JPS6166148A - Immunological-reaction measuring apparatus utilizing fluctuation of light intensity - Google Patents
Immunological-reaction measuring apparatus utilizing fluctuation of light intensityInfo
- Publication number
- JPS6166148A JPS6166148A JP18725384A JP18725384A JPS6166148A JP S6166148 A JPS6166148 A JP S6166148A JP 18725384 A JP18725384 A JP 18725384A JP 18725384 A JP18725384 A JP 18725384A JP S6166148 A JPS6166148 A JP S6166148A
- Authority
- JP
- Japan
- Prior art keywords
- light
- antigen
- antibody
- cell
- scattered light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008105 immune reaction Effects 0.000 title claims description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 50
- 239000000427 antigen Substances 0.000 claims abstract description 30
- 102000036639 antigens Human genes 0.000 claims abstract description 30
- 108091007433 antigens Proteins 0.000 claims abstract description 30
- 238000001228 spectrum Methods 0.000 claims abstract description 21
- 230000001427 coherent effect Effects 0.000 claims abstract description 8
- 239000010419 fine particle Substances 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 2
- 230000004907 flux Effects 0.000 abstract description 6
- 238000012544 monitoring process Methods 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 32
- 230000003595 spectral effect Effects 0.000 description 23
- 238000005259 measurement Methods 0.000 description 18
- 238000012545 processing Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 230000005653 Brownian motion process Effects 0.000 description 6
- 238000005537 brownian motion Methods 0.000 description 6
- 238000003018 immunoassay Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011859 microparticle Substances 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 229920001342 Bakelite® Polymers 0.000 description 3
- 239000004637 bakelite Substances 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 2
- 238000000760 immunoelectrophoresis Methods 0.000 description 2
- 229940027941 immunoglobulin g Drugs 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000000951 immunodiffusion Effects 0.000 description 1
- 229940099472 immunoglobulin a Drugs 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 208000006379 syphilis Diseases 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
- G01N21/253—Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/51—Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/44—Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
- G01J3/4412—Scattering spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N15/0211—Investigating a scatter or diffraction pattern
- G01N2015/0216—Investigating a scatter or diffraction pattern from fluctuations of diffraction pattern
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N2021/0325—Cells for testing reactions, e.g. containing reagents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
- G01N21/5907—Densitometers
- G01N2021/5969—Scanning of a tube, a cuvette, a volume of sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/08—Optical fibres; light guides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は、抗原−抗体反応に基く免役反応を、微粒子に
よる散乱光の強度ゆらぎを利用して測定する装置に関す
るものひある。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an apparatus for measuring an immune reaction based on an antigen-antibody reaction using intensity fluctuations of light scattered by fine particles.
(従来技術)
免疫物質、ホルモン、医檗晶、免疫調節等生体内微量成
分の測定法として免疫反応の特異的選択反応を利用した
免疫分析法があり、大別すると酵素や放射性アイソ1〜
−ブを標識物質として用いる標識免疫分析法と、抗原・
抗体複合体を直接測定する非標識免疫分析法の2方法が
よく知られてい42 。(Prior art) There is an immunoassay method that utilizes a specific selective reaction of the immune reaction as a method for measuring trace components in the body such as immune substances, hormones, medical crystals, and immunomodulation.
-Labeled immunoassay using antigens as labeling substances and
Two methods of label-free immunoassays that directly measure antibody complexes are well known 42.
前省の標識へ一疫分1h法としCはフシオイムノアッ+
2((RIA>、M素免役分析(「I A > 、 m
光免疫分相(11△)等がよく知らrlでおり、畠感度
であるがツノイソ1へ−ブの取り扱い、廃棄物処理的の
秒々の制限があり、又測定に長時間を要するうえに4!
識試帖が高価であるため検査]ス1〜が高い等の欠点が
ある。C is Fusio Immuno +
2 ((RIA>, M immune analysis ("IA>, m
Photoimmune phase splitting (11△) is a well-known method, and although it is sensitive, there are limitations in the number of seconds due to handling of Tsunoiso 1 heave, waste disposal, and it takes a long time to measure. 4!
There are disadvantages such as the high cost of the test because the test book is expensive.
後右の非標識免疫分析法には免疫電気泳動法、免疫J1
7: fiQγ人、沈降ン人1qがあり、簡便な分析法
ひあるが感鳴、定EI41’l、再現性の貞(−粘1イ
1;測定としCは不充分で・ある。このような免疫分析
法に関しては[臨床検査γム提要1 (金j#1東原著
、金1111光糊ハ、金1iハ出)jダ)ヤ)、「臨床
検査」VOρ、22゜No 、5 (1978)、第4
71−/187頁に詳しく説明され(いる1゜
ま i= 、 J l n111111100
+1(4m1str■j 、 V Of!、
、 12゜No、4 (1975)、第349〜3
1)1頁には、抗14I:Iたは抗口;Iを表面に11
−1持七\[↓た杆trを抗原j、たは抗体ど艮応さ1
!、iiZ uE粉粒子大きざに化例しC減少するブラ
ウン運動の指標どなる平均拡散定数を、レーザ光の散乱
光のスペクトル幅の変化から求めることにより抗原また
は抗体を定量分析する方法が開示されている。この分析
方法では標識試薬を用いない利点はあるが、粒子のブラ
ウン運動によるドツプラ効采によって入射光のスペクト
ルが広がるのを分光t1を用いて検出しCいるため、装
置が大形で高価となる欠点があると共に分光計を機械的
に駆動する際に誤差が生じ、精度および再現性が悪くな
る欠点がある。また、この方法では光のスペクトル幅か
ら平均拡散定数を求めているだけであり、情報帛が少な
いという欠点もある。Immunoelectrophoresis, immunoJ1 for non-labeled immunoassay on the back right
7: There are fiQγ people and sedimentation people 1q, and there is a simple analytical method, but it is a sensorineural, constant EI of 41'l, reproducibility (-viscosity 1-1; measurement and C is insufficient. Regarding the immunoassay method, please refer to [Clinical Inspection Gamma Summary 1 (Kinj #1 Higashihara author, Kin 1111 Hikari Ha, Kin 1i Ha) j da) ya), ``Clinical Inspection'' VOρ, 22゜No, 5 ( 1978), No. 4
It is explained in detail on page 71-/187.
+1 (4m1str■j, V Of!,
, 12° No. 4 (1975), No. 349-3
1) On page 1, anti-14I: I or anti-I on the surface
−1 Mochi7\[↓What is the response of the rod tr to antigen j, or antibody?
! , iiZ A method for quantitatively analyzing antigens or antibodies is disclosed by determining the average diffusion constant, which is an index of Brownian motion that decreases due to the size of uE powder particles, from changes in the spectral width of scattered light of a laser beam. There is. Although this analysis method has the advantage of not using a labeling reagent, it uses spectroscopy t1 to detect the broadening of the spectrum of the incident light due to the Doppler effect caused by the Brownian motion of the particles, making the equipment large and expensive. There are disadvantages and errors occur when mechanically driving the spectrometer, resulting in poor accuracy and reproducibility. Furthermore, this method only calculates the average diffusion constant from the spectral width of light, and has the disadvantage that there is little information.
上述したように従来の免疫分析方法では、高価な標識試
薬を用いるため分析のランニングコス[〜が高価となる
と共に液体の取扱いおよび処理が面倒となったり、処理
時間が長くなる欠点があったり、高価で大形な分光計を
必要とすると共に精度や再現性も悪く、得られる情報h
1も少イ1いという欠点があった。As mentioned above, conventional immunoassay methods use expensive labeling reagents, which increases the running cost of the analysis, makes handling and processing of liquids troublesome, and increases processing time. It requires an expensive and large spectrometer, has poor accuracy and reproducibility, and the information obtained is difficult to obtain.
1 also had the disadvantage of being too small.
また、上記のように散乱光の検出にJ、って測定を行う
!組合、検出する散乱光は極めて微弱であり、迷光等の
9.11音光が微小でも含d:れるとS/Nが悪くなり
、測定粘度を劣化さけることになる。特に反応液を収容
ηるセルで綬射された光が他の部分e反身・1されpj
び1?ルに入用するど箸しくノイズが大きくイfる。Also, as mentioned above, J is used to detect scattered light! In addition, the scattered light to be detected is extremely weak, and if even a small amount of 9.11 sound light such as stray light is included, the S/N will deteriorate and the measured viscosity will be prevented from deteriorating. In particular, the light emitted from the cell containing the reaction solution is reflected by other parts e and pj.
Bi1? When I put it in the room, it makes a lot of noise.
(発明の目的)
本5を明の目的は、微粒子にJこる散乱光の強度ゆらぎ
が抗原−抗体反応ど蕾接な関係にあることを利用しC抗
原−抗体反応を測定ηることにより、上述した従M!の
欠点を除去し、高価な標識試薬や高価でかつ人形な分光
計を用いずに、高い粘度おJ:びF1現性をJメって測
定を行なうことができ、しかも測定時間の短縮、抗原−
抗体反症、測定の自動化が可能であると共に抗原−抗体
反応について多(のイ1用イ〔情報を得ることができ、
かつ、911音光の侵入を効宋的(こ防止Jることが′
C−ぎろようにした免疫fシ1.?、■す定装置tを1
W供しようどJるものである。(Objective of the Invention) The object of the present invention is to measure the antigen-antibody reaction by utilizing the fact that the intensity fluctuation of scattered light on microparticles is closely related to the antigen-antibody reaction. The above-mentioned slave M! It is possible to measure high viscosity and F1 frequency without using expensive labeling reagents or expensive and expensive spectrometers, and to shorten the measurement time. antigen-
It is possible to automate the measurement of antibody reactions, and it is also possible to obtain a large amount of information about antigen-antibody reactions.
Moreover, it is possible to effectively prevent the intrusion of 911 sound and light.
C-Giro-like immunity fshi1. ? , ■ Set the fixed device t to 1
It is something that I would like to offer.
(発明の概要)
本発明は、少なくとも抗原おJ、び抗体を含む反応液に
光を役割し、抗原−抗体反応により生成される微粒子に
よる散乱光または反応液に加えた抗体または抗原を固定
した微粒子によって生ずる散乱光を検知し、この検知出
力の強度ゆらぎのパワースペクトル密度に基いて抗原−
抗体反応を測定する装置において、
前記抗原−抗体反応液を収容覆るセルと、コヒーレント
な光を放口;1し、これを前記セルに入射させる光源装
置と、
前記セルからの散乱光をc11独または大川光と共に受
光する光検出装置と、
この光検出装置からの出力信号を受け、その強度ゆらぎ
のパワースペクトル密瓜を求め、それに基づいて抗原−
抗体反応を測定する手段と、前記入用光の光路と光検出
装置の受光路との間に設けられて、前記入射光および前
記光検出装置へ放射する散乱光の通路部分にのみ微小面
積の透孔を有し、その他の部分は全て連光された前記セ
ルを収容するセルボックスとを具えることを特徴とする
ものである。(Summary of the Invention) The present invention applies light to a reaction solution containing at least an antigen, an antibody, and an antibody or an antigen added to the reaction solution. The scattered light generated by fine particles is detected, and the antigen is detected based on the power spectrum density of the intensity fluctuation of this detection output.
An apparatus for measuring an antibody reaction includes a cell that houses and covers the antigen-antibody reaction solution; a light source device that emits coherent light; and a light source device that makes the coherent light enter the cell; Alternatively, a photodetector that receives light together with Hikaru Okawa receives the output signal from this photodetector, calculates the power spectrum of the intensity fluctuation, and based on that, detects the antigen.
A means for measuring an antibody reaction is provided between the optical path of the input light and the light receiving path of the photodetector, and has a small area only in the path of the incident light and the scattered light emitted to the photodetector. The device is characterized in that it has a cell box that accommodates the cell, which has a through hole, and all other parts are continuously illuminated.
本発明においては、抗原−抗体反応の結果どして生成さ
れる微粒子による散乱光または、抗体または抗原を表面
に固定した微粒子の抗原−抗体反応によって生ずる散乱
光の強度が、光の干渉によりゆらぐため、この強度ゆら
ぎのパワースペクトル密度に粒子の形状や大きさの依存
性があることに肴目し、強度ゆらぎのパワースペクトル
密度を検知することにより抗原−抗体反応の有無、抗原
または抗体の足口、抗原−抗体反応による微粒子の凝集
状態(粒径分布)などの多くの有用な情報を得ることが
できる。このように本発明では散乱光を光検出器で受光
し、その出力信号強度のゆらぎを検知するものであるか
ら、標識試薬を用いる必要はないと共に散乱光のスペク
トル分析を行なうものではないので分光計を用いる必要
もない。In the present invention, the intensity of scattered light generated by microparticles generated as a result of an antigen-antibody reaction or the scattered light generated by an antigen-antibody reaction of microparticles on which antibodies or antigens are immobilized fluctuates due to light interference. Therefore, we are aware that the power spectral density of this intensity fluctuation depends on the shape and size of the particle, and by detecting the power spectral density of the intensity fluctuation, we can determine the presence or absence of an antigen-antibody reaction, and the presence or absence of an antigen or antibody reaction. It is possible to obtain a lot of useful information such as the state of aggregation (particle size distribution) of microparticles due to antigen-antibody reactions. In this way, in the present invention, scattered light is received by a photodetector and fluctuations in the output signal intensity are detected, so there is no need to use a labeling reagent, and since spectral analysis of scattered light is not performed, spectroscopic There is no need to use a meter.
後述する本発明の一実施例では、散乱光をホモダイン的
に検知し、その強度ゆらぎのパワースペクトル密度の緩
和周波数が粒子の大きさに依存することを利用して、抗
原−抗体反応の前後における緩和周波数の比を求め、こ
の比の値から抗原−抗体反応を測定する。また、他の実
施例においては、散乱光の強度ゆらぎのパワースペクト
ル密度の低周波数側の周波数に関覆る積分値が粒子の大
きさに依存することを利用して、抗原−抗体反応の前後
における積分値の比を求め、この比の値から抗原−抗体
反応を測定する。In an embodiment of the present invention described later, scattered light is detected in a homodyne manner, and the relaxation frequency of the power spectral density of the intensity fluctuation depends on the particle size. The ratio of relaxation frequencies is determined, and the antigen-antibody reaction is measured from the value of this ratio. Furthermore, in another embodiment, by utilizing the fact that the integral value of the power spectrum density of the power spectral density of the intensity fluctuation of the scattered light depends on the size of the particle, the The ratio of the integral values is determined, and the antigen-antibody reaction is measured from this ratio.
本発明では、このように粒子の凝集によって、粒子によ
る散乱光の強度ゆらぎが変化するのを、パワースペクト
ル密度に基いて検出するものであるから、高価な標識試
薬や分光計を用いることなく、高感度かつ再現性高く短
時間で抗原−抗体反応に関する多くの有用なデータを得
ることができる。In the present invention, changes in the intensity fluctuations of light scattered by particles due to particle aggregation are detected based on power spectral density, so there is no need to use expensive labeling reagents or spectrometers. A large amount of useful data regarding antigen-antibody reactions can be obtained with high sensitivity and high reproducibility in a short time.
さらに、上述のような構成のセルボックスを備えること
により、本発明は、雑音光の浸入を効梁的に排除するこ
とができ、測定精度を向上させることができる。Furthermore, by providing a cell box with the above-described configuration, the present invention can efficiently eliminate the intrusion of noise light, and improve measurement accuracy.
(実施例)
第1図は本発明による免疫反応測定装置の一実施例の構
成を示す図である。本例においては、]ヒーレント光を
放出する光源として波長632.8nmの@e−p4e
ガスレーザ1を設ける。コヒーレント光を放射する光源
としては、このようなガスレーザの他に半導体レー、ザ
のような固体レーザを用いることもできる。光it!1
から放射されるレーザ光束2を半透鏡3により光束4と
光束5とに分離する。一方の光束4を集光レンズ6によ
り集光して、透明なセルフに投射する。他方の光束5を
シリコンフォトダイオードより成る光検出器8に入射さ
せ、光源1の出力光強度の変動を表わすモニタ信号に変
換する。(Example) FIG. 1 is a diagram showing the configuration of an example of the immune reaction measuring device according to the present invention. In this example, the light source that emits coherent light is @e-p4e with a wavelength of 632.8 nm.
A gas laser 1 is provided. As a light source that emits coherent light, in addition to such a gas laser, a solid state laser such as a semiconductor laser or laser can also be used. Light it! 1
A laser beam 2 emitted from the laser beam is separated into a beam 4 and a beam 5 by a semi-transparent mirror 3. One of the light beams 4 is condensed by a condensing lens 6 and projected onto a transparent self. The other light beam 5 is made incident on a photodetector 8 made of a silicon photodiode and converted into a monitor signal representing fluctuations in the output light intensity of the light source 1.
セルフの中には、表面に抗体または抗原を結合した微粒
子9を分散させた緩衝液と、抗原または抗体を含む被検
液との混合物である抗原−抗体反応液を収容する。した
がってセルフ中で抗原−抗体反応が起こり、微粒子間に
相互作用が生じたり、微粒子が相互に付着するため、ブ
ラウン運動の状態が変化することになる。セルフ中の微
粒子9によって散乱された散乱光を、一対のピンホール
を有するコリメータ10を経て光電子増倍管J、り成る
光検出器11に入射させる。光検出器8の出力モニタ信
号は低雑音増幅器13を経てデータ処理装置14に供給
する。また、光検出器11の出力信号を低雑音増幅器1
5および低域通過フィルタ16を経てデータ処理装置1
4に供給する。データ処理装置14にはA/D変換部1
7.高速フーリエ変換部18および演算処理部19を設
け、後述するような信号処理を行ない、抗原−抗体反応
の測定結果を出力する。この測定結果は表示装置18に
供給して表示する。The self contains an antigen-antibody reaction solution, which is a mixture of a buffer solution in which fine particles 9 having antibodies or antigens bound to their surfaces are dispersed, and a test solution containing the antigen or antibody. Therefore, an antigen-antibody reaction occurs in the self, interactions occur between fine particles, and fine particles adhere to each other, resulting in a change in the state of Brownian motion. Scattered light scattered by the fine particles 9 in the self is made to enter a photodetector 11 consisting of a photomultiplier tube J through a collimator 10 having a pair of pinholes. The output monitor signal of the photodetector 8 is supplied to a data processing device 14 via a low noise amplifier 13. In addition, the output signal of the photodetector 11 is transmitted to the low noise amplifier 1.
5 and a low-pass filter 16 to the data processing device 1.
Supply to 4. The data processing device 14 includes an A/D converter 1
7. A fast Fourier transform section 18 and an arithmetic processing section 19 are provided to perform signal processing as described later and output measurement results of antigen-antibody reactions. This measurement result is supplied to the display device 18 and displayed.
セルフからの散乱光強度は、光検出器8からの光源強度
モニタ信号の短時間平均値出力によって規格化され、光
源から放射されるレーザ光?A度の変動を除去した後、
散乱光の強度ゆらぎのパワースペクトル密度を求め、こ
れに基いてセルフ中での微粒子9の凝集状態、したがっ
て抗原−抗体反応の進行状態の測定を行なう。The intensity of the scattered light from the self is normalized by the short-time average value output of the light source intensity monitor signal from the photodetector 8, and the intensity of the scattered light from the light source is normalized by the short-time average output of the light source intensity monitor signal from the photodetector 8. After removing the A degree variation,
The power spectrum density of the intensity fluctuation of the scattered light is determined, and based on this, the state of aggregation of the fine particles 9 in the self, and therefore the progress state of the antigen-antibody reaction, is measured.
上記レーザ光源1から発生した光束2および21′透鏡
3で反射されてセルフへ向う光束4の光路は全て光誘導
筒12で覆われている。この光誘導筒12は、例えば、
外来光を連断するようにベークライト等の合成樹脂で形
成された円筒であり、その内面は反射防止のために黒色
に塗装されている。また、光誘導筒12の端面も同様に
して黒色に塗装された蓋体によって封鎖されて、おり、
この蓋体の中央には、光束2.光束4のみが通過できる
程度の透孔12a 、 12cが設けられている。同様
に、透孔12aの対面側には光束5のみが通過できる程
度の透孔12bが設【プられている。The optical paths of the light beam 2 generated from the laser light source 1 and the light beam 4 reflected by the mirror 21' and directed toward the self are all covered by a light guide tube 12. This light guide tube 12 is, for example,
It is a cylinder made of synthetic resin such as Bakelite to block external light, and its inner surface is painted black to prevent reflection. In addition, the end face of the light guide tube 12 is similarly sealed with a cover painted black.
In the center of this lid, there is a luminous flux 2. Through holes 12a and 12c are provided to allow only the light beam 4 to pass through. Similarly, on the opposite side of the through hole 12a, a through hole 12b is provided which is large enough to allow only the light beam 5 to pass through.
また、セルフは、セルボックス21に収容される構成に
なっており、このセルボックス21は、光束4がセルフ
内に入射するための入射口22と、セルフ内で生じた散
乱光を光検出器11へ放射するための出射口23を除き
、セルフを完全に覆い、遮光することができる。Further, the self is configured to be housed in a cell box 21, and this cell box 21 has an entrance port 22 through which the light flux 4 enters the self, and a photodetector for detecting scattered light generated within the self. The self can be completely covered and shielded from light except for the exit port 23 for emitting radiation to the light source 11.
第2図は、このセルボックス21の構成を示す図である
。FIG. 2 is a diagram showing the configuration of this cell box 21. As shown in FIG.
セルボックス21全体は、例えばベークライト等の合成
樹脂で形成された箱体であり、内部に光が入らないよう
に黒色に塗装されている。The entire cell box 21 is a box made of synthetic resin such as Bakelite, and is painted black to prevent light from entering the inside.
そして、内周面形状は、セルフの外周面に密接する形状
に形成されており、その側面のうち、直交する2面には
、上述した入射口22と出射口23が微小面積の透孔と
して形成されている。The inner circumferential surface shape is formed in a shape that is in close contact with the outer circumferential surface of the self, and the above-mentioned entrance port 22 and exit port 23 are formed as small-area through holes on two of the side surfaces that are perpendicular to each other. It is formed.
また、セルフを@脱するための一1部開口24には、こ
の開口24を密封可能なスライド式の125が取付(プ
られている。この蓋25もベークライト等の合成樹脂に
黒色塗料が塗布されている。ざらに、手動r25の開閉
が行えるように蓋25−F面にはレバー26が突設され
ている。In addition, a sliding type 125 that can seal the opening 24 is attached to the partial opening 24 for removing the selfie.This lid 25 is also made of synthetic resin such as Bakelite and coated with black paint. In general, a lever 26 is provided protruding from the surface of the lid 25-F so that the manual r25 can be opened and closed.
このような構造のセルボックス21を備えることにより
、本実施例は、セルフ内に雑音光が浸入する余地を無く
することができる。また、レーザ光源1からセルフに至
る光路も上述した光透導筒12によって完全に遮光され
ているため、この間で雑音光が混入することも防止でき
る。By providing the cell box 21 with such a structure, the present embodiment can eliminate any room for noise light to enter the cell. In addition, since the optical path from the laser light source 1 to the self is also completely blocked by the above-mentioned light transmitting tube 12, it is possible to prevent noise light from being mixed in between.
さらに、第2図に示したセルボックス21は、セルフを
一つしか収容できないものであるが、これを第3図に示
すように、複数のセルを同時に収容可能な構造としたも
のも適用できる。Furthermore, although the cell box 21 shown in FIG. 2 can accommodate only one cell, it can also be structured to accommodate multiple cells at the same time, as shown in FIG. 3. .
これは、合成樹脂で形成されたボックス枠31に、第2
図に示したセルボックス21を複数組込んであるもので
、この場合には、入射口22は、セルボックス21の底
面に設けられCいる。従って、レーザ光源1からの光も
、この入射口22へ入射するように光学系が構成される
ことになる。This is a second box frame 31 made of synthetic resin.
A plurality of cell boxes 21 shown in the figure are incorporated, and in this case, an entrance port 22 is provided on the bottom surface of the cell box 21. Therefore, the optical system is configured so that the light from the laser light source 1 also enters the entrance port 22.
そして、測定は一個所のセルボックスに対して行われ、
測定が終了する毎にボックス枠31を矢印へ方向へ移動
させることにより、連続的に次のセルに対して測定が行
われる。Then, the measurement is performed on one cell box,
By moving the box frame 31 in the direction of the arrow every time a measurement is completed, measurements are continuously performed on the next cell.
なお、ボックス枠31の移動は、手動で行っても、自動
的に行われるようにしても良い。また、蓋25の開閉も
動力源を用いて自動的に行う構成としても良い。Note that the box frame 31 may be moved manually or automatically. Further, the lid 25 may be opened and closed automatically using a power source.
さらに、上記光誘導筒の部分を光ファイバに置換するこ
とによっても、雑音光の侵入を防1卜することが可能で
ある。Furthermore, by replacing the light guide tube with an optical fiber, it is also possible to prevent noise light from entering.
次に、上述した装置を用い、光検出器11の出力信号を
低域通過フィルタ16を経てデータ処理装置14へ供給
し、光検出器8からのモニタ信号と共に処理をして散乱
光の強度ゆらぎのパワースペクトル密度を求めた結果を
次に説明する。ここで定常確立過程× (t)のパワー
スペクトル密度S (f )は、次のように表わすこと
ができる。Next, using the above-mentioned device, the output signal of the photodetector 11 is supplied to the data processing device 14 via the low-pass filter 16, where it is processed together with the monitor signal from the photodetector 8 to determine the intensity fluctuation of the scattered light. The results of determining the power spectrum density will be explained next. Here, the power spectral density S (f ) of the steady state establishment process x (t) can be expressed as follows.
この(1)式をもとに高速フーリエ変換を用いてパワー
スペクトル密度の計算を行なう。すなわち、光検出器1
1からの出力信号を(I(雑音増幅器15により、デー
タ処理装置14におけるA/D変換の量子化レベルを信
号の値域ができるだ番プ広くおおうJ、うに増幅し、こ
のm子化したデータをマイクロプロセッサによって演算
処理してパワースペクトル密度を求めた。このようにし
て求めたパワースペクトル密度から免疫反応の進行状況
を表示装置20で数値的に表示した。Based on this equation (1), the power spectral density is calculated using fast Fourier transform. That is, photodetector 1
The output signal from 1 is amplified by the noise amplifier 15 to widen the quantization level of the A/D conversion in the data processing device 14 as much as possible, and the m-digitized data is was calculated by a microprocessor to determine the power spectrum density.The progress status of the immune reaction was numerically displayed on the display device 20 from the power spectrum density thus determined.
第4図および第5図は、粒径がそれぞれ0.18871
Illおよび0.3f)Jlmのう7ツクスNet了
を分子&さけた液をIZシルア3二収容したとぎに得ら
れるパワースペクトル密度を示1ものであり、これは[
,1−レンツ型パツースペクトル密度を表わづ−19の
であり、散乱光の強度ゆらぎのパワースペクトル密度の
内、干渉効甲によるものである。これらのパヮースペク
1〜ル1で1度の緩和周?lR数は微粒子の的径に反比
例づることがわかる。すなわち、散乱光の強度ゆらぎは
」:述したように微粒子の運動に阜く]じ−シン1〜光
の干渉による成分と、散乱体積内の粒子数の変動にJ、
る成分との合成されl〔ムのどなるが、本実施例では干
渉成分がJ−としC検出されており、パワースペクトル
密度
波長の距離を移動り゛る時間の逆数どなるのC′、粒径
が大きくなると移動時間は艮< 27す、緩和周波数が
減少することになる。In Figures 4 and 5, the particle size is 0.18871, respectively.
This shows the power spectrum density obtained when Ill and 0.3f) Jlm's 7x Net molecule and liquid were placed in IZ Silua 32, which is [
, 1-Lenz-type Patou spectral density is -19, and the power spectral density of the intensity fluctuation of the scattered light is due to the interference effect. One relaxation cycle in these power specs 1 to 1? It can be seen that the IR number is inversely proportional to the target diameter of the fine particles. In other words, the intensity fluctuation of the scattered light depends on the movement of fine particles as described above, and the component due to light interference and the variation in the number of particles within the scattering volume.
In this example, the interference component is detected as J-, and the reciprocal of the time it takes to travel the distance of the power spectrum density wavelength is C', the particle size. As the value increases, the travel time becomes <27, and the relaxation frequency decreases.
第6図は横軸に粒径をμm (1) tli (ilで
どり、縦軸に緩和周波数をとってそれぞれ対数[1盛り
で示したbのである。すなわち、粒径0,0915μm
の粒子の緩和周波数は約400117. 、 0.18
8f1mでは約20011z 、 0.305 μm
では約100 Hzどなる。この第6図のグラフから明
らかなように、パワースペクトル密度の緩和周波数は粒
径(3反比例するので、この緩和周波数の変化から抗原
−抗体による凝集の有無や凝集の程度を検出覆ることが
できる。In Figure 6, the horizontal axis shows the grain size in μm (1) tli (il), and the vertical axis shows the relaxation frequency, which is expressed as logarithm [b]. In other words, the grain size is 0,0915 μm.
The relaxation frequency of the particle is about 400117. , 0.18
At 8f1m, it is approximately 20011z, 0.305 μm
Then it roars at about 100 Hz. As is clear from the graph in Figure 6, the relaxation frequency of the power spectral density is inversely proportional to the particle size (3), so the presence or absence of antigen-antibody aggregation and the degree of aggregation can be detected from changes in this relaxation frequency. .
第7図および第8図は、粒径0.3μmのラテックス粒
子を緩衝液中に0.1重量%および0.09重量%の濃
度で分散させたときのパワースペクトル密度を示すグラ
フであり、どもにl]−レンツ望のパワースペクトル密
度が得られていることがわかる。上述したように、散乱
光の強度ゆらぎは粒子のブラウン運動による干渉性成分
と、散乱体積内の粒子数の変化にJ、る非干渉t#を成
分との和になるが、散乱体積内の粒子数が少なくなり、
干渉性成分が少なくなって、非干渉性成分と同程度どな
ると、粒子のブラウン運動による散乱光強度変化以外の
成分も検出して1ノまい、抗原−抗体反応を精度よく検
出することはできなくなる。したがつぐ、粒子の濃度は
、散乱体積内での入射光強度が十分得られる程腹に低く
、かつ干渉性成分が非干渉性成分よりも大きくなるよう
な範囲に選ぶ必要がある。FIG. 7 and FIG. 8 are graphs showing power spectral densities when latex particles with a particle size of 0.3 μm are dispersed in a buffer solution at concentrations of 0.1% by weight and 0.09% by weight, It can be seen that a power spectral density of L]-Lentz is obtained. As mentioned above, the intensity fluctuation of scattered light is the sum of the coherent component due to the Brownian motion of particles and the non-interfering component t#, which is caused by changes in the number of particles in the scattering volume. The number of particles decreases,
When the amount of interfering components decreases to the same level as non-interfering components, it is no longer possible to detect components other than changes in the intensity of scattered light due to Brownian motion of particles, making it impossible to accurately detect antigen-antibody reactions. It disappears. Next, the concentration of particles must be selected in a range that is sufficiently low to obtain a sufficient intensity of incident light within the scattering volume, and in which the coherent component is larger than the incoherent component.
度に亘って相対ゆらぎは一定となる。The relative fluctuation remains constant over time.
第10図および第11図は、直径0.3μmのラテック
ス粒子の表面に免疫グロブリンGの抗体を固定したもの
を、Tris−1−ICJ2でPH7に調整した緩衝液
に分散させたものに、抗原として10→g/railお
よび10−’o/mβの濃度の免疫グロブリンGを加え
た抗原−抗体反応液をセルに収容し、抗原−抗体反応の
開始前と開始後のパワースペクトル密度を示すものであ
る。第10図に示す抗原濃度10’g 7m 52の場
合には、反応前の緩和周波数が約50 Hzであるのに
対し、反応後の緩和周波数が10Hzに変化している。Figures 10 and 11 show that immunoglobulin G antibodies immobilized on the surface of latex particles with a diameter of 0.3 μm were dispersed in a buffer solution adjusted to pH 7 with Tris-1-ICJ2. An antigen-antibody reaction solution containing immunoglobulin G at a concentration of 10 → g/rail and 10-'o/mβ is housed in a cell, and the power spectrum density is shown before and after the start of the antigen-antibody reaction. It is. In the case of an antigen concentration of 10'g 7m 52 shown in FIG. 10, the relaxation frequency before the reaction is approximately 50 Hz, whereas the relaxation frequency after the reaction has changed to 10 Hz.
これに苅し、抗原濃度が1O−9(J/Aβの場合には
、反応開始前の緩和周波数は約95Hzで、反応後の緩
和周波数は約4011zとなっている。したがって、抗
原−抗体反応前後の緩和周波数の比[を、
と定義し、この値を幾つかの抗原濃度についで求めてグ
ラフに示すと第12図に示すようになる。すなわち、第
12図において横軸は抗原濃度をとり、縦軸は緩和周波
数の比Fの値をとって示すものであるが、緩和周波数の
比[:を求めることにより抗原濃度を検出することがで
きる。When the antigen concentration is 1O-9 (J/Aβ), the relaxation frequency before the reaction starts is about 95Hz, and the relaxation frequency after the reaction is about 4011z. Therefore, the antigen-antibody reaction The ratio of the before and after relaxation frequencies is defined as , and this value is calculated for several antigen concentrations and plotted in a graph as shown in Figure 12. In other words, in Figure 12, the horizontal axis represents the antigen concentration. The vertical axis shows the value of the relaxation frequency ratio F, and the antigen concentration can be detected by determining the relaxation frequency ratio [:].
一方、第10図および第11図にa3いて、抗原−抗体
反応の前後における相対ゆらぎの比(R)が抗原濃度と
一定の関係を有することもわかる。次にこのことについ
て説明する。第1図において、光検出器11によって散
乱光を変換した電気信号を以下に示すような伝達関数を
有する低域通過フィルタに通す。On the other hand, as shown in a3 in FIGS. 10 and 11, it can also be seen that the ratio (R) of relative fluctuation before and after the antigen-antibody reaction has a certain relationship with the antigen concentration. This will be explained next. In FIG. 1, an electric signal obtained by converting scattered light by a photodetector 11 is passed through a low-pass filter having a transfer function as shown below.
ここにf。は低域通過フィルタのカットオフ周波数であ
り、緩和周波数fr よりも十分低い周波数とする。f here. is the cutoff frequency of the low-pass filter, which is a frequency sufficiently lower than the relaxation frequency fr.
このとき、低域通過フィルタの出力として得られる電流
■のゆらぎのパリアンスは、〈δ工〉2−に2くし+に
2〈N>2fo/fr11.(4)となる。ただしKは
定数、くN〉は散乱体積中の平均粒子数である。したが
って、低域通過フィルタの出力電流の相対ゆらぎとして
次式(5)が成立する。At this time, the parity of the fluctuation of the current (2) obtained as the output of the low-pass filter is <δ>2-2+2<N>2fo/fr11. (4) becomes. However, K is a constant, and N〉 is the average number of particles in the scattering volume. Therefore, the following equation (5) holds true as the relative fluctuation of the output current of the low-pass filter.
ここでγは比例定数である。ここで散乱体積中の粒子数
は十分に大ぎいとすると、(5)式は次のように書き直
すことができる。Here γ is a proportionality constant. Here, assuming that the number of particles in the scattering volume is sufficiently large, equation (5) can be rewritten as follows.
したがって、パワースペクトル密度のグラフから緩和周
波数「1 を求めることにより相対ゆらぎを算出するこ
とができる。このどき相対ゆらぎ比1〈は次式で表わす
ことができる。Therefore, the relative fluctuation can be calculated by finding the relaxation frequency "1" from the graph of the power spectral density.The relative fluctuation ratio 1< can now be expressed by the following equation.
この(7)式にJ、り相対ゆらぎ比Rを求め、これと抗
原濃度との関係をグラフにして求めたのが第13図であ
る。このグラフJ:り明らかなように、抗原−抗体反応
前後における相対ゆらぎの比Rを求めることにより未知
の抗原濃度を知ることができる。すなわち、測定に先立
って既知の異なる抗原濃度の標準サンプルについ−C相
対ゆらぎ比Rを求めて第13図のように検量線を求めて
おき、未知の抗原濃度の被検体について相対ゆらぎ比R
を求め、先に求めた検量線に基いて抗原濃度を知ること
ができる。FIG. 13 is a graph showing the relationship between J and relative fluctuation ratio R using this equation (7) and the antigen concentration. As is clear from this graph, the unknown antigen concentration can be determined by determining the ratio R of the relative fluctuation before and after the antigen-antibody reaction. That is, prior to measurement, the -C relative fluctuation ratio R is determined for standard samples with different known antigen concentrations to obtain a calibration curve as shown in Figure 13, and the relative fluctuation ratio R is determined for the sample with unknown antigen concentration.
The antigen concentration can be determined based on the previously determined calibration curve.
一方、(7)式による相対ゆらぎ比Rは第10図および
第11図に示すパワースペクトル密度の低周波帯域にお
ける積分値の変化の比どしても求めることができる。す
なわち、
に基いて相対ゆらぎ比Rを求めることができる。On the other hand, the relative fluctuation ratio R according to equation (7) can also be obtained by comparing the changes in the integral value in the low frequency band of the power spectral density shown in FIGS. 10 and 11. That is, the relative fluctuation ratio R can be determined based on the following.
ここで抗原−杭体反応前のパワースペクトル密度の積分
値Aおよび反応後の積分値Bは、10−1−10’H2
の低周波帯域における積分値である。したがって低域通
過フィルタは10’Hz以下の周波数を通過するものと
する。Here, the integral value A of the power spectrum density before the antigen-pile body reaction and the integral value B after the reaction are 10-1-10'H2
is the integral value in the low frequency band. Therefore, the low-pass filter is assumed to pass frequencies below 10'Hz.
上述した例では第10図および第11図に示すようにパ
ワースペクトル密度の低周波領域における積分値AおJ
:びBの比として相対ゆらぎ比Rを求めるようにしたが
、低周波領域における特定の周波数、例えば10 Hz
におけるパワースペクトル密度のレベルの比から相対ゆ
らぎ比を求めるようにしてもよい。このように周波数を
特定するときには、高速フーリエ変換器の代りにディジ
タルフィルタを用いることができ、構成が簡単となると
共に処1B!時間も短くなる。In the above example, as shown in FIGS. 10 and 11, the integral values A and J in the low frequency region of the power spectral density are
Although the relative fluctuation ratio R is determined as the ratio of
The relative fluctuation ratio may be determined from the ratio of the power spectral density levels at . When specifying the frequency in this way, a digital filter can be used instead of a fast Fourier transformer, which simplifies the configuration and improves processing efficiency. The time will also be shorter.
粒径が一定の場合にはパワースペクトル密度はローレン
ツ型であり、緩和周波数より大きい周波数においては周
波数の自乗に反比例して減少する。When the particle size is constant, the power spectral density is Lorentzian and decreases inversely as the square of the frequency at frequencies greater than the relaxation frequency.
どころが、粒径が分布している場合には、それぞれの粒
径に対応した緩和周波数を持ったローレンツ型スペクト
ルを重ね合わせたものが観測されるので高周波部分にお
けるパワースペクトル密度は最早や周波数の自乗に反比
例しなくなる。したがってこの部分の形状から逆に反応
によって凝集した粒子の粒径分布を知ることができる。However, if the particle sizes are distributed, a superposition of Lorentzian spectra with relaxation frequencies corresponding to each particle size will be observed, so the power spectral density in the high frequency region will no longer be the same as the frequency. It is no longer inversely proportional to the square. Therefore, from the shape of this part, the particle size distribution of the particles aggregated by the reaction can be determined.
このようなデータは従来は得られなかったものであり、
抗原−抗体反応の状態を解析する上で有用な情報である
。This kind of data has not been available in the past,
This is useful information in analyzing the state of antigen-antibody reactions.
本発明は上述した測定にのみ用いる装置に限定されるも
のではなく、免疫グロブリンA(ToA)、I(IM、
l!J D、l(I E、オーストラリア抗原、梅毒抗
原、インシュリンなど抗原−抗体反応によって凝集を生
ずるすべての物質の測定に適用することができる。The present invention is not limited to the devices used only for the above-mentioned measurements, but includes immunoglobulin A (ToA), I (IM),
l! It can be applied to the measurement of all substances that cause agglutination due to antigen-antibody reactions, such as JD, IE, Australian antigen, syphilis antigen, and insulin.
(発明の効果)
上述した本発明の効果を要約1”ると以上の通りである
。(Effects of the Invention) The above-mentioned effects of the present invention can be summarized as follows.
(1)酵素やラジオアイソト−プのような標識試薬のよ
うに高価で、取扱いの面倒な試薬を用いる必要がないの
で、安価かつ容易に実施することができる。(1) Since there is no need to use expensive and difficult-to-handle reagents such as labeling reagents such as enzymes and radioisotopes, it can be carried out at low cost and easily.
(2)免疫電気泳動法、免疫拡散法、沈降法などの非標
識免疫分析法に比べ精度が高く、再現性が高いので信頼
性の高い測定結束を高精度で得ることができる。(2) It has higher accuracy and reproducibility than non-labeled immunoanalytical methods such as immunoelectrophoresis, immunodiffusion, and precipitation, so it is possible to obtain highly reliable measurement results with high precision.
(3)微粒子のブラウン運動に基く散乱光の強度ゆらぎ
を検出するものであるから、超微ωの被検体で高lii
度の測定ができると共に測定時間も短時間となる。(3) Since it detects the intensity fluctuation of scattered light based on the Brownian motion of fine particles, it is possible to detect high lii
The measurement time can be shortened.
(4)平均拡散定数を散乱光のスペクトル幅の変化から
求めることにより抗原または抗体を定量する方法に比べ
分光削が不要であるので装置は小形かつ安価となると共
に精度および信頼性の高い測定結果が得られる。(4) Compared to the method of quantifying antigens or antibodies by determining the average diffusion constant from changes in the spectral width of scattered light, spectral reduction is not required, so the device is smaller and cheaper, and the measurement results are highly accurate and reliable. is obtained.
(5)光ゆらぎのパワースペクトル密度に基いて測定を
行なうため、抗原−抗体反応につい°Cの多くの有用な
情報を得ることができる。(5) Since measurements are performed based on the power spectral density of optical fluctuations, a lot of useful information about antigen-antibody reactions in °C can be obtained.
(6)外部からの迷光や、光源からの光がセルで反射さ
れ、再びセルに入射して測定光に郭音光として混入する
ことを効果的に防止でき、微弱な散乱光の検出を行うの
には特に有効である。これにより、測定精度の向上を図
ることが可能どなる。(6) It can effectively prevent stray light from the outside and light from a light source from being reflected by the cell, entering the cell again, and mixing in the measurement light as sound light, and detecting weak scattered light. It is particularly effective for This makes it possible to improve measurement accuracy.
第1図は本発明による免役反応測定装置の一実施例の構
成を示す線図、
第2図は同実施例を構成Jるセルボックスの一例を示す
斜視図、
第3図はレバボックス部分の他の構成例を示す斜視図、
第4図および第5図はそれぞれ粒i¥が0.188μm
および0.305μmの微粒子に対するパワースペクト
ル密度を示がグラフ、
第6図は粒径と、パワースペクトル密度の緩和−2,3
−
周波数との関係を示づグラフ、
第7図おJ:び第8図はそれぞれ粒子濃度が0.1型缶
%a3J、び0.09重量%のどきのパワースペクトル
密度を示すグラフ、
第9図は粒子濃度ど緩和周波数どの関係を示ηグラフ、
第10図おj、び第11図はそれぞれ抗P!A濶度が1
O−4a/mρおよび10−9g、/m℃に対する抗原
=抗体反応前おJ、び後のパワースペクトル密度を示す
グラフ、
第12図は抗隙淵度ど緩和周波数の比どの関係を示すグ
ラフ、
第13図は抗原8度と相対ゆらぎ比との擢1係を示すグ
ラフである。
1・・・レーザ光源 2. 4. 5・・・光束3
・・・半透鏡 6・・・集光レンズ7・・・セ
ル 8・・・光検出器9・・・微粒子
10・・・コリメータ11・・・光検出器
12・・・光誘導筒13、15・・・低雑音増幅器
−ン4−
14・・・データ処理装置 16・・・低域通過フィル
タ20・・・表示駅間21・・・セルボックス22・・
・入射口 23・・・出射[124・・・開口
25・・・藍26・・・レバー
31・・・ボックス枠。
特許出願人 オリンパス光学工業株式会拐第4図
第5図
第7図
第6図
#L怪(μfn)
第9図
粒子濃度(イ〜fn3)
第用図
第12図
眉波数(Hン)Fig. 1 is a diagram showing the configuration of an embodiment of the immune reaction measuring device according to the present invention, Fig. 2 is a perspective view showing an example of a cell box constituting the same embodiment, and Fig. 3 is a diagram showing the structure of the lever box portion. Perspective views showing other configuration examples, Figures 4 and 5 each have grains i\ of 0.188 μm.
The graph shows the power spectrum density for fine particles of 0.305 μm. Figure 6 shows the particle size and the relaxation of power spectrum density -2,3
- Graphs showing the relationship with frequency, Figures 7 and 8 are graphs showing the power spectrum density of cans with particle concentrations of 0.1 type can %a3J and 0.09 weight %, respectively. Figure 9 shows the relationship between particle concentration and relaxation frequency. A degree is 1
A graph showing the power spectrum density before and after the antigen-antibody reaction for O-4a/mρ and 10-9g,/m°C. Figure 12 is a graph showing the relationship between the anti-cavity degree and the relaxation frequency ratio. , FIG. 13 is a graph showing the relationship between antigen 8 degrees and relative fluctuation ratio. 1... Laser light source 2. 4. 5... Luminous flux 3
... Semi-transparent mirror 6 ... Condensing lens 7 ... Cell 8 ... Photodetector 9 ... Fine particles
10... Collimator 11... Photodetector
12...Light guide tubes 13, 15...Low noise amplifier 4-14...Data processing device 16...Low pass filter 20...Display station interval 21...Cell box 22...・
・Incidence port 23... Output [124... Opening 25... Indigo 26... Lever
31...Box frame. Patent applicant: Olympus Optical Industry Co., Ltd. Figure 4 Figure 5 Figure 7 Figure 6 #L (μfn) Figure 9 Particle concentration (I~fn3) Figure 12 Wave number (Hn)
Claims (1)
抗体反応により生成される微粒子による散乱光または反
応液に加えた抗体または抗原を固定した微粒子によって
生ずる散乱光を検知し、この検知出力の強度ゆらぎのパ
ワースペクトル密度に基いて抗原−抗体反応を測定する
装置において、 前記抗原−抗体反応を行なう反応液を収容 するセルと、 コヒーレントな光を放射し、これを前記セ ルに入射させる光源装置と、 前記セルからの散乱光を単独または入射光 と共に受光する光検出装置と、 この光検出装置からの出力信号を受け、そ の強度ゆらぎのパワースペクトル密度を求め、それに基
いて抗原−抗体反応を測定する手段前記入射光の光路と
光検出装置の受光路と の間に設けられて、前記入射光および前記光検出装置へ
放射する散乱光の通路部分にのみ微小面積の透孔を有し
、その他の部分は全て遮光された前記セルを収容するセ
ルボックスとを具備することを特徴とする光強度ゆらぎ
を用いる免疫反応測定装置。[Claims] 1. Light is projected onto a reaction solution containing an antigen and an antibody, and the antigen-
Detects the scattered light caused by fine particles generated by antibody reaction or the scattered light generated by fine particles immobilized with antibody or antigen added to the reaction solution, and measures the antigen-antibody reaction based on the power spectrum density of the intensity fluctuation of this detection output. A device comprising: a cell containing a reaction solution for performing the antigen-antibody reaction; a light source device that emits coherent light and makes it incident on the cell; and receiving scattered light from the cell alone or together with the incident light. a photodetection device for receiving an output signal from the photodetection device, determining the power spectrum density of the intensity fluctuation, and measuring an antigen-antibody reaction based on the optical path of the incident light and a light receiving path of the photodetection device; a cell box for accommodating the cell, which is provided between the cell box and the cell box, and has a through hole of a minute area only in a passage portion for the incident light and the scattered light emitted to the photodetecting device, and the other portions are all shielded from light. An immune reaction measuring device using light intensity fluctuation, comprising:
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18725384A JPS6166148A (en) | 1984-09-08 | 1984-09-08 | Immunological-reaction measuring apparatus utilizing fluctuation of light intensity |
US06/769,965 US4762413A (en) | 1984-09-07 | 1985-08-27 | Method and apparatus for measuring immunological reaction with the aid of fluctuation in intensity of scattered light |
DE3546566A DE3546566C2 (en) | 1984-09-07 | 1985-09-06 | |
DE19853531891 DE3531891A1 (en) | 1984-09-07 | 1985-09-06 | METHOD AND DEVICE FOR MEASURING IMMUNOLOGICAL REACTIONS |
US07/197,336 US4826319A (en) | 1984-09-07 | 1988-05-23 | Method and apparatus for measuring immunological reaction with the aid of fluctuation in intensity of scattered light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18725384A JPS6166148A (en) | 1984-09-08 | 1984-09-08 | Immunological-reaction measuring apparatus utilizing fluctuation of light intensity |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6166148A true JPS6166148A (en) | 1986-04-04 |
Family
ID=16202728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18725384A Pending JPS6166148A (en) | 1984-09-07 | 1984-09-08 | Immunological-reaction measuring apparatus utilizing fluctuation of light intensity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6166148A (en) |
-
1984
- 1984-09-08 JP JP18725384A patent/JPS6166148A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4725140A (en) | Method of measuring specific binding reaction with the aid of polarized light beam and magnetic field | |
US4826319A (en) | Method and apparatus for measuring immunological reaction with the aid of fluctuation in intensity of scattered light | |
US4446239A (en) | Light scattering immunoassay involving particles with selective frequency band apparatus | |
JPH07146295A (en) | Immunoanalysis method and device by raman spectral measurement | |
US5750410A (en) | Method of and apparatus for immune analysis | |
US4799796A (en) | Method and apparatus for measuring immunological reaction with the aid of phase-modulation of light | |
US4828388A (en) | Method of measuring concentration of substances | |
JPH06174724A (en) | Immunological measuring device | |
JPS6128866A (en) | Measuring method and apparatus for immuno-reaction using fluctuating intensity of light | |
JPS6166148A (en) | Immunological-reaction measuring apparatus utilizing fluctuation of light intensity | |
JP3436982B2 (en) | Immunoassay method and device | |
JPH0650314B2 (en) | Immune reaction measuring device | |
JPS6165144A (en) | Instrument for measuring immune reaction using intensity fluctuation of light | |
JPS61173138A (en) | Method for measuring immune reaction by intensity fluctuation of light | |
JPS62116263A (en) | Method and apparatus for measuring immunoreaction using multiple scattering of linearly polarized light | |
JPS6319560A (en) | Method for discriminating prozone in immunoreaction | |
JPS61173139A (en) | Method of measuring immune reaction by intensity fluctuation of light | |
JPS6259841A (en) | Method and device for measuring immune reaction using linearly polarized light | |
JPS6165142A (en) | Method for measuring immune reaction by using fluctuation of light intensity | |
JPH02275361A (en) | Measurement of immunoreaction | |
JPS6166151A (en) | Automatic immunoreaction measuring apparatus | |
JPS6165143A (en) | Method and instrument for measuring immune reaction | |
JPS6165138A (en) | Optical reaction testing cell | |
JPH01313737A (en) | Inspection device for body to be inspected | |
JPS6058826B2 (en) | Nephelometry method |