[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6160109A - Heat dissipation controller - Google Patents

Heat dissipation controller

Info

Publication number
JPS6160109A
JPS6160109A JP18244584A JP18244584A JPS6160109A JP S6160109 A JPS6160109 A JP S6160109A JP 18244584 A JP18244584 A JP 18244584A JP 18244584 A JP18244584 A JP 18244584A JP S6160109 A JPS6160109 A JP S6160109A
Authority
JP
Japan
Prior art keywords
heat
container
receiving member
heat source
source side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18244584A
Other languages
Japanese (ja)
Inventor
Yoshiro Miyazaki
芳郎 宮崎
Yoshio Kuriyama
義雄 栗山
Norio Takenaka
竹中 範雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18244584A priority Critical patent/JPS6160109A/en
Publication of JPS6160109A publication Critical patent/JPS6160109A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To facilitate easy connection of a heat transmission system between the heat source side and the heat dissipation side in the universe and attain the automatic transmission of heat, by providing a heat receiving member of the heat dissipation side between the heat transmission members set opposite to the heat source side. CONSTITUTION:A fluid serving as a heat medium is circulated by the function of a pump P1. Then a heat source 13 is cooled down and the working fluid in a bellows containers 11 is heated up. Thus the steam pressure is gradually increased and the container 11 is expanded against a spring 33. When an attachment/detachment member 27 has a contact with a heat receiving member 27 by the expansion of the container 11, a substrate 25 and a secondary pipeline 21 are heated up. Then the heat is transmitted to a circulating fluid by the function of a pump P2. The heat is dissipated into the universe space through a heat sink 19. The flexible bellows containers 47 containing attachment/detachment members 45 are attached at both sides of a heat transmission member 41A. The axial core of the container 47 is approximately coincident with the axial core of a hinge 39. The member 45 of the container 47 is always set opposite to a heat receiving member 43A of a substrate 43 regardless of the developing angle of a heat dissipation panel 37 and a main body panel 35.

Description

【発明の詳細な説明】 [発明の技術分野]  1一 本発明は、放熱制御l装同に係り、さらに詳細には、例
えば人工1m星のごとき宇宙飛行体内にて発生した熱の
宇宙空間への放熱を制御する装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] 1. The present invention relates to heat radiation control equipment, and more specifically, to control heat generated within a spacecraft, such as an artificial 1m star, into outer space. The present invention relates to a device for controlling heat radiation.

[発明の技術的背廚1 例えば入■衛星や宇宙基地のごとき宇宙飛行体内で発生
した熱は、放射によって宇宙空間へ放出するのが一般的
である。このように、宇宙空間への熱の放出を行なう場
合、発熱量が比較的小さな宇宙飛行体の場合には、発熱
機器を搭載したパネル表面あるいは宇宙飛行体の表面か
ら熱を宇宙空間へ直接放出する構成で充分である。
[Technical Background of the Invention 1 For example, heat generated within a space vehicle such as a satellite or a space base is generally released into outer space by radiation. In this way, when releasing heat into space, in the case of a spacecraft that generates a relatively small amount of heat, heat is directly released into space from the surface of the panel carrying the heat-generating device or the surface of the spacecraft. A configuration that does this is sufficient.

しかし、発熱量が大ぎな宇宙飛行体においては、放熱効
率を向−卜するために、格別に放熱面を設け、熱源から
放熱面へ熱を伝達する必要がある。このように熱源から
放熱面へ熱を伝達する熱伝達系としては、一般に熱媒体
として流体を使用した循環システムが用いられる。この
流体の循環システムは1つのループ構成とすることもあ
る。しかし、前記放熱面は宇宙空間にさらされており損
6等の=2− 衝突による被°害を受は易いので危険を分散するこては
温所差が大きくな把ことがあり、例えば凍結防止や熱伝
達効率等の観点から、熱源側ど放熱側とでは、流体の種
類を変えることが望ましい等の理由により、流体の循環
システムは複数のループ構成に分割するのが一般的であ
る。
However, in a spacecraft that generates a large amount of heat, in order to improve heat radiation efficiency, it is necessary to provide a special heat radiation surface to transfer heat from the heat source to the heat radiation surface. As a heat transfer system for transferring heat from a heat source to a heat radiation surface, a circulation system using a fluid as a heat medium is generally used. This fluid circulation system may be in a single loop configuration. However, the heat dissipation surface is exposed to space and is easily damaged by collisions, so trowels that disperse danger may have large differences in temperature, such as freezing. From the viewpoint of prevention and heat transfer efficiency, it is desirable to use different types of fluids on the heat source side and the heat radiation side, so it is common to divide the fluid circulation system into a plurality of loop configurations.

