[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS616876A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS616876A
JPS616876A JP59127775A JP12777584A JPS616876A JP S616876 A JPS616876 A JP S616876A JP 59127775 A JP59127775 A JP 59127775A JP 12777584 A JP12777584 A JP 12777584A JP S616876 A JPS616876 A JP S616876A
Authority
JP
Japan
Prior art keywords
layer
band width
forbidden band
mixed crystal
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59127775A
Other languages
Japanese (ja)
Other versions
JPH065786B2 (en
Inventor
Yoshinari Matsumoto
松本 良成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59127775A priority Critical patent/JPH065786B2/en
Publication of JPS616876A publication Critical patent/JPS616876A/en
Publication of JPH065786B2 publication Critical patent/JPH065786B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a semiconductor device, dark currents thereof are small and which has excellent reverse characteristics and multiplication characteristics, with superior reproducibility and yield by terminating a surface exposed end in a p-n junction in a layer having the widest forbidden band width. CONSTITUTION:There are exposed sections 227 to the surface of a p-n junction 226 in a mixed crystal section 2241, and the exposed sections 227 are terminated to the mixed crystal section 2241 having forbidden band width wider than the effective forbidden band width of an insular superlattice layer 2242 as a superlattice layer. Consequently, structure in which forbidden band width changes to a small value from a large value in order of the mixed crystal section 2241, an insular superlattice layer 224 and an n<-> GaAs layer 223 and the p-n junction is formed in the insular superlattic layer 224 having intermediate forbidden band width in a crystal wafer and in the mixed crystal section 2241 having the largest forbidden band width on the surface is shaped. Accordingly, the mixed crystal section 2241 gives extremely stable guard ring structure, thus acquiring an element displaying sharp reverse breakdown characteristics and stable avalanche operation backed up by said breakdown characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は逆バイアス動作の半導体装置に関するもので、
特に光検出器として高速、高感度、低雑音で信頼性の萬
いフォト・ダイオード(以下FDと呼ぶ)あるいはアバ
ランシェ・フォトダイオード(以下APDと呼ぶ)の構
造に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device with reverse bias operation.
In particular, it relates to the structure of a high-speed, high-sensitivity, low-noise, reliable photodetector (FD) or avalanche photodiode (APD) as a photodetector.

(従来技術とその問題点) 半導体光検出器の中でPDあるいはAPDは高速かつ高
感度で光通信システムにおける光検出器として重要なも
のであシ、光源である半導体レーザと共にその開発が活
発に進められている。
(Prior art and its problems) Among semiconductor photodetectors, PDs or APDs are fast and highly sensitive, and are important as photodetectors in optical communication systems, and their development is active along with semiconductor lasers as light sources. It is progressing.

半導体レーザの発振波長は可視域から赤外域に至る広い
波長域のものが得られつつあシ、轟然のことなからm−
v化合物半導体によって広い波長域に渡ってのFDある
いはAPDの実用化が待望される。特に暗電流が低く過
剰雑音が小さなPDあるいはAPDはSiやGeに依存
していただけでは半導体レーザの広い発振波長域をカバ
ーできない。ここにm−v化合物半導体APDが要求さ
れる理由がある。しかし化合物半導体材料では結晶成長
、あるいはプロセス技術や表面安定化技術の発達が未熟
であシ、高い逆バイアス印加によ多安定したアバランシ
ェ動作を行なわしめることは困離である。
Semiconductor laser oscillation wavelengths are becoming available in a wide wavelength range from the visible to the infrared range, and the
The practical application of FDs or APDs over a wide wavelength range using v-compound semiconductors is eagerly awaited. In particular, PDs or APDs with low dark current and low excess noise cannot cover the wide oscillation wavelength range of semiconductor lasers by relying only on Si or Ge. This is the reason why m-v compound semiconductor APDs are required. However, crystal growth, process technology, and surface stabilization technology for compound semiconductor materials are still underdeveloped, and it is difficult to perform multi-stable avalanche operation by applying a high reverse bias.

こうした中で画期的に低雑音で高い逆バイアス動作を行
なうことのできるAPD構造が提案された。
Under these circumstances, an APD structure has been proposed which is capable of groundbreakingly low noise and high reverse bias operation.

その第1は特願昭53−87856号の明細書あるいは
特願昭53−87358号の明細書に示されるように、
光吸収層の上に光透過用の窓を形成したベテロ構造によ
るものであり、 その第2は光吸収層とはすくなくも離れだ増倍域をもつ
もので特願昭54−39169号において提案された。
The first is as shown in the specification of Japanese Patent Application No. 53-87856 or the specification of Japanese Patent Application No. 53-87358,
This is based on a betaro structure in which a light-transmitting window is formed on a light-absorbing layer, and the second type has a multiplication region that is at least separate from the light-absorbing layer, which was proposed in Japanese Patent Application No. 54-39169. It was done.

第1図は特願昭54−39169号の「半導体装置」に
示された構造の断面図であF) 、InP −InGa
AsP系材料を用いて製作した一例である。まずn+−
InP基板11の上に液相エピタキシャル(LPE)法
等によシ数μmの厚さのn+InP層12を層成2、次
に膜厚5μm1不純物濃度2 X 10”儒−3のn形
InO,79GaO,l!I As(1,47po、l
ls層13(以下InGaAsPと略記する。)さらに
不純物濃度I X 1016ffi−3のn形InP層
14をエピタキシャル成長する。次にS i 3 N4
%S ioz等の選択拡散マスク15をつけ、Cd拡散
を行ないP影領域16とp−n接合面17がえられる。
Figure 1 is a cross-sectional view of the structure shown in "Semiconductor device" of Japanese Patent Application No. 54-39169 (F), InP-InGa
This is an example manufactured using AsP-based materials. First n+-
On the InP substrate 11, an n+InP layer 12 with a thickness of several μm is formed by liquid phase epitaxial (LPE) method or the like, and then an n-type InO layer with a thickness of 5 μm and an impurity concentration of 2×10” F−3 is formed. 79GaO,l!I As(1,47po,l
The ls layer 13 (hereinafter abbreviated as InGaAsP) is further epitaxially grown with an n-type InP layer 14 having an impurity concentration I x 1016ffi-3. Next, S i 3 N4
A selective diffusion mask 15 such as %Sioz is applied and Cd diffusion is performed to obtain a P shadow region 16 and a pn junction surface 17.

さらに再び絶縁用8 i 3 N4・あるいは5i02
膜151を形成し、電極域シ出し窓をパターニングした
後p形電極19を形成、さらにn形電極20をInP基
板11の裏面に形成する。21はリード線を示している
Furthermore, again for insulation 8 i 3 N4 or 5i02
After forming a film 151 and patterning an electrode area window, a p-type electrode 19 is formed, and an n-type electrode 20 is formed on the back surface of the InP substrate 11. 21 indicates a lead wire.

こうして作られたAPDの構造上の特徴はp−n接合1
7がInP層1層中4中り、かつ、逆バイアス印加時に
おいてはじめてInGaAsP層13中に空乏層が広が
る程に位置していることにある。
The structural features of the APD made in this way are the p-n junction 1
The reason is that the number 7 is one of the four in one InP layer and is located at such a position that a depletion layer spreads in the InGaAsP layer 13 for the first time when a reverse bias is applied.

こうするととによりすぐれたブレーク・ダウン特性を有
するAPDが得られることは前記特願昭54−3916
9号に詳しいが、要約すればInPがInGaAsPに
較べ禁制帯幅が太きくp−n接合170周辺部における
逆バイアス印加時における空乏層の曲率を有した広がり
が主にInP層1層内4内こり、ブレーク・ダウン電圧
を高める一方、p−n接合17の周辺部をのぞいた部分
ではInGaAsP13に空乏層が達し、禁制帯幅が小
さいだけ低電圧でのブレーク・ダウンが生じるという理
由、すなわちガードリング効果が第1図の構造によシ得
られるためである。
It is disclosed in the above-mentioned Japanese Patent Application No. 3916-1983 that in this way, an APD with better breakdown characteristics can be obtained.
9 for details, but to summarize, InP has a wider forbidden band width than InGaAsP, and the curved spread of the depletion layer when reverse bias is applied in the vicinity of the p-n junction 170 is mainly due to The reason is that, while increasing the breakdown voltage, the depletion layer reaches the InGaAsP 13 in the area other than the peripheral part of the p-n junction 17, and breakdown occurs at a low voltage because the forbidden band width is small. This is because the guard ring effect is obtained by the structure shown in FIG.

しかし、第1図に示した構造のAPDの製造歩留シはき
わめて悪い。なぜならば第1図中dで示したp−n接合
面17とInP層14とInGaAsP層13のへテロ
界面18の距離にブレーク・ダウン特性が大きく依存す
るからであり、APD動作時に103倍をこえる高い増
倍率をえるにはdは約0.8μmから約0.4μmとし
なければならない。これはdが0.8μm以上はなれる
とp−n接合面17の周辺部でのブレーク・ダウンが中
心部に先立ち生じるし、dが0.3μm以下では該周辺
部においてもInGaAsP層13中に空乏層が重大に
広がり、ガードリング効果をもたせられないためである
。従ってとのAPDが優れた特性を示すためにはp−n
接合の深さ制御がきわめて強く要求される。
However, the manufacturing yield of the APD having the structure shown in FIG. 1 is extremely poor. This is because the breakdown characteristics greatly depend on the distance between the p-n junction plane 17 and the hetero interface 18 between the InP layer 14 and InGaAsP layer 13, shown as d in FIG. To obtain such a high multiplication factor, d must be approximately 0.8 μm to approximately 0.4 μm. This is because when d is 0.8 μm or more, breakdown occurs at the periphery of the p-n junction surface 17 before the center, and when d is 0.3 μm or less, the breakdown occurs in the InGaAsP layer 13 even at the periphery. This is because the depletion layer expands significantly, making it impossible to provide a guard ring effect. Therefore, in order for the APD to exhibit excellent characteristics, p−n
Bond depth control is extremely required.

(発明の目的) 本発明の目的はきわめて安定な動作を可能とする製造歩
留9の大幅な向上をもたらすP D 、 A、 PDの
構造を提供することにある。p−n接合深さの制御が重
要でないことは以下に示すものである。
(Objective of the Invention) An object of the present invention is to provide a structure of PD, A, and PD that enables extremely stable operation and significantly improves the manufacturing yield 9. The unimportant nature of controlling the p-n junction depth will be shown below.

(発明の構成) 本発明によれば第1の半導体層上の所望の場所に、実効
的禁制帯幅、び該第1の半導体層の禁制帯幅に較べ大き
くかつ給1の半導体層と同じ導電形を示す半導体超格子
層が設けられ、この半導体超格子層の周囲にこの超格子
層とほぼ同一の組成の混晶層が設けられ、第1の半導体
層および前記半導体超格子層とは逆導電形の領域が、第
1の半導体層と前記超格子層との界面には達しない深さ
で、しかも前記超格子層を含みpn接合が周囲の混晶層
表面で終端するように形成されていることを特徴とする
半導体装置が得られる。
(Structure of the Invention) According to the present invention, at a desired location on the first semiconductor layer, an effective forbidden band width, which is larger than the forbidden band width of the first semiconductor layer and the same as that of the first semiconductor layer, is formed. A semiconductor superlattice layer exhibiting a conductivity type is provided, a mixed crystal layer having approximately the same composition as this superlattice layer is provided around the semiconductor superlattice layer, and the first semiconductor layer and the semiconductor superlattice layer are different from each other. The region of the opposite conductivity type is formed to a depth that does not reach the interface between the first semiconductor layer and the superlattice layer, and is formed so that the pn junction including the superlattice layer terminates at the surface of the surrounding mixed crystal layer. A semiconductor device is obtained which is characterized in that:

(構成の詳細な説明) 次に本発明を一実施例にもとづいて説明する。(Detailed explanation of configuration) Next, the present invention will be explained based on one embodiment.

第2図は本発明の基本的構造を示すAPDの横断面図で
ある。1 n+GaA、s基板221の上にrl+ Q a A 
s層222、n−形QaAs ffj 223さらにn
−形を示すGaAs /AlAs超格子層224を形成
する。実施例でのGaAs/AlAs超格子層224は
G a A s層20XとA】As 131が交互に積
層した900層から滅シ全層厚約1.5μmとした。
FIG. 2 is a cross-sectional view of an APD showing the basic structure of the present invention. 1 n+GaA, rl+ Q a A on s substrate 221
s layer 222, n-type QaAs ffj 223 and further n
- forming a GaAs/AlAs superlattice layer 224 exhibiting a shape; The GaAs/AlAs superlattice layer 224 in the example was made up of 900 layers in which GaAs layers 20X and As 131 were alternately laminated to have a total thickness of about 1.5 μm.

次に5i02あるいはSi3N、膜等をGaAs/Al
As超格子層2240表面に300 ’C程度の低温で
プラズマCVD法を用い形成した。この後、ウェーハ面
内500μmピッチで互盤目状に200μm直径島状領
域を除いた周辺領域全域をスポット径5μmK集束した
アルゴン・レーザ・ビームを走査した。アルゴンレーザ
の出力は4wであり、走査線ノ間隔は5μmとし走査は
プログラマブルな自動走査機構を用いる。次に前記し7
tSiO2膜あるいはSi3N4膜上にフォトレジスト
をぬシ、前記200μm直径の島状領域を同心円状に含
むように250μm径の拡散用の窓をあける。さらにこ
の250μmの拡散用窓よりGaAs : Zn擬二元
拡散(第25回応用物理学関係連合講演会予稿集27a
−8−9、P419.1978年)により530℃でZ
nを表面より1μmの深さ棟で拡散してp領域225を
得た。さて前記したアルゴンレーザ走査部は超格子構造
がくずれた混晶部2241と変化しており、このことは
GaAs/AlAs超格子層224のホトルミネッセン
スピーク波長が7000 Xであったのに対し混晶部2
241で6500 Xとなっていることから確認された
。p−n接合226の表面への露出部227は従って混
晶部2241にあシ超格子層であるところの島状超格子
層2242の実効的禁制帯幅に較べ広い禁制帯幅をもっ
た混晶部2241に終端している。
Next, 5i02 or Si3N, films etc. are made of GaAs/Al.
The As superlattice layer 2240 was formed on the surface using plasma CVD at a low temperature of about 300'C. Thereafter, an argon laser beam focused with a spot diameter of 5 μm was scanned over the entire peripheral region except for the 200 μm diameter island-like region in an alternating pattern at a pitch of 500 μm within the wafer plane. The output of the argon laser is 4 W, the interval between scanning lines is 5 μm, and a programmable automatic scanning mechanism is used for scanning. Next, 7
A photoresist is removed on the tSiO2 film or the Si3N4 film, and a diffusion window with a diameter of 250 μm is opened so as to concentrically include the island-shaped region with a diameter of 200 μm. Furthermore, through this 250 μm diffusion window, GaAs:Zn pseudo-binary diffusion (Proceedings of the 25th Applied Physics Association Conference 27a)
-8-9, P419.1978) at 530℃
A p region 225 was obtained by diffusing n to a depth of 1 μm from the surface. Now, the above-mentioned argon laser scanning part has changed to a mixed crystal part 2241 in which the superlattice structure has collapsed, and this means that the photoluminescence peak wavelength of the GaAs/AlAs superlattice layer 224 was 7000 Part 2
This was confirmed by the fact that it was 6500X in 241. Therefore, the exposed portion 227 on the surface of the p-n junction 226 is a mixed crystal region 2241 with a wider forbidden band width than the effective forbidden band width of the island superlattice layer 2242, which is a reed superlattice layer. It terminates at the crystal part 2241.

従って今、混晶部2241、島状超格子層224、さら
にn −GaAs層223の順番で禁制帯幅は大から小
に変化しておシかつp−n接合は結晶ウェーハの内部で
は中間の禁制帯幅をもつ島状超格子層224内に表面で
は最も禁制帯幅の大なる混晶部2241に形成された構
造をもつことになる。n−GaAs / AlAs超格
子層224の電子濃度を10σ−3とした例では島状超
格子層2242の中につくられたp−n接合の逆方向ブ
レークダウン電圧90Vに対し、混晶部2241表面に
終端したp−n接合のブレークダウン電圧は105■と
見つもることかできた。したがって混晶部2241はき
わめて安定したガードリング構造を与えたことになり、
鋭い逆方向ブレークダウン特性とこれに裏付けられる安
定したアバランシェ動作を示す素子が得られる。
Therefore, the forbidden band width changes from large to small in the order of the mixed crystal part 2241, the island-like superlattice layer 224, and then the n-GaAs layer 223, and the p-n junction is located in the middle inside the crystal wafer. The island-like superlattice layer 224 having a forbidden band width has a structure formed in the mixed crystal portion 2241 having the largest forbidden band width on the surface. In an example in which the electron concentration of the n-GaAs/AlAs superlattice layer 224 is set to 10σ-3, the reverse breakdown voltage of the pn junction formed in the island-like superlattice layer 2242 is 90V, whereas the mixed crystal part 2241 The breakdown voltage of the pn junction terminated on the surface was estimated to be 105 .mu.m. Therefore, the mixed crystal portion 2241 provides an extremely stable guard ring structure,
A device can be obtained that exhibits sharp reverse breakdown characteristics and stable avalanche operation supported by this characteristic.

以上本発明はGaAs / AlAs系を材料とする半
導体装置の実施例について述べたが本発明は逆バイアス
動作するペテロ接合を有した半導体装置全てに対しブレ
ーク・ダウン特性の改善に有効であることは明らかでI
nP −InGaAs等の化合物半導体結晶に対しても
適用することができる。
The present invention has been described above with respect to embodiments of semiconductor devices made of GaAs/AlAs based materials, but it is clear that the present invention is effective in improving the breakdown characteristics of all semiconductor devices having a Peter junction that operates in reverse bias. It's obvious I
It can also be applied to compound semiconductor crystals such as nP-InGaAs.

さらに上記発明においてp領域とある所をnに0とある
ところをpに変換しても同様の効果はあることも明らか
である。
Furthermore, in the above invention, it is clear that the same effect can be obtained even if the part where n is 0 is converted to p in the p region.

寸だ前記実施例ではレーザアニールを用いたが、電子ビ
ームアニールでもよいし、HeyHjO等のイオンビー
ムラ中性粒子例えば原子(例えば最初イオンとして発生
させ、途中で電荷を与えて中性粒子にして照射する)や
中性子を照射してもよい。
In the above example, laser annealing was used, but electron beam annealing may also be used, or ion beam annealing such as HeyHjO can be used to irradiate neutral particles such as atoms (for example, they are first generated as ions, then given an electric charge midway through the process to become neutral particles). ) or neutron irradiation.

また混晶化の工程においてレーザの出力変動等によって
、超格子層224が下層のn −GaAs層223に届
くように混晶化しなかったり、逆にnGaAs層223
の一部を混晶化したシすることがあるが、それでも本発
明の目的は達成できる。
Furthermore, due to variations in laser output during the mixed crystal formation process, the superlattice layer 224 may not be mixed crystal enough to reach the n-GaAs layer 223 below, or conversely, the superlattice layer 224 may not be mixed crystal enough to reach the n-GaAs layer 223 below.
Even if some of them are mixed crystallized, the object of the present invention can still be achieved.

(発明の効果) 以上説明したように本発明によればp−n接合面全面に
わたシ均一なブレーク・ダウンを生じ暗電流が小さく逆
方向特性、増倍特性の優れた半導体装置を再現性と歩留
りの著しい向上を達成しうる構造かえられた。これは禁
制帯幅の最も広い層でp−n接合の表面露出端が終るこ
とによるガードリング効果に基ずくものである。しかも
製造プロセスとしては構成の詳細な説明に述べた如くビ
ームアニール工程を付加すればよく、大きな工程の変化
もないので、製作再現性にもすぐれている。
(Effects of the Invention) As explained above, according to the present invention, a semiconductor device with uniform breakdown over the entire p-n junction surface, small dark current, and excellent reverse direction characteristics and multiplication characteristics can be manufactured with high reproducibility. The structure was changed to achieve a significant improvement in yield. This is based on the guard ring effect caused by the exposed end of the pn junction ending at the layer with the widest forbidden band width. Furthermore, as for the manufacturing process, it is sufficient to add a beam annealing process as described in the detailed description of the structure, and there is no major process change, so the manufacturing reproducibility is excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来のAPD。 本発明のA、 F Dの構造を示す断面図である。各図
で、 11はn十形InP基板 12はn十形InP層 13はn−形InoaAsP層 14はn−形TnP層 15は5i02又はSi3N4膜 151はS i 3 N4又ii、 S i 02膜1
6はp影領域 17はp−n接合 18けTnPとInGaAsP層の界面19はp形電極 20はn形’d’i、 4KI 21はリード線 221はn+GaAs基板 222はn+(3a A s層 223はn−GaAs層 224はn−GaAs / AlAs超格子層2241
は超格子層の混晶化部 2242は島状超格子層 225はZn拡散p形領域 226はp−n接合 227はp−n接合表面露出部 を表わす。 オ 1 図 I 71′2  図
Figures 1 and 2 show conventional APDs, respectively. FIG. 3 is a sectional view showing the structure of A and FD of the present invention. In each figure, 11 is n-type InP substrate 12 is n-type InoaAsP layer 14 is n-type TnP layer 15 is 5i02 or Si3N4 film 151 is Si3N4 or ii, Si02 Membrane 1
6 is a p shadow region 17 is a p-n junction 18 is an interface between TnP and InGaAsP layers 19 is a p-type electrode 20 is an n-type 'd'i, 4KI 21 is a lead wire 221 is an n+ GaAs substrate 222 is an n+ (3a As layer) 223 is an n-GaAs layer 224 is an n-GaAs/AlAs superlattice layer 2241
The mixed crystal portion 2242 of the superlattice layer, the island-like superlattice layer 225, the Zn-diffused p-type region 226, and the p-n junction 227 represent the surface exposed portion of the p-n junction. E 1 Figure I 71'2 Figure

Claims (1)

【特許請求の範囲】[Claims] 第1の半導体層上の所望の場所に、実効的禁制帯幅が該
第1の半導体層の禁制帯幅に較べ大きくかつ第1の半導
体層と同じ導電形を示す半導体超格子層が設けられ、こ
の半導体超格子層の周囲にこの超格子層とほぼ同一の組
成の混晶層が設けられ、第1の半導体層および前記半導
体超格子層とは逆導電形の領域が、第1の半導体層と前
記超格子層との界面には達しない深さで、しかも前記超
格子層を含みpn接合が周囲の前記混晶層表面で終端す
るように形成されていることを特徴とする半導体装置。
A semiconductor superlattice layer having an effective forbidden band width larger than that of the first semiconductor layer and having the same conductivity type as the first semiconductor layer is provided at a desired location on the first semiconductor layer. , a mixed crystal layer having substantially the same composition as this superlattice layer is provided around this semiconductor superlattice layer, and a region having a conductivity type opposite to that of the first semiconductor layer and the semiconductor superlattice layer is formed in the first semiconductor layer. A semiconductor device characterized in that the semiconductor device is formed at a depth that does not reach the interface between the superlattice layer and the superlattice layer, and further includes the superlattice layer so that a pn junction terminates at the surface of the surrounding mixed crystal layer. .
JP59127775A 1984-06-21 1984-06-21 Semiconductor device Expired - Lifetime JPH065786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127775A JPH065786B2 (en) 1984-06-21 1984-06-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127775A JPH065786B2 (en) 1984-06-21 1984-06-21 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS616876A true JPS616876A (en) 1986-01-13
JPH065786B2 JPH065786B2 (en) 1994-01-19

Family

ID=14968380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127775A Expired - Lifetime JPH065786B2 (en) 1984-06-21 1984-06-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH065786B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274918A (en) * 1988-09-12 1990-03-14 Nippon Telegr & Teleph Corp <Ntt> Optical device with wave guide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274918A (en) * 1988-09-12 1990-03-14 Nippon Telegr & Teleph Corp <Ntt> Optical device with wave guide

Also Published As

Publication number Publication date
JPH065786B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
JP4220688B2 (en) Avalanche photodiode
US4651187A (en) Avalanche photodiode
US4442444A (en) Avalanche photodiodes
KR940011103B1 (en) Semiconductor photodetector
US4656494A (en) Avalanche multiplication photodiode having a buried structure
US4840916A (en) Process for fabricating an avalanche photodiode
JPH051628B2 (en)
JPH08242016A (en) Manufacture of photodiode
US5942771A (en) Semiconductor photodetector
JPH02202071A (en) Semiconductor photodetector and manufacture thereof
US5315148A (en) Photo-sensing device
JPS63955B2 (en)
JPS6244709B2 (en)
JPS60178673A (en) Avalanche photo diode
JPS616876A (en) Semiconductor device
US6787818B2 (en) Diffused junction photodetector and fabrication technique
JPS59149070A (en) Photodetector
JP3238823B2 (en) Light receiving element
JPS6138872B2 (en)
JPS6244710B2 (en)
JPS60173882A (en) Semiconductor device
JPH04246867A (en) Semiconductor photodetector
JPH02253666A (en) Semiconductor photodetector
JPH02226777A (en) Semiconductor light receiving element and manufacture thereof
JP2004179404A (en) Semiconductor light receiving device and its manufacturing method