[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6160697B2 - - Google Patents

Info

Publication number
JPS6160697B2
JPS6160697B2 JP56147771A JP14777181A JPS6160697B2 JP S6160697 B2 JPS6160697 B2 JP S6160697B2 JP 56147771 A JP56147771 A JP 56147771A JP 14777181 A JP14777181 A JP 14777181A JP S6160697 B2 JPS6160697 B2 JP S6160697B2
Authority
JP
Japan
Prior art keywords
zirconia
sintered body
mol
tetragonal
medical instruments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56147771A
Other languages
Japanese (ja)
Other versions
JPS5850946A (en
Inventor
Yoshiki Masaki
Keisuke Kobayashi
Masaru Shimono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP56147771A priority Critical patent/JPS5850946A/en
Publication of JPS5850946A publication Critical patent/JPS5850946A/en
Publication of JPS6160697B2 publication Critical patent/JPS6160697B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surgical Instruments (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、医師が診断や治療の目的で使用す
るのに好適な医用器具に関する。 従来の技術 メス、はさみ、鉗子、ピンセツトなどの医用器
具は、従来、炭素鋼、メツキを施した炭素鋼、プ
ラスチツク、ステンレス鋼などで作られている。 ところで、医用器具においては、たとえば同じ
はさみではあつても、他の用途に供されるそれと
は著しく異なる特性が要求されている。すなわ
ち、 A 初期の切れ味がよく、しかも使用中における
切れ味の低下が極力少ないこと(メスやはさみ
などの刀類の場合)、 B 熱湯や蒸気などによる高温かつ長時間の消毒
にも十分耐えること、 C 血液や薬品などが接触あるいは付着しても変
質しないこと、 D 容易に清浄化できること、 といつたことが要求されている。人体に対して無
害である必要があることはいうまでもない。しか
しながら、上記従来の医用器具にはいずれも一長
一短がある。 すなわち、炭素鋼製のメスやはさみは、初期の
切れ味がよく、しかも使用中における切れ味の低
下も比較的少ないので、上記Aの特性は一応満足
している。しかしながら、他の特性については十
分であるとはいえない。すなわち、熱湯や蒸気に
よる消毒を長時間行うと、焼戻し作用によつて切
れ味が大きく低下してしまう。かといつて、短時
間の消毒では効果に疑問があり、再使用するには
疫学面から不安である。そのため、現状は、その
まま使い捨てるか、あるいは把手部と刀部とを着
脱自在に構成しておき、把手部は消毒して再使用
するが、刀部は使い捨てるようにしている。ま
た、炭素鋼製の医用器具は、熱湯や蒸気による消
毒を行なつたり、血液や薬品などが接触あるいは
付着すると錆びてくるという問題がある。さら
に、血液や薬品などが付着しやすいうえに、それ
らを取り除きにくいという問題もある。特に、鉗
子やピンセツトなど、ぎざぎざに加工された滑り
防止部を有するような医用器具の清浄作業はなか
なか厄介で、看護婦泣かせのひとつになつてい
る。 一方、ステンレス鋼製の医用器具は、錆を発生
せず、しかも清浄化が比較的容易であるという長
所がある。しかしながら、初期の切れ味は大きく
劣り、また高温での消毒を繰り返し行なうと徐々
に弾性が失われてくるので、良好な切れ味が要求
されるメス、はさみなどの刀類や、弾力を利用し
ている鉗子やピンセツトなどは、上記特性A、B
の点で問題がある。 さらに、メツキを施した炭素鋼からなる医用器
具も、やはり初期の切れ味が悪い。また、医用器
具同士の擦過や消毒などによつてメツキが剥がれ
やすいが、そうなると上述した炭素鋼製の医用器
具と同様の問題を生ずるようになる。 また、プラスチツク製医用器具は、決して錆び
ないという点では大変有利であるが、その性質上
刀類などには向かず、また剛性や靭性にも劣つて
いるので、使い捨て専用の注射器など、極く一部
のものに使用されているにすぎない。 発明が解決しようとする問題点 この発明の目的は、従来の医用器具の上記欠点
を解決し、上述した特性A〜Dのすべてを備えて
いる医用器具を提供するにある。 問題点を解決するための手段 上記目的を達成するためのこの発明は、正方晶
系の結晶構造をもつジルコニアを少なくとも50モ
ル%含み、かつ立方晶系の結晶構造をもつジルコ
ニアが10モル%以下であるジルコニア焼結体から
なる医用器具を特徴とするものである。 本発明において医用器具とは、いろいろな診療
科で使用されるものの総称で、具体的には、たと
えば、メスと呼ばれる刀類(切断力、尖刃刀、彎
刀など)、剪刀類(直剪刀、彎剪刀などの、いわ
ゆるはさみ)、鉗子(止血用鉗子、各種臓器用鉗
子など)、各種ピンセツト、各種鈎、各種縫合
針、各種ノミ、糸誘導器、各種鋸、持針器、各種
ヤスリ、各種鑷子、舌圧子、はく離子などであ
る。 この発明をさらに詳細に説明するに、この発明
の医用器具は、その全部、または一部(たとえ
ば、把手部と刃部とを着脱自在に別々に構成した
