible to realize an imaging device with a good SIN ratio, that is, a highly sensitive imaging device.
なお本実捲例例おいては、1Hのライン差の信号よりノ
イズを分離し、S/Hの改善を行なう例を示したが、1
Hのライン差の信号に限定する必要はなく、2Hでも3
Hでもあるいはフィールド差でも良いのは当然である。In this example, we have shown an example in which noise is separated from a signal with a line difference of 1H and the S/H is improved.
It is not necessary to limit the signal to a line difference signal of H, and even 2H or 3
Of course, H or field difference may be used.
ま7C撮f象装置の色フィルタも第3図のフィルタ以外
にも用いることが可能なのは言うまでもない。またクリ
ップ回路の閾値の制御に用いる信号はR度信号に限定す
る必要はなく、相関のある信号であれば良いのは言うま
でもなく、S/N改善の入力信号それ自体を信号処理し
て用いても良い。またΔ。信号を周波数又はパターンに
変換する信号変換部と逆変換部の変換マトリックスは式
(6) t (7)に限る必要はなく、信号を必要とさ
れる成分に変換、逆変換できるものであれば良い。ま之
撮像装置はRGB処理やディジタル処理に限定する必要
もない。また出力もNTSCに限定する必要もない。It goes without saying that the color filters of the 7C imaging device can also be used in addition to the filters shown in FIG. Furthermore, the signal used to control the threshold value of the clipping circuit does not need to be limited to the R degree signal; it goes without saying that any signal that has a correlation may be used, and the input signal itself for S/N improvement may be processed and used. Also good. Also Δ. The transformation matrices of the signal transformation unit and inverse transformation unit that convert signals into frequencies or patterns do not need to be limited to equations (6) and t (7), but can be any matrix that can convert and inversely transform the signal into the required components. good. There is no need for the imaging device to be limited to RGB processing or digital processing. Also, the output does not need to be limited to NTSC.
発明の効果
本発明の撮像装置は第1の入力信号を一定時間遅延させ
る遅延回路と、変化検出回路と、第2の入力信号たとえ
ば14度信号を用いてノイズを分離するノイズ分離回路
を設けることにより、 S/N比の悪い部分においても
S/N比の改善効果の大きく、且つ信号の輪郭部におい
ても解@度が低下しないS/N改善回路を含む撮像装置
と実現することができ、すなわち高感度な撮像装置を実
現することができ、照明光が十分でない所で使用される
家庭用のテレビカメラなどに用いることができる。Effects of the Invention The imaging device of the present invention includes a delay circuit that delays the first input signal for a certain period of time, a change detection circuit, and a noise separation circuit that separates noise using the second input signal, for example, a 14 degree signal. As a result, it is possible to realize an imaging device including an S/N improvement circuit that has a large S/N ratio improvement effect even in areas with a poor S/N ratio, and does not cause a decrease in resolution even in signal contour areas, That is, it is possible to realize a highly sensitive imaging device, which can be used in home television cameras and the like used in places where there is insufficient illumination light.
第1図は従来の撮像装置のブロック図、第2図は従来の
撮像装置におけるS/N改善回路のブロック図、第3図
は従来の撮像装置における色フィルタの配置図%に4図
は本発明の第1の実施例における撮像装置のブロック図
、第6図は本発明の第1の実施例におけるS/N改善回
路のブロック図、第6図は本発明における第2の実施例
におけ−1るS/N改善回路のブロック図、第7図はS
/N改善回路の各部の波形を示す図、第8図は本発明の
第2の実施例におけるS/N改善回路の各部の波形を示
す図である。
1・・・・・・イメージセンサ、2 ・・・・色分離回
路、3・・・・・・マトリックス回路、6・・・・エン
コータ、11・・・・・A/D変換部、12 ・・・・
D/A変侯部、13゜14・・・・・・S/N改善回路
、15・・・・・クリップ回路、16・・ クリソゲ制
#回路、17・・・・・・信号変俟部、18・・・・・
クリ、グ回路、19 ・・・信号逆変換回路。
代理人の氏名 弁理士 中 尾 敏 男 ほか18第
1 図
第 2 図
第3図
水村勺
第4図
第5図
第6図
第7図Fig. 1 is a block diagram of a conventional imaging device, Fig. 2 is a block diagram of an S/N improvement circuit in a conventional imaging device, Fig. 3 is a layout diagram of color filters in a conventional imaging device, and Fig. 4 is a diagram of the present invention. FIG. 6 is a block diagram of the imaging device in the first embodiment of the invention, FIG. 6 is a block diagram of the S/N improvement circuit in the first embodiment of the invention, and FIG. -1 block diagram of the S/N improvement circuit, Figure 7 shows the S/N improvement circuit.
FIG. 8 is a diagram showing waveforms of various parts of the S/N improvement circuit in the second embodiment of the present invention. 1... Image sensor, 2... Color separation circuit, 3... Matrix circuit, 6... Encoder, 11... A/D conversion unit, 12. ...
D/A change section, 13゜14... S/N improvement circuit, 15... Clip circuit, 16... Chrysoge control # circuit, 17... Signal change section , 18...
19. Signal inverse conversion circuit. Name of agent: Patent attorney Toshio Nakao et al. 18th
1 Figure 2 Figure 3 Tsune Mizumura Figure 4 Figure 5 Figure 6 Figure 7
Claims (4)
、前記入力信号の変化成分を分離する変化検出回路と、
前記入力信号に対応する第2の入力信号を用いて、前記
変化成分よりノイズ成分を分離するノイズ分離回路と、
分離された前記ノイズを減算する減算回路とを有したこ
とを特徴とする撮像装置。(1) a delay circuit that delays a first input signal for a certain period of time; and a change detection circuit that separates a change component of the input signal;
a noise separation circuit that separates a noise component from the change component using a second input signal corresponding to the input signal;
An imaging device comprising: a subtraction circuit that subtracts the separated noise.
を輝度信号とすることを特色とする特許請求の範囲第1
項記載の撮像装置。(2) Claim 1 characterized in that the first input signal is a color difference signal and the second input signal is a luminance signal.
The imaging device described in Section 1.
、前記入力信号の変化成分を分離する変化検出回路と、
前記変化成分を周波数別又はパターン別に分解する信号
変換回路と、変換された前記周波数別又はパターン別の
信号を、第2の入力信号と合せて処理を行なう処理回路
と、処理された信号を波形を示す信号に変換する逆変換
回路により前記変化成分に含まれるノイズ成分を分離す
るノイズ分離回路と、分離された前記ノイズを減算する
減算回路を用いることを特徴とする撮像装置。(3) a delay circuit that delays a first input signal for a certain period of time; and a change detection circuit that separates a change component of the input signal;
a signal conversion circuit that decomposes the changing components into frequencies or patterns; a processing circuit that processes the converted frequency-based or pattern-based signals together with a second input signal; An imaging device characterized by using a noise separation circuit that separates a noise component included in the change component using an inverse conversion circuit that converts the change component into a signal representing the change component, and a subtraction circuit that subtracts the separated noise.
を輝度信号とすることを特色とする特許請求の範囲第3
項記載の撮像装置。(4) Claim 3 characterized in that the first input signal is a color difference signal and the second input signal is a luminance signal.
The imaging device described in Section 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59192028A JPS6169269A (en) | 1984-09-13 | 1984-09-13 | Image pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59192028A JPS6169269A (en) | 1984-09-13 | 1984-09-13 | Image pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6169269A true JPS6169269A (en) | 1986-04-09 |
Family
ID=16284391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59192028A Pending JPS6169269A (en) | 1984-09-13 | 1984-09-13 | Image pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6169269A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6245285A (en) * | 1985-08-23 | 1987-02-27 | Hitachi Ltd | Video signal processing circuit |
JPH02266665A (en) * | 1989-04-07 | 1990-10-31 | Hitachi Ltd | Noise reducer |
-
1984
- 1984-09-13 JP JP59192028A patent/JPS6169269A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6245285A (en) * | 1985-08-23 | 1987-02-27 | Hitachi Ltd | Video signal processing circuit |
JPH02266665A (en) * | 1989-04-07 | 1990-10-31 | Hitachi Ltd | Noise reducer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7668391B2 (en) | Image signal processor and image signal processing method | |
RU2519829C2 (en) | Image processing device | |
DE69118068T2 (en) | Solid state color video camera | |
US5563666A (en) | High luminance color suppression circuit | |
JP2506530B2 (en) | Luminance signal and color signal separation device for image signal | |
JPS6169269A (en) | Image pickup device | |
JPH0832056B2 (en) | Color signal enhancement circuit | |
US7012719B1 (en) | Sign sensitive aperture correction system and method | |
JP2511812B2 (en) | Image contour compensator | |
JPH09149423A (en) | Video signal processing circuit | |
JP2837913B2 (en) | Color shift reduction device | |
JPH0346634Y2 (en) | ||
JPS6346088A (en) | Yc separation circuit | |
JP2569492B2 (en) | Video camera | |
JP2001186534A (en) | Solid-state image pickup device | |
JPS6170865A (en) | Image pickup device | |
JP3739066B2 (en) | Television camera device | |
JP4461684B2 (en) | Image signal processing apparatus, camera system, and image signal processing program | |
JPH02285779A (en) | Contour correction device | |
JP3244406B2 (en) | Image processing device | |
JP4214558B2 (en) | Imaging device | |
KR100238800B1 (en) | Method for separating luminance and chroma signals from composite video signal and separation circuit for performing the same | |
JP2560574B2 (en) | Adaptive Y / C separation device | |
JPH0787513A (en) | Method and device for video signal processing | |
JPS59153391A (en) | Solid-state color image pickup device |