JPS6161043B2 - - Google Patents
Info
- Publication number
- JPS6161043B2 JPS6161043B2 JP1460979A JP1460979A JPS6161043B2 JP S6161043 B2 JPS6161043 B2 JP S6161043B2 JP 1460979 A JP1460979 A JP 1460979A JP 1460979 A JP1460979 A JP 1460979A JP S6161043 B2 JPS6161043 B2 JP S6161043B2
- Authority
- JP
- Japan
- Prior art keywords
- displacement
- temperature
- output
- meters
- term
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006073 displacement reaction Methods 0.000 claims description 74
- 238000000034 method Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
本発明は変位物体の変位を変位計によつて測定
する場合における変位計出力の温度補償方法に関
する。
変位計には種々の原理に基くものがあるが、い
ずれも周囲温度、変位物体温度が変化した場合に
は、その変位−出力の特性が変化する。
例えば、渦電流形の変位計は、変位物体とコイ
ルを対向させてコイルから変位物体に磁力線を放
射すると共に、その際変位物体に生じた渦電流に
よつて変わるコイルのインピーダンス変化を電圧
出力に変換して取り出すものであるが、そのイン
ピーダンスは、変位物体の変位に対応する変位物
体とコイル間のギヤツプによつて変わる他、温度
で変わる変位物体やギヤツプ中の空気の導電率、
透磁率などによつても影響を受けることになる。
したがつて、変位計の出力を温度補償すること
が必要であり、従来、その補償法として変位物体
近傍の温度を検出し、それに応じて変位計出力を
補正する方法が試みられてきた。しかし、この補
正法は、補正演算が複雑化すること、またその検
出温度が変位物体及び変位計自体の温度ではない
ため正確な補正を行えないこと等の欠点をもち、
特に温度変化が急激な場合には、変位物体、変位
計と温度計の熱過渡応答が同一でないために、補
正自体も困難であつた。
また、例えば特開昭50−130471号に示される如
く、変位計の出力の温度による変化分を検出し、
それにより変位計自体の作動部を調節する方法も
あるが、これにおいては、変位計に調節部を付加
しなければならず、既存の変位計に対してそのま
ま温度補償を行なえない問題がある。そこで再び
変位計から取出された出力に対する温度補償を考
えるのに、一つの変位計によつては温度補償が困
難な場合には、同一の温度環境下に二個の同一特
性の変位計を配設し、二つの変位計出力を用いて
温度の影響が相殺できるかを先ず考えることにな
る。ただし、この場合二つの変位計の出力が変位
物体の変位に対し、同一の変位出力となつてしま
うと、補正は不可能であるから、両変位計の出力
は同一変位に対し異つたものにしなければならな
い。
このような条件にあわせるためには、変位物体
を挾んで同一特性の変位計を両側に配置すればよ
く、この場合には、変位物体の変位に対し、一方
の変位計の出力が増加すれば、他方は減少するこ
とになり、しかも両変位計は同一温度環境下にお
かれたことになる。
以下、図面を参照して各変位計の出力を先ず説
明する。
変位計の配置関係を示す第1図において、変位
計1,2は変位物体3を挾んで左右に対向状態に
配置されている。この結果、変位物体3が左また
は右に変位すると、変位計1,2と変位物体3間
のそれぞれのギヤツプG1,G2はそれぞれ減増ま
たは増減することになる。
いま、両変位計1,2の配置位置の中点に変位
物体3が位置した状態を基準にして、変位物体の
変位をx(右方向変位を正)、ギヤツプG1とG2と
の和をC(一定値)とおけば、ギヤツプG1,G2
と変位Xの関係は次のようになる。
つまり、変位xが−C/2〜+C/2の間で変化す
ると、ギヤツプG1,G2はそれぞれ0〜C、C〜
0の間に変化することになる。
第2図は、上記のように変位xが±C/2の範
囲で変化した場合の変位計1,2の出力電圧
V1V2の一例を示したものであり、横軸は変位
x、縦軸は出力電圧Vである。また、各出力電圧
V1V2において、実線、破線、一点鎖線によつて
示した曲線は、それぞれ温度t0,t1,t2における
出力電圧である。
このように、変位計1,2の出力電圧V1,V2
は変位xが0の点では同一となり、その点を挾ん
で左右対称となり、温度によつてその零点電圧と
出力曲線の形が変化することになる。
いま、温度t0における変位計1,2の出力電圧
を一般式で表わせば、次のようになる。
V=K0Gl+V0 (2)
ただし、
V:温度t0における出力電圧
K0:温度t0における比例係数
V0: 〃 定数電圧
l:変位計の変位特性指数
このK0、V0が温度によつて変わることにな
り、いま、温度t0を基準にして温度t、つまり温
度差T(=t−t0)お比例係数をKT、定数電圧を
VTとすると、それらは次のように表わしてよ
い。
ここに
α:比例係数の温度係数
β:定数電圧の 〃
m:比例係数の温度特性を示す指数
n:定数電圧の 〃
但し、m、nが偶数のときは、T<0において
はα、βの極性を反転する。
以上の結果、温度tにおける変位計1,2の出
力電圧は(1)〜(3)式より次のように表される。
上式のK0、V0、α、β、n、mは変位計の種
類によつて定まる定数である。
次に、これら二つの出力電圧V1,V2を用いて
温度を補償することになるが、単純にV1とV2の
比を算出するだけでは、温度項を除くことは不可
能である。
そこで、次に両出力電圧V1とV2の差を考える
と、次のようになる。
V1−V2=K0(1−αTm){(C/2+x)l−(C/2x)l} (5)
この差は、温度項が1つとなり、しかも、変位
xとの間の直線性も向上する(l=1の場合はも
ともと直線関係にあるが、l≠1の場合において
も、V1−V2はV1またはV2に比べて直線性が向上
する)が、温度の影響は除けない。
次に、考えられる方法は、V1−V2をV1または
V2によつて除することであるが、温度項を除く
ことはできず、しかも直線性は劣化する。
ところで、両出力電圧の和V1+V2を考えてみ
ると、V1とV2は相互に逆特性となつているの
で、変位xに対し概略一定値とみなせる。
そこで、前記のV1−V2とV1+V2の比をとつて
も直線性を劣化する恐れが少なく、しかも、温度
項は、次式のように比の形で与えられるので、そ
の演算値全体に対する温度の影響度合も小さくな
る。つまり、
V1−V2/V1+V2=K0/2V0{(C/2+x)l−(C/2−x)l}/K0/2V0{(C/2+x)
l+(C/2+x)l}+(1+βTn)/(1+αTm)…(6)
しかし、このようにしても温度項(1+βT
n)/(1+αTm)は残ることになる。
したがつて、温度項を除くためには、βTnま
たはαTmの項に所定の比例係数aを乗じ、aβ
TnがαTmと近似されるようにすればよい。
つまり、
1+aβTn/1+αTm≒1 (7)
である。
しかして、上記(7)式において、両温度項の指数
nとmとが同一の場合は、比例係数aをα/βと
することにより(7)式は1となり、温度の影響は完
全に除かれる。ところが、nとmが一致しない場
合には、所定の定数である比例係数aではなく、
aを温度の関数項としない限り、(7)式は1にはで
きない。しかし、このような完全な温度補償は行
なえなくても、比例係数aの値を適当な値に選ぶ
ことによりaβTnをαTmに近似させることがで
きるのであり、そのように近似させた温度項を用
いて比を算出すると、(7)式の如く、それは1に近
づけられる。例えば、いま、説明を簡略化するた
めにT=0〜60、α=β=0.0001とし、m=2と
した温度項αTmに対し、mとは異なる指数n=
1.5、1、1/2をそれぞれ有する温度項βTnをそ
れぞれ比例係数a=7.2、48、300として近似させ
ると、その比は下記のように比例係数aによる近
似を行なわない場合に比べて1に近い値となる。
The present invention relates to a method for temperature compensating the output of a displacement meter when the displacement of a displaced object is measured by a displacement meter. There are displacement meters based on various principles, but in all of them, when the ambient temperature or the temperature of a displaced object changes, the displacement-output characteristics thereof change. For example, in an eddy current type displacement meter, a displaced object and a coil are placed opposite each other, and the coil emits lines of magnetic force from the coil to the displaced object. At the same time, changes in impedance of the coil due to the eddy current generated in the displaced object are converted into voltage output. The impedance changes depending on the gap between the displacement object and the coil, which corresponds to the displacement of the displacement object, and the electric conductivity of the displacement object and the air in the gap, which changes with temperature.
It will also be affected by factors such as magnetic permeability. Therefore, it is necessary to temperature-compensate the output of the displacement meter, and conventionally, as a compensation method, a method has been attempted in which the temperature near the displaced object is detected and the displacement meter output is corrected accordingly. However, this correction method has the disadvantages that the correction calculation is complicated, and that accurate correction cannot be performed because the detected temperature is not the temperature of the displaced object or the displacement meter itself.
In particular, when the temperature change is rapid, the correction itself is difficult because the thermal transient responses of the displaced object, the displacement meter, and the thermometer are not the same. In addition, as shown in Japanese Patent Application Laid-open No. 50-130471, for example, it is possible to detect changes in the output of a displacement meter due to temperature,
There is also a method of adjusting the operating section of the displacement meter itself, but in this case, an adjustment section must be added to the displacement meter, and there is a problem that temperature compensation cannot be performed as is for an existing displacement meter. Therefore, when considering temperature compensation for the output taken out from a displacement meter, if temperature compensation is difficult with one displacement meter, two displacement meters with the same characteristics should be placed in the same temperature environment. The first thing to consider is whether the influence of temperature can be canceled out using the two displacement meter outputs. However, in this case, if the outputs of the two displacement meters become the same displacement output for the displacement of the displaced object, correction is impossible, so the outputs of both displacement meters will be different for the same displacement. There must be. In order to meet these conditions, it is sufficient to sandwich a displaced object and place displacement meters with the same characteristics on both sides. In this case, if the output of one displacement meter increases in response to the displacement of the displaced object, , the other will decrease, and both displacement gauges will be placed under the same temperature environment. Hereinafter, the output of each displacement meter will be first explained with reference to the drawings. In FIG. 1, which shows the arrangement of displacement meters, displacement meters 1 and 2 are arranged to face each other on the left and right with a displacement object 3 in between. As a result, when the displacement object 3 is displaced to the left or right, the respective gaps G 1 and G 2 between the displacement meters 1 and 2 and the displacement object 3 will increase or decrease, respectively. Now, based on the state where the displaced object 3 is located at the midpoint of the placement positions of both displacement meters 1 and 2, the displacement of the displaced object is x (positive displacement in the right direction), and the sum of the gaps G 1 and G 2 If we set C (constant value), the gaps G 1 , G 2
The relationship between and displacement X is as follows. In other words, when the displacement x changes between -C/2 and +C/2, the gaps G 1 and G 2 change from 0 to C and from C to
It will change between 0 and 0. Figure 2 shows the output voltages of displacement meters 1 and 2 when the displacement x changes within the range of ±C/2 as described above.
An example of V 1 V 2 is shown, where the horizontal axis is the displacement x and the vertical axis is the output voltage V. Also, each output voltage
At V 1 V 2 , the curves shown by the solid line, broken line, and dashed-dotted line are the output voltages at temperatures t 0 , t 1 , and t 2 , respectively. In this way, the output voltages V 1 and V 2 of displacement meters 1 and 2
are the same at the point where the displacement x is 0, and are symmetrical around that point, and the zero point voltage and the shape of the output curve change depending on the temperature. Now, if the output voltages of displacement meters 1 and 2 at temperature t 0 are expressed by a general formula, it will be as follows. V=K 0 G l +V 0 (2) However, V: Output voltage at temperature t 0 K 0 : Proportionality coefficient at temperature t 0 V 0 : Constant voltage l: Displacement characteristic index of displacement meter This K 0 , V 0 will change depending on the temperature. Now, if the temperature t, that is, the temperature difference T (=t- t 0 ) , the proportional coefficient is K T , and the constant voltage is V T , they are as follows. It can be expressed as follows. Here, α: Temperature coefficient of proportionality coefficient β: Constant voltage 〃 m: Index showing temperature characteristics of proportionality coefficient n: Constant voltage 〃 However, when m and n are even numbers, α and β when T<0 Reverse the polarity of As a result of the above, the output voltage of the displacement meters 1 and 2 at the temperature t is expressed as follows from equations (1) to (3). K 0 , V 0 , α, β, n, and m in the above equation are constants determined depending on the type of displacement meter. Next, we will use these two output voltages V 1 and V 2 to compensate for the temperature, but it is impossible to remove the temperature term by simply calculating the ratio of V 1 and V 2 . . Next, considering the difference between the two output voltages V 1 and V 2 , we get the following. V 1 −V 2 =K 0 (1−αT m ) {(C/2+x) l −(C/2x) l } (5) This difference is due to the fact that there is only one temperature term, and the difference between (In the case of l = 1, there is originally a linear relationship, but even in the case of l≠1, the linearity of V 1 - V 2 is improved compared to V 1 or V 2 ), but The effect of temperature cannot be excluded. Then, a possible method is to convert V 1 −V 2 to V 1 or
Although dividing by V 2 does not eliminate the temperature term, the linearity deteriorates. By the way, when considering the sum of both output voltages V 1 +V 2 , since V 1 and V 2 have mutually opposite characteristics, it can be regarded as an approximately constant value with respect to the displacement x. Therefore, by calculating the ratio of V 1 −V 2 and V 1 +V 2 mentioned above, there is less risk of degrading the linearity, and since the temperature term is given in the form of a ratio as shown in the following equation, the calculation The degree of influence of temperature on the overall value is also reduced. That is, V 1 −V 2 /V 1 +V 2 =K 0 /2V 0 {(C/2+x) l −(C/2−x) l }/K 0 /2V 0 {(C/2+x)
l + (C/2+x) l }+ (1+βT n )/(1+αT m )…(6) However, even if this is done, the temperature term (1+βT
n )/(1+αT m ) will remain. Therefore, in order to remove the temperature term, the term βT n or αT m is multiplied by a predetermined proportionality coefficient a, and aβ
It is sufficient that T n is approximated to αT m . In other words, 1+aβT n /1+αT m ≈1 (7). Therefore, in equation (7) above, if the exponents n and m of both temperature terms are the same, equation (7) becomes 1 by setting the proportionality coefficient a to α/β, and the influence of temperature is completely eliminated. removed. However, if n and m do not match, instead of the proportionality coefficient a, which is a predetermined constant,
Equation (7) cannot be set to 1 unless a is a function term of temperature. However, even if such complete temperature compensation cannot be performed, aβT n can be approximated to αT m by selecting an appropriate value for the proportionality coefficient a, and the temperature term approximated in this way can be When the ratio is calculated using , it approaches 1 as shown in equation (7). For example, for the temperature term αT m where T = 0 to 60, α = β = 0.0001, and m = 2 to simplify the explanation, an index n = different from m
When the temperature term βT n having 1.5, 1, and 1/2 is approximated by proportionality coefficient a = 7.2, 48, and 300, respectively, the ratio becomes 1 compared to the case where approximation by proportionality coefficient a is not performed as shown below. The value is close to .
【表】【table】
【表】
本発明は、上記考えに基いて、変位物体を挾ん
で両側に配置した変位計の出力を補正するに際
し、両出力の差を両出力の和に所定のオフセツト
値を加えた加重値で除する演算によつて、βTn
に所定の比例係数が掛けられ、それにより温度補
償がなされるようにしたものである。
先ず、前記(7)式の温度項に関して、比例係数a
を乗じた(1+aβTo)を算出する方法につい
て説明する。
温度項(1+βTn)のうち、βTnのみに比例
係数aを直線乗ずることは不可能である。
ところで、(1+βTn)に定数Xを加えれば、
その加算値は、βTnの項にXによつて定まる比
例係数が掛けられ、かつ、“1”との和の形とな
る。
つまり、
X+(1+βTn)=(X+1)〔1+βTn/(X+1)〕 (8)
このうち、最初の比例項(X+1)は定数であ
るから、〔1+βTn/(X+1)〕が(1+aβ
Tn)と一致するようにXを定めればよいことに
なる。
したがつて、
a=1/x+1、x=1/a−1 (9)
以上のように、(1+βTn)に(9)式を満足する
定数Xを加えれば、温度項において温度の影響が
除かれることになる。
次に、この(8)式を(6)式の(1+βTn)に置き
換えれば、温度項を補償するための演算式が求め
られる。つまり、
K0/2V0{(C/2+x)l−(C/2−x)l}/K0/2V0{(C/2+x)l+(C/2−x)l}+
{X+(1+βTn)}/(1+αTm)
=K0(1+αTm){(C/2+x)l−(C/2−x)l}/K0(1+αTn){(C/2+x)l+(C
/2−x)l}+2V0(1+βTn)+2V0X
=V1−V2/V1+V2+2V0X (10)
ここに、V0は温度t0における定数電圧であり、
したがつて、2V0XもV1、V2と同一の電圧単位と
なり、結局、二つの変位計の出力の差を出力の和
に所定のオフセツト電圧を加重した加重値で除す
る演算により温度補償が行えることになる。
よつて、先ず、aβTnとαTmが近似されるa
を算出すると共に、それによつて定数Xを算出
し、Xに定数電圧を乗じたオフセツト電圧を定め
た後、上記補正演算を実行すればよい。
尚、以上は、変位計の出力特性が、数式により
明らかにされている場合にオフセツト電圧を定め
る方法を例示したが、実験的に次の手順によりオ
フセツト電圧Vcを定めてもよい。
(i) 測定最大変位、例えば±C/2の出力電圧を
測定温度範囲内の数点以上について測定する。
(ii) ある温度tiにおける±C/2の変位の出力
電圧
V+c/2、i、V−c/2
、iと別の温度ti+1における同様の出力電圧
V+c/2、i+1、V−c/2
、i+1により、次のようにオフセツト電圧V
cが未知であるとして等式を立て、Vcを求め
る。
(iii) 以上の(ii)の操作を各対の温度において繰返
し、各対ごとのオフセツト電圧Vcを求める。
(iv) このようなオフセツト電圧Vcに多少差異が
ある場合(aβTnがαTmの近似であるため)
は、その平均値をオフセツト電圧とする。
以上のとおりであり、本発明は、変位計を変位
物体を挾んで対向させているので、両変位計は温
度の過渡的変化状態でも、同一の影響を受けるこ
とになり、また、両変位計の出力の差を出力の和
に所定のオフセツト値を加えた加重値で除す演算
を行つているので、正確に温度補償した演算値を
得ることができる。また、本発明においては、演
算において、同一特性で、かつ変位に対して互に
逆特性の出力の差を略一定値とみなせる出力の和
で除すので、変位−演算値の直線性が大幅に改善
され、変位計の特性によつては、リニアライザを
介するまでもなく十分な精度で変位に比例した演
値が得られる副次的な効果も生ずる。[Table] Based on the above idea, the present invention, when correcting the output of displacement meters placed on both sides of a displaced object, calculates the difference between the two outputs by adding a predetermined offset value to the sum of both outputs. βT n
is multiplied by a predetermined proportionality coefficient, thereby performing temperature compensation. First, regarding the temperature term in equation (7) above, the proportionality coefficient a
A method of calculating (1+aβT o ) multiplied by (1+aβT o ) will be explained. Of the temperature term (1+βT n ), it is impossible to linearly multiply only βT n by the proportionality coefficient a. By the way, if we add the constant X to (1+βT n ), we get
The added value is obtained by multiplying the term βT n by a proportionality coefficient determined by X, and takes the form of the sum of “1”. In other words ,
It is sufficient to set X so that it matches T n ). Therefore, a=1/x+1, x=1/a-1 (9) As shown above, if we add a constant X that satisfies equation (9) to (1+βT n ), the effect of temperature will be reduced in the temperature term. It will be removed. Next, by replacing equation (8) with (1+βT n ) in equation (6), an arithmetic expression for compensating for the temperature term can be obtained. In other words, K 0 /2V 0 {(C/2+x) l −(C/2-x) l }/K 0 /2V 0 {(C/2+x) l + (C/2-x) l }+
{X+(1+βT n )}/(1+αT m ) =K 0 (1+αT m ) {(C/2+x) l −(C/2−x) l }/K 0 (1+αT n ){(C/2+x) l +(C
/2-x) l }+2V 0 (1+βT n ) +2V 0 X = V 1 -V 2 /V 1 +V 2 + 2V 0
Therefore , 2V 0 Compensation will be available. Therefore, first, aβT n and αT m are approximated by a
After calculating the constant X and determining the offset voltage obtained by multiplying X by the constant voltage, the correction calculation described above may be performed. Although the method for determining the offset voltage in the case where the output characteristics of the displacement meter are determined by a mathematical formula has been exemplified above, the offset voltage V c may also be determined experimentally by the following procedure. (i) Measure the maximum displacement, for example, the output voltage of ±C/2, at several points or more within the measurement temperature range. (ii) Output voltage with a displacement of ±C/2 at one temperature t i V+c/2, i, V-c/2, i and a similar output voltage at another temperature t i+1 V+c/2, i+1, V -c/2, i+1, the offset voltage V
Set up an equation assuming that c is unknown and find V c . (iii) Repeat the operation in (ii) above at each pair of temperatures to find the offset voltage V c for each pair. (iv) When there is some difference in such offset voltage V c (because aβT n is an approximation of αT m )
Let the average value be the offset voltage. As described above, in the present invention, since the displacement gauges are placed opposite to each other with the displacement object in between, both displacement gauges are affected by the same effect even in a state of transient temperature change. Since the calculation is performed by dividing the difference between the outputs by a weighted value obtained by adding a predetermined offset value to the sum of the outputs, an accurately temperature-compensated calculation value can be obtained. In addition, in the present invention, in calculation, the difference between outputs with the same characteristics and mutually opposite characteristics with respect to displacement is divided by the sum of outputs that can be regarded as a substantially constant value, so the linearity of displacement - calculated value is greatly improved. Depending on the characteristics of the displacement meter, there may also be a side effect of obtaining a performance value proportional to displacement with sufficient accuracy without the need for a linearizer.
第1図は、本発明における変位計の配置関係を
示す構成図、第2図は、変位計の変位−出力特性
の温度t0,t1,t2における特性を示す特性図の一
例である。
1,2:変位計、3:変位物体。
FIG. 1 is a configuration diagram showing the arrangement relationship of the displacement meter in the present invention, and FIG. 2 is an example of a characteristic diagram showing the displacement-output characteristic of the displacement meter at temperatures t 0 , t 1 , and t 2 . . 1, 2: displacement meter, 3: displacement object.
Claims (1)
し、両変位計の出力を取出し、その差を求めてそ
れを被除数とし、両変位計の出力の和にさらに所
定のオフセツト値を加重した加重値を求めてそれ
を除数とし、前記の被除数と除数の比を求め、温
度補償された変位出力を得るところの変位計の温
度補償方法。1 Displacement meters are placed facing each other with a displacement object in between, the outputs of both displacement meters are taken out, the difference between them is calculated, it is used as the dividend, and the sum of the outputs of both displacement meters is further weighted by a predetermined offset value. A temperature compensation method for a displacement meter, in which a value is determined and used as a divisor, and a ratio between the dividend and the divisor is determined to obtain a temperature-compensated displacement output.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1460979A JPS55107902A (en) | 1979-02-09 | 1979-02-09 | Method of temperature compensation for displacement meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1460979A JPS55107902A (en) | 1979-02-09 | 1979-02-09 | Method of temperature compensation for displacement meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55107902A JPS55107902A (en) | 1980-08-19 |
JPS6161043B2 true JPS6161043B2 (en) | 1986-12-24 |
Family
ID=11865936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1460979A Granted JPS55107902A (en) | 1979-02-09 | 1979-02-09 | Method of temperature compensation for displacement meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55107902A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230068541A (en) * | 2021-11-11 | 2023-05-18 | 주식회사 유니컴퍼니 | Drone Monitoring System |
KR102543828B1 (en) * | 2021-12-28 | 2023-06-16 | 주식회사 유니컴퍼니 | Intelligent DIY drones System |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2163259B (en) * | 1984-05-02 | 1988-08-10 | Westinghouse Electric Corp | Rod position indication system |
JP2547395B2 (en) * | 1985-07-29 | 1996-10-23 | 東芝機械株式会社 | Absolute position detection method |
JP6637324B2 (en) * | 2016-02-10 | 2020-01-29 | メレキシス テクノロジーズ エス エー | Displacement detector |
-
1979
- 1979-02-09 JP JP1460979A patent/JPS55107902A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230068541A (en) * | 2021-11-11 | 2023-05-18 | 주식회사 유니컴퍼니 | Drone Monitoring System |
KR102543828B1 (en) * | 2021-12-28 | 2023-06-16 | 주식회사 유니컴퍼니 | Intelligent DIY drones System |
Also Published As
Publication number | Publication date |
---|---|
JPS55107902A (en) | 1980-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0078592A2 (en) | Method of and apparatus for automatically compensating for variations in output response characteristics of sensors and the like | |
US4646014A (en) | Hall effect field sensor circuit with temperature compensation using OP amplifier | |
JP2015533034A (en) | Impedance compensation for operational amplifiers used in variable environments | |
Jun et al. | The mechanism of the occurrence of acquired thermoelectric inhomogeneity of thermocouples and its effect on the result of temperature measurement | |
KR910001240B1 (en) | Force measuring device | |
US11022481B2 (en) | Load cell having compensation of temperature differences | |
WO1988006719A1 (en) | Transducer signal conditioner | |
US20190033142A1 (en) | Temperature detection circuit | |
US20190072441A1 (en) | Digital creep and drift correction | |
JPH03210443A (en) | Load detector and method for compensating temperature of load detector | |
JPS6161043B2 (en) | ||
US3510696A (en) | Transducer output correction circuitry | |
JPH0412221A (en) | Method and device for compensating elapsed time error of measuring instrument | |
JPS6244703B2 (en) | ||
Engen | A DC-RF substitution error in duel-element bolometer mounts | |
US2959733A (en) | Hall effect magnetometer | |
JP3273889B2 (en) | Hall element drive circuit | |
KR930002723B1 (en) | Device for compensating for time dependent error of measuring instrument | |
JP4325117B2 (en) | Capacitance pressure measuring device | |
JP3153463B2 (en) | Hall element drive circuit | |
JPH0814521B2 (en) | Temperature compensation method for semiconductor pressure sensor | |
Surdu | Variational method of calibration of impedance meters. Part 1. Basic assumptions | |
RU2342642C1 (en) | Pressure detector | |
SU1753265A1 (en) | Radiation thickness gauge | |
JPH064307Y2 (en) | Temperature compensation circuit for pressure measuring instrument |