ものにおいてその刃部)がジルコニア焼結体から
なつている。 上記ジルコニア焼結体は、機械的強度の高い医
用器具を得ることができることから、正方晶系の
結晶構造をもつジルコニア(正方晶ジルコニア)
のみからなるものであるか、または正方晶ジルコ
ニアと単斜晶系の結晶構造をもつジルコニア(単
斜晶ジルコニア)とが共存していて、しかも正方
晶ジルコニアの量が全体に対して50モル%以上で
あり、かつ立方晶系の結晶構造をもつジルコニア
(立方晶ジルコニア)が10モル%以下のものであ
る。すなわち、この発明で使用するジルコニア焼
結体は、正方晶ジルコニアを少なくとも50モル%
含み、かつ立方晶ジルコニアが10モル%以下であ
るものであるということができる。しかして、焼
結体中の正方晶ジルコニアの量は、後述する原料
粉末の純度、粒径、組成や、焼結温度や時間、焼
結後の冷却条件など、さまざまな条件に左右され
る。したがつて、製造にあたつてはこれらの条件
を厳密に制御し、上述したように正方晶ジルコニ
アが少なくとも50モル%であるジルコニア焼結体
が得られるようにする。少なくとも50モル%の正
方晶ジルコニアを含むジルコニア焼結体を使用す
るのは、次のような理由による。 すなわち、ジルコニア焼結体中の正方晶ジルコ
ニアは、焼結体が応力を受けたときに正方晶ジル
コニアが単斜晶ジルコニアに変態する、いわゆる
応力誘起変態機構をもち、その変態に必要なエネ
ルギーが加わつた応力を緩和するように作用して
焼結体の機械的強度を向上させるが、50モル%も
の大量の正方晶ジルコニアが含まれているとかか
る応力誘起変態機構が十分に働き、機械的強度が
大きく向上するのである。機械的強度が向上する
ということは、靭性や耐摩擦性が向上するという
ことでもある。50モル%に満たない場合は、たと
え高い強度を発現させることはできても、靭性が
不足し、刃立加工時に刃先に大量の欠け(チツピ
ング)を生じたり、また大きな欠けができるなど
して、上述した特性の低下、特に初期の切れ味の
低下をもたらし、この発明が目的とする医用器具
を得ることができなくなる。 また、単斜晶ジルコニアが存在しているという
ことは、その周囲または近傍に正方晶系から単斜
晶系への結晶構造の変態に伴うマイクロクラツク
を生じているということであり、焼結体が機械的
または熱的衝撃によるクラツクを発生した場合に
そのクラツクの伝播がマイクロクラツクによつて
妨害され、曲がりくねつた経路をたどるようにな
るので、機械的強度のみならず熱衝撃強度も高く
なる。 これに対して、立方晶ジルコニアは、正方晶ジ
ルコニアや単斜晶ジルコニアがもつている上述し
たような機能を全く有しない。そればかりか、立
方晶ジルコニアが含まれているということは、そ
の分だけ正方晶ジルコニアや単斜晶ジルコニアの
量が少なくなつているということであり、その少
なくなつた分だけ機械的強度や熱衝撃強度の向上
効果が低減される。それゆえ、この発明において
は、立方晶ジルコニアを10モル%以下に制限して
いる。 また、この発明で使用するジルコニア焼結体は
0.5〜5μmの平均粒子径を有するものであるの
が好ましい。すなわち、平均粒子径が0.5μm未
満であつても、また5μを越えても機械的強度の
低下傾向が現れてくるので、いずれの場合も好ま
しくない。 上記のようなジルコニア焼結体は、ジルコニア
にイツトリア、カルシア、マグネシアなどの安定
化剤を固溶させることによつて得ることができ
る。なかでも、比較的低温での焼結が可能である
ために結晶粒子径を小さくすることができ、結晶
を緻密にできてより一層高い機械的強度の焼結体
を得ることができることから、イツトリアやカル
シアを用いるのが好ましい。その場合、イツトリ
アにあつては全体に対して1〜5モル%程度固溶
させればよく、カルシアにあつては1〜6モル%
程度固溶させればよい。もちろん、イツトリアと
カルシアとを併用することもできる。 この発明の医用器具は、たとえば次のようにし
て製造する。 すなわち、まずジルコニア粉末とイツトリア粉
末、またはジルコニア粉末とイツトリア粉末とカ
ルシア粉末とを所望の割合で混合し、次いでこれ
を800〜1100℃で仮焼した後粉砕する。必要に応
じてかかる仮焼、粉砕を繰り返し行い、原料粉末
を得る。 次に、上記原料粉末をラバープレス法、金型成
形法などの周知の成形法を用いて所望の医用器具
の形に成形し、成形体を得る。 次に、上記成形体を20〜100℃/時の昇温速度
で1500〜1650℃まで加熱し、その温度に数時間保
持した後20〜180℃/時の速度で800℃程度まで冷
却し、さらに室温まで冷却して焼結する。 このようにして得た、医用器具の形状をしたジ
ルコニア焼結体の表面を光学研磨して、血液や薬
品などが付着しにくいように、またたとえ付着し
ても容易に清浄化できるようにする。さらに、刃
付加工などを行なう必要のある医用器具にあつて
は、ホーニング加工やラツピング加工によつて刃
立てをする。 次に、実施例に基いてこの発明をさらに詳細に
説明する。 実施例 表に示す5種類のジルコニア焼結体を製造する
ため、純度が99.9%であるジルコニア粉末とイツ
トリア粉末とをイツトリアの量が表に示す値にな
るように混合し、次いでこれを900℃で2時間仮
焼した後ウレタンを内張りしたボールミルで湿式
粉砕し、さらに仮焼を繰り返し、平均粒子径が
0.1μmである原料粉末を得た。 次に、上記原料粉末をラバープレス法を用いて
成形し、板状の成形体を得た。成形圧力は、2000
Kg/cm2とした。 次に、上記成形体を加熱炉に入れ、900℃まで
は50℃/時の速度で、それから上は30℃/時の速
度で昇温し、表に示す条件で焼結し、さらに冷却
して5種類のジルコニア焼結体を得た。 次に、上記各焼結体について、正方晶ジルコニ
アの量と立方晶ジルコニアの量とを求めた。ま
た、曲げ強度と破壊靭性を測定した。曲げ強度の
測定は、JIS R1601によつた。また、破壊靭性の
測定はMI法(微小圧子圧入法)によつた。この
方法は、焼結体の表面に荷重20Kgでビツカース圧
痕を入れ、そのとき発生する亀裂の長さを測定