上述したように、流体の循環システムを複数のループ構
成に分割した場合、各ループ構成の熱伝達部を接続する
には、ボルト等で締結覆るのが確実でめφ。しかし宇、
宙空間で組立、保守を行う場合には作業性が悪いの、で
、ポル1〜締め等は難しい作業となる。′ したがって従来においては、一方のループ構成の接続部
にダイヤフラム等の可撓部を設()、この可撓部を他方
のループ構成の接続部へ流体圧等により押圧接触する構
成が採られている。この構成においては、別個に加圧装
置等が余分に必要であるという問題がある。また、接続
部にお(プる熱伝達が一定であるので、放熱側の淘撓変
動の影響を受けて熱源側の温石が適正音電範囲から逸+
1!2 すること、のないように、熱源側の流体のルー
プ構成に□  バイパス回路等を設(〕C接続部への流
体の流晶を制御して、放熱側への熱]云達品を制御覆る
(ンI要かあるという問題がある。
As mentioned above, when the fluid circulation system is divided into multiple loop configurations, it is reliable to connect the heat transfer parts of each loop configuration by fastening them with bolts or the like. But U,
When assembling and maintaining in space, work efficiency is poor, so operations such as Pole 1 to tightening are difficult. ' Therefore, conventionally, a flexible part such as a diaphragm is provided at the connection part of one loop structure (), and this flexible part is pressed into contact with the connection part of the other loop structure by fluid pressure, etc. There is. This configuration has a problem in that a separate pressurizing device or the like is additionally required. In addition, since the heat transfer to the connection part is constant, the hot stones on the heat source side will deviate from the appropriate acoustic range due to the influence of fluctuations in the heat radiation side.
1!2 A bypass circuit etc. should be installed in the loop configuration of the fluid on the heat source side to avoid the possibility of There is a problem with whether it is necessary to control the

前述のごとく、格別に放熱面を設(JることにJ、す、
放熱面積を大ぎくすることができh9熱能力を拡大する
ことができる。己かし、例えば人工衛星等においては大
型化を避1〕るために、打−1げ後に宇宙空間において
広がる展開式の放熱面どすることが望ましい。このJ、
うに放熱面を展開式どした、、場合、熱源から放熱面へ
熱を伝達するには、適当なh式がなく、例えばフレキシ
ブル、なバイブを介゛して熱源と九り熱面とを接続し、
上記パイプ内に熱媒体どしての流体を循環させる構成ど
することも可能である。しかしこの場合にはポンプ等が
必要となり、人工衛星等の軒ω化を図る上に(13い−
C問題がある。
As mentioned above, a special heat dissipation surface is provided (J, S,
The heat dissipation area can be greatly increased and the h9 thermal capacity can be expanded. In order to avoid increasing the size of a satellite, for example in an artificial satellite, it is desirable to use a deployable heat dissipating surface that spreads out in space after hitting the ball. This J,
In the case where the heat dissipation surface is a deployable type, there is no suitable H formula to transfer heat from the heat source to the heat dissipation surface, and for example, the heat source and the heat dissipation surface are connected via a flexible vibrator. death,
It is also possible to have a configuration in which a fluid such as a heat medium is circulated within the pipe. However, in this case, pumps, etc. are required, and in addition to trying to increase the eaves of artificial satellites, etc.
There is a problem C.

[発明の目的] 本発明は」ニ)ホのごとき従来の問題に鑑みて発明した
もので、その第1の目的は、熱媒体として流体を用いた
熱源側の熱伝達系と放熱側の熱伝達系との接続を容易に
行なうことができ、かつ放熱側への熱伝達を自動的に調
節し得る放熱制御装置を提供するものである。
[Objective of the Invention] The present invention was invented in view of the conventional problems such as d) and e. It is an object of the present invention to provide a heat radiation control device that can be easily connected to a transfer system and can automatically adjust heat transfer to a heat radiation side.

本発明の第2の目的は、放熱面を展開式とした場合であ
っても熱源から放熱面への熱伝達を容易に行ない得る放
熱制御装置を提供するものである。
A second object of the present invention is to provide a heat radiation control device that can easily transfer heat from a heat source to a heat radiation surface even when the radiation surface is of an expandable type.

[発明の概要コ 本発明は、上述のごどぎ目的を達゛成するために、熱源
側に対向して侑えた熱伝達部材の間に放熱側の受熱部材
を配置し、または放熱側に対向゛して備えた受熱部材□
の間に熱源側の熱伝達部材を配置して設け、作動流体を
封入した伸縮自在な一対゛のベロ−ズ容器の各基部を□
前記熱伝達部材゛に装着し、各ベロー女容器の自由端部
を受熱部材に対し゛接離自在に設けてなるも”のであり
、また、熱源側と放熱側どを枢着した枢軸の軸心とへ[
:l−X容器の軸心とをほぼ一致せしめてなるものであ
る。
[Summary of the Invention] In order to achieve the above-mentioned object, the present invention arranges a heat receiving member on the heat radiation side between the heat transfer members facing the heat source side, or arranges a heat receiving member on the heat radiation side. Heat-receiving members provided oppositely□
A heat transfer member on the heat source side is arranged between the bases of a pair of expandable bellows containers filled with working fluid.
The bellows female container is attached to the heat transfer member, and the free end of each bellows female container is provided so as to be able to come into contact with and separate from the heat receiving member. To the heart [
:l-X The axis of the container is approximately aligned with the axis of the container.

[発明の実施例]″ =4− 以下、図面を用いて本発明の実施例について訂細に説明
J−る。
[Embodiments of the Invention] =4- Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図を参照りるに、放熱制御装置11.J、熱源側3
に設けた熱伝達部5と、放熱側7に備えた受熱部9ど、
熱伝達部5に備えられた伸縮肖イL”41一対のベロー
ズ容器11とより構成されている。
Referring to FIG. 1, the heat radiation control device 11. J, heat source side 3
a heat transfer section 5 provided on the heat radiation side 7, a heat receiving section 9 provided on the heat radiation side 7, etc.
The heat transfer section 5 is comprised of a telescopic container L"41 and a pair of bellows containers 11.

熱源側3は、宇宙飛行体の熱源13に接続した1次配管
15等五りイ1す、この1次配管15内には熱媒体とし
ての適宜の流体がポンプ[)1にJ、り循環さ″れてい
る。この1次配管15には、前配熱伝達部5が段【フら
れている。熱伝達部5どして、本実施例においては、板
状の熱伝達部材17A。
On the heat source side 3, there are five primary pipes 15 connected to the heat source 13 of the spacecraft.In this primary pipe 15, an appropriate fluid as a heat medium is circulated by a pump [1]. This primary pipe 15 is provided with a pre-heat distribution section 5 in stages.The heat transfer section 5 is, in this embodiment, a plate-shaped heat transfer member 17A.

17Bを対向して備えたほぼ()字形状の基板17が設
けられており、この基板17は溶接、ポル1〜等の適宜
の固定手段に」、す、前配置次配管15に一体的に固定
しである。     ゛ 放熱゛側7は、)^宜構成の放熱板19に接続した2次
配管21等よりなり、この2次配管21内には適宜の流
体がポンプP2によって循環され゛でおり、かつこの2
次配管21には前記受熱部9が設りられている。受熱部
9として、本実施例においては、対向した前記熱伝達部
材17A、17[3の中間に配置した板状の受熱部材2
3を一体的に備えてなる丁字形状のK(板25が設(−
]られており、この基板25は適宜の固定手段によって
前記2次配管21に一体的に取+j(ジである。
A substantially ( )-shaped board 17 with 17B facing each other is provided. It is fixed. The heat dissipation side 7 consists of a secondary pipe 21 connected to a heat dissipation plate 19 of an appropriately configured structure, and an appropriate fluid is circulated within this secondary pipe 21 by a pump P2.
The heat receiving section 9 is provided in the next pipe 21 . In this embodiment, the heat receiving portion 9 is a plate-shaped heat receiving member 2 disposed between the opposing heat transfer members 17A and 17[3].
3 is integrally provided with a T-shaped K (plate 25 is installed (-
], and this substrate 25 is integrally attached to the secondary pipe 21 by appropriate fixing means.

−月の前記ベローズ容器11は、適宜の作動流体を密封
して1JjPl、作動流体の熱膨張あるいは内部の蒸気
圧の上昇ににって伸長作動するものであり、各ベローズ
容器11の基部は前記熱伝達部材17△、17Bに固定
しである。各ベローズ容器11の自由端には、前記受熱
部材23に対し接触自在かつ離脱自在な板状の接離部材
27が取付4Jである。この接離部材27の適数箇所に
はブラケッ1〜29が設置)であり、このブラケッ1〜
29と熱伝達部+J17A、17Bに固定したガイド[
]ツラド1との間には、ベローズ容器11を常に収縮せ
しめるべく作用するコイルスプリングのごどき適宜の弾
機33が弾装しである。
- The bellows containers 11 of the moon are sealed with a suitable working fluid and are expanded by thermal expansion of the working fluid or increase in internal vapor pressure, and the base of each bellows container 11 is It is fixed to the heat transfer members 17Δ, 17B. At the free end of each bellows container 11, a plate-shaped connecting/separating member 27 is attached 4J, which can freely contact and detach from the heat receiving member 23. Brackets 1 to 29 are installed at an appropriate number of locations on this contact/separation member 27).
29 and heat transfer part + guide fixed to J17A, 17B [
] A suitable ammunition device 33 such as a coil spring is installed between the bellows container 11 and the bellows container 11 to constantly contract it.

なお、詳細な図示は省略するけれども、ベローズ容器1
1内には、熱伝達部(A17△、17.13から接N1
部祠27へ熱を効率よく伝達する適宜の手段が講じられ
ているものである。すなわち、例λばベローズ容器11
の単品側と接離部材27とに互に賄動自在に面接触した
複数の1ぺ熱プレートを備えlこ構成とか、あるいはベ
ローズ容器11内をヒートパイプ化覆るなど、種々の構
成とすることが可能である。
Although detailed illustrations are omitted, the bellows container 1
1 has a heat transfer part (A17△, 17.13 to contact N1
Appropriate measures are taken to efficiently transfer heat to the shrine 27. That is, for example λ, the bellows container 11
The bellows container 11 may be configured in various ways, such as by having a plurality of heat plates in surface contact with each other and the contacting/separating member 27 in a movable manner, or by covering the inside of the bellows container 11 with a heat pipe. is possible.

以上のごとき構成において、ポンプP1の作用にJ:つ
て熱源13ど1次配管15とに熱媒体としての流体を循
環すると、熱源13の熱が流体へ伝達され、熱源13は
冷却されることとなる。上記流体の熱は、1次配艙15
から熱伝達部5における基板17の熱伝達部材17△、
17Bへ1云達される。したがって、へ11−ス容器1
1内の作φ々流体が加熱され、べ[−1−ス容器11内
の蒸ネ圧が次第に十’it Iハベ[]−ス容!11は
弾1″3:33に抗して伸長されることとなる。この場
合、べ1−1−ス容器11の自由端に設(jられIこ接
離部材27のKl aは、べ11−ズ容器11内の蒸気
圧と弾Ijl! 33の浩勢力とが均衡する条件によっ
て定まる。
In the above configuration, when the fluid as a heat medium is circulated between the heat source 13 and the primary pipe 15 due to the action of the pump P1, the heat of the heat source 13 is transferred to the fluid, and the heat source 13 is cooled. Become. The heat of the above fluid is transferred to the primary compartment 15
from the heat transfer member 17Δ of the substrate 17 in the heat transfer section 5,
One message was sent to 17B. Therefore, 11-space container 1
The fluid in the base container 11 is heated, and the steam pressure in the base container 11 gradually increases to 10'. 11 is extended against the bullet 1''3:33. In this case, Kla of the contact/separation member 27 provided at the free end of the base container 11 is It is determined by the condition that the vapor pressure in the 11-z container 11 and the horizontal force of the bullet Ijl! 33 are balanced.

ベローズ容器11の伸長により接離部材27が受熱部9
の受熱部材23に接触すると、熱伝達部5から受熱部9
への熱の伝達が行なわれ、受熱部9の基板25および2
次配管21が加熱される。
Due to the extension of the bellows container 11, the contact/separation member 27 moves to the heat receiving part 9.
When it comes into contact with the heat receiving member 23 of
The heat is transferred to the substrates 25 and 2 of the heat receiving section 9.
Next, the pipe 21 is heated.

したがって、ポンプP2の作用によって放熱板19.2
次配管21内を循環されている流体に熱伝達が行なわれ
、放熱板19において宇宙空間への放熱が行なわれる。
Therefore, due to the action of pump P2, heat sink 19.2
Heat is transferred to the fluid circulating in the piping 21, and the heat is radiated to outer space at the heat radiating plate 19.

上述のごとき熱伝達が行なわれ、かつ放熱板19におい
て放熱が行なわれることによって冷却されると、ベロー
ズ容器11内の蒸気圧が減少し、弾機33の作用によっ
てベローズ容器11は収縮される。したがって接離部0
27が受熱部9の受熱部材23から離+1t2 L、、
熱源側3がら放熱側7への熱の伝達が遮断される。よっ
て熱源側3が過冷却されるようなことはなく、常に最適
の湿度範囲に維持されることとなる。
When the above-described heat transfer is performed and the bellows container 11 is cooled by being radiated by the heat sink 19, the vapor pressure inside the bellows container 11 decreases, and the bellows container 11 is contracted by the action of the elastic machine 33. Therefore, contact/separation part 0
27 is separated from the heat receiving member 23 of the heat receiving part 9 +1t2 L,,
Transfer of heat from the heat source side 3 to the heat radiation side 7 is blocked. Therefore, the heat source side 3 will not be overcooled and will always be maintained within the optimum humidity range.

この実施例においては、熱源側3に備えた一対のベロー
ズ容器110自山端の間に、放熱側7に=8− 備えた受熱部材23を位置けしめるだI)F J、 <
、組立が簡単になり、宇宙空間での作業性か向−1= 
−vることとなる。
In this embodiment, the heat receiving member 23 provided on the heat radiation side 7 is positioned between the ends of the pair of bellows containers 110 provided on the heat source side 3.
, easier assembly and improved workability in space -1=
-v.

第2図は第2実施例を示すもので、この実施例において
は、熱源側3の基板17を4角形状の枠体に形成し、こ
のWiN17の両側部に1次配管15が配置しである。
FIG. 2 shows a second embodiment. In this embodiment, the substrate 17 on the heat source side 3 is formed into a rectangular frame, and the primary pipes 15 are arranged on both sides of this WiN 17. be.

上記基板17の中央部には、1恣配管15ど直交する方
向に第2次配管21が配置してあり、この第2次配管2
1には4角形状の受熱部+A23が取イ]【ノーCある
。そして、基板17の内面の4箇所には、接gil1部
(A27が受熱部材23と対向したべ[1−ズ容器11
が装着しである。
In the center of the substrate 17, a secondary pipe 21 is arranged in a direction perpendicular to the first arbitrary pipe 15.
1 has a rectangular heat receiving part + A23] [No C is included. At four locations on the inner surface of the substrate 17, a contact portion (A27 facing the heat receiving member 23)
is installed.

第3図は第0実施例を示すもので、1次配管15の長手
方向に対して直交する方向へベローズ容器11が伸縮作
動する態様でもって、1次配管15の長手方向へ基板1
7を複数配置した構成を示している。このように基板1
7を複数配置することにJ:す、熱源13の発熱ωが人
ぎい場合に対応できるものである。
FIG. 3 shows the 0th embodiment, in which the bellows container 11 expands and contracts in a direction perpendicular to the longitudinal direction of the primary pipe 15, and the substrate 1 moves in the longitudinal direction of the primary pipe 15.
7 is shown. In this way, the board 1
By arranging a plurality of heat sources 7, it is possible to cope with cases where the heat generation ω of the heat source 13 is large.

第4図は、第4実施例を示すbので、1次配管15の長
手方向ヘベローズ容器11が伸縮作動する態様でもって
、1次配管15の長手方向へ基板17を延設した構成を
示している。
FIG. 4b shows a fourth embodiment, and therefore shows a structure in which the base plate 17 is extended in the longitudinal direction of the primary pipe 15 in such a manner that the heavelows container 11 expands and contracts in the longitudinal direction of the primary pipe 15. There is.

第5図は、熱源側3の本体パネル35に対して放熱側7
の放熱パネル37をヒンジピン39を介して展開自在に
枢着した場合を例示するものである。この実施例におい
ては、本体パネル35に取イ」けた基板41の熱伝達部
材4.1 Aと放熱パネル37に取付けIj 11板4
3の受熱部材43Aとを交互に配置し、上記熱伝達部U
41Aの両側部に接頗部月45を備えた伸縮自在なベロ
ーズ容器47を装着してなるものである。上記ベローズ
容器47の軸心は、前記ヒンジピン39の軸心とほぼ一
致しである。
FIG. 5 shows the heat radiation side 7 with respect to the main body panel 35 on the heat source side 3.
The heat dissipation panel 37 is pivotally attached via a hinge pin 39 so as to be expandable. In this embodiment, the heat transfer member 4.1 A of the substrate 41 is attached to the main body panel 35 and the Ij 11 plate 4 is attached to the heat dissipation panel 37.
The heat receiving members 43A of No. 3 are arranged alternately, and the heat transfer portion U
A telescopic bellows container 47 equipped with a jaw joint 45 is attached to both sides of the container 41A. The axis of the bellows container 47 substantially coincides with the axis of the hinge pin 39.

したがってこの実施例においては、本体パネル35に対
する放熱パネル37の展開角度の如何にも拘らず、ベロ
ーズ容器47の接離部材45と基板43の受熱部材43
Aとは常に対面した状態にある。ために、放熱パネル3
7の展開が仮りに充分でない場合であっても、本体パネ
ル35側から敢然パネル37側への熱の伝達′1M1l
l′iが61r′実に行なわれ1!する。
Therefore, in this embodiment, regardless of the unfolding angle of the heat radiation panel 37 with respect to the main body panel 35, the contact/separation member 45 of the bellows container 47 and the heat receiving member 43 of the substrate 43
He is always facing A. Therefore, heat dissipation panel 3
Even if the development of 7 is not sufficient, heat transfer from the main body panel 35 side to the panel 37 side '1M1l
l'i is actually done in 61r' 1! do.

第6図、第7図は、本体パネル35おJ、び敢然パネル
37を共にハニカム構j告どイイし、か゛つl\[1−
ズ容器47を装着した熱伝達部材49および受熱部材5
1をそれぞれヒー(・パイプとした場合を例示1−るも
のである。この実施例においては、熱源に適宜に接続し
た中継用ヒートパイプ53を本体パネル35に1iQI
〕C1熱源から熱伝達部4449への熱伝達率を向上「
しめている。まIこ、放熱パネル37には前記受熱部材
51からの熱を拡VIIづるための拡散用ヒートパイプ
55を設【Jて、熱放出の効率を向上せしめている。こ
の実施例においても前述の実施例と同様の効果を奏する
ものである。
Figures 6 and 7 show that both the main body panel 35 and the bold panel 37 have a honeycomb structure.
The heat transfer member 49 and the heat receiving member 5 equipped with the gas container 47
1 is an example in which 1 is a heat pipe. In this embodiment, a relay heat pipe 53 connected to a heat source as appropriate is connected to the main body panel 35 with 1iQI.
] Improving the heat transfer coefficient from the C1 heat source to the heat transfer part 4449
It's tight. Furthermore, the heat dissipation panel 37 is provided with a diffusion heat pipe 55 for spreading the heat from the heat receiving member 51 to improve heat dissipation efficiency. This embodiment also provides the same effects as the previously described embodiment.

第8図、第9図は、さらに別の実施例を示すものである
。この実施例においては、本体パネル35の内外両側面
に、ヒートパイプよりなる熱伝達部材49A、’L9B
を配置し、かつ本体パネル35内にも中継用ヒー1へパ
イプ53A、53Bが2重に配置しである。使方、ヒー
トパイプよりなり放熱パネル37に設()られた受熱部
材51はほぼU字形に屈曲してあり、この受熱部材51
が熱伝達部材49A、 1I9Bの間に臨んだ部分の軸
心はヒンジピン39の軸心と一致しである。そして、熱
伝達部材49A、49Bに装着したベローズ容器47の
接離部材45が受熱部材51ど接触する部分は、受熱部
材51の外形に対応する形状(本実施例においては円弧
状)に形成しである。
FIGS. 8 and 9 show still another embodiment. In this embodiment, heat transfer members 49A and 'L9B made of heat pipes are provided on both the inner and outer sides of the main body panel 35.
, and pipes 53A and 53B to the relay heater 1 are also arranged in the main body panel 35 in duplicate. How to use: The heat receiving member 51, which is made of a heat pipe and installed on the heat dissipation panel 37, is bent into a substantially U-shape.
The axis of the portion facing between the heat transfer members 49A and 1I9B coincides with the axis of the hinge pin 39. The portion where the contact/separation member 45 of the bellows container 47 attached to the heat transfer members 49A, 49B contacts the heat receiving member 51 is formed into a shape corresponding to the outer shape of the heat receiving member 51 (in this embodiment, an arc shape). It is.

この実施例においても前述の実施例と同様の効果を秦づ
るものである。
This embodiment also achieves the same effects as the previously described embodiment.

[発明の効果] 以上のごとき実施例の説明より理解されるように、本発
明にJ:れば、熱源側の熱伝達系と放熱側の熱伝達系と
の接続を容易に行なうことができると共に、熱源側から
放熱側への熱伝達を自動的に調節し得るものである。ま
た、熱源側に対して放熱側を展開自在に接続した構成で
あっても、熱源側から放熱側への熱伝達を容易に行ない
得る。
[Effects of the Invention] As can be understood from the description of the embodiments above, the present invention allows easy connection between the heat transfer system on the heat source side and the heat transfer system on the heat radiation side. At the same time, the heat transfer from the heat source side to the heat radiation side can be automatically adjusted. Further, even in a configuration in which the heat radiation side is expandably connected to the heat source side, heat can be easily transferred from the heat source side to the heat radiation side.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すしので、第1図は放熱制御
装置の第1実施例を示J正百図、第2図は第2実施例を
示す正面図、第3図、第4図はぞれぞれ仙の実施例を示
す斜視図、第5図は熱源側と放熱側とを展開自在に接続
した場合を示t iF面図、第6図は他の実施例の正面
図、第7図は第6図にお(プるVU−■線に沿った断面
図、第8図はさらに別の実施例を示(J正面図、第9図
は第8図におりるIX −IX線に治った断面図である
The drawings show embodiments of the present invention, so FIG. 1 shows the first embodiment of the heat radiation control device, FIG. 2 is a front view of the second embodiment, and FIGS. Each figure is a perspective view showing an embodiment of the present invention, Fig. 5 is a t iF side view showing the case where the heat source side and the heat radiation side are connected in a freely deployable manner, and Fig. 6 is a front view of another embodiment. , FIG. 7 is a sectional view taken along the VU-■ line shown in FIG. 6, FIG. 8 is a front view of another embodiment, and FIG. - It is a cross-sectional view taken by IX-ray.

Claims (2)

【特許請求の範囲】[Claims] (1)熱源側に対向して備えた熱伝達部材の間に放熱側
の受熱部材を配置し、または放熱側に対向して備えた受
熱部材の間に熱源側の熱伝達部材を配置して設け、作動
流体を封入した伸縮自在な一対のベローズ容器の各基部
を前記熱伝達部材に装着して設け、各ベローズ容器の自
由端部を前記受熱部材に対して接離自在に設けてなるこ
とを特徴とする放熱制御装置。
(1) A heat receiving member on the heat radiation side is arranged between heat transfer members provided facing the heat source side, or a heat transfer member on the heat source side is arranged between heat receiving members provided facing the heat radiation side. a pair of expandable and retractable bellows containers filled with a working fluid, the bases of which are attached to the heat transfer member, and the free end of each bellows container is provided so as to be freely movable toward and away from the heat receiving member; A heat radiation control device featuring:
(2)熱源側と放熱側とをヒンジピンを介して回動自在
に枢着して設け、上記ヒンジピンの軸心とベローズ容器
の軸心をほぼ一致せしめてなることを特徴とする特許請
求の範囲第1項に記載の放熱制御装置。
(2) The heat source side and the heat radiation side are rotatably connected via a hinge pin, and the axis of the hinge pin and the axis of the bellows container are substantially aligned. The heat radiation control device according to item 1.
JP18244584A 1984-08-31 1984-08-31 Heat dissipation controller Pending JPS6160109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18244584A JPS6160109A (en) 1984-08-31 1984-08-31 Heat dissipation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18244584A JPS6160109A (en) 1984-08-31 1984-08-31 Heat dissipation controller

Publications (1)

Publication Number Publication Date
JPS6160109A true JPS6160109A (en) 1986-03-27

Family

ID=16118388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18244584A Pending JPS6160109A (en) 1984-08-31 1984-08-31 Heat dissipation controller

Country Status (1)

Country Link
JP (1) JPS6160109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610304U (en) * 1991-11-06 1994-02-08 和江 三木 Sweat pad to put under the arm
JP2008164377A (en) * 2006-12-27 2008-07-17 Univ Of Fukui Wear gauge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610304U (en) * 1991-11-06 1994-02-08 和江 三木 Sweat pad to put under the arm
JP2008164377A (en) * 2006-12-27 2008-07-17 Univ Of Fukui Wear gauge

Similar Documents

Publication Publication Date Title
EP0780301B1 (en) A heat transport system for spacecraft integration
EP0776827B1 (en) Heat pipe network
US7028953B2 (en) Two-sided deployable thermal radiator system and method
US4832113A (en) Survivable pulse power space radiator
US7118076B2 (en) Satellite comprising means for transferring heat from a shelf supporting equipment to radiator panels
JP2008222210A (en) Thermal control device on board spacecraft
US9889951B1 (en) Spacecraft east-west radiator assembly
KR100411440B1 (en) Heat Pipe Network Integrated Structure Panel
US10165707B1 (en) Device and method for providing immersion cooling in a compact-format circuit card environment
KR20180114933A (en) Heat dissipation device using heat pipe panel
JPH01210799A (en) Heat exchanger
ITRM980164A1 (en) SYSTEM AND PROCEDURE FOR ACTIVE THERMAL CONTROL OF SPACE VEHICLES
US20210318074A1 (en) Heat transfer assemblies with compliant heat pipes
US6854510B2 (en) Spacecraft radiator system and method using cross-coupled deployable thermal radiators
US5634612A (en) Earth orbiting satellite having electrical energy storage batteries
US4676300A (en) Heat radiation control device
JPH0752899A (en) Cooler of satellite
US20020139512A1 (en) Spacecraft radiator system and method using east west coupled radiators
JPS6160109A (en) Heat dissipation controller
GB2365105A (en) Spacecraft radiator system using a heat pump
RU130299U1 (en) HEATING REGIME SYSTEM FOR PRECISION SPACE VEHICLES
US20060146497A1 (en) Heat exchanger for memory modules
Grob System accommodation of propylene loop heat pipes for the geoscience laser altimeter system (GLAS) instrument
KR20110014856A (en) Thermal control structure of geostationary satellite
US6591899B1 (en) Spacecraft multi-directional loop heat pipe thermal systems