し、新原の式から計算により求めるものである。
測定結果を表に示す。 次に、上記5種類のジルコニア焼結体を使用し
て医用器具を作り、刃先の欠けと、耐消毒性と、
切れ味および耐付着性と、耐久性とを調べた。刃
先の欠けは、焼結体を幅20mm、長さ70mm、厚さ
0.25mmに切り出し、研磨して仕上げた後、#600
から#3000までのダイヤモンド砥石で20゜の刃先
角をもつ刃を付けて外科手術用のミクロトームを
作り、刃先を光学顕微鏡で観察し、欠けの長さの
最大値の平均値Lと、深さの最大値の平均値Dと
を測定することによつて求めた。n数は5とし
た。また、耐消毒性は、焼結体を使用して幅20
mm、長さ20mm、厚さ3mm、刃先角60゜の刃を作
り、これを蒸気減菌器に入れて温度120℃、圧力
1.2気圧の下に保持し、刃に刃先とほぼ平行に延
びる亀裂ができるまでの時間で評価した。さら
に、切れ味と耐付着性は、上述したミクロトーム
でうさぎの組織を切断し、10回切断後における刃
先の欠けの大きさと、刃先と刃面への血液たんぱ
くの付着状態からよい順に〇、△、×印でランク
付けすることによつて評価した。さらにまた、耐
久性は上記焼結体で刃長15mm、厚み0.3mm、刃先
角15゜の微細手術用メスを作り、これでいかの神
経を切断し、神経が切れなくなるまでの切断回数
で評価した。測定結果を表に示す。
INDUSTRIAL APPLICATION FIELD This invention relates to a medical instrument suitable for use by a doctor for the purpose of diagnosis or treatment. BACKGROUND OF THE INVENTION Medical instruments such as scalpels, scissors, forceps, and tweezers have traditionally been made of carbon steel, plated carbon steel, plastic, stainless steel, and the like. Incidentally, medical instruments require characteristics that are significantly different from those used for other purposes, even if the scissors are the same. In other words, A. It has good initial sharpness and minimal loss of sharpness during use (for knives such as scalpels and scissors); B. It can withstand high temperature and long-term sterilization using boiling water or steam. C. It must not change in quality even if it comes into contact with or adheres to blood or chemicals, and D. It must be easy to clean. Needless to say, it must be harmless to the human body. However, all of the above conventional medical instruments have advantages and disadvantages. That is, carbon steel scalpels and scissors have good initial sharpness, and the sharpness decreases relatively little during use, so characteristic A above is satisfied to some extent. However, other characteristics cannot be said to be sufficient. That is, if sterilization with boiling water or steam is performed for a long time, the sharpness will be greatly reduced due to the tempering effect. However, the effectiveness of disinfecting for a short period of time is questionable, and there are concerns from an epidemiological standpoint about reusing it. Therefore, at present, the sword is either disposable as is, or the handle and the sword are configured to be detachable, and the handle is sterilized and reused, but the sword is disposable. Furthermore, medical instruments made of carbon steel have the problem of rusting when sterilized with boiling water or steam, or when they come into contact with or adhere to blood, chemicals, or the like. Furthermore, there is the problem that blood, chemicals, etc. tend to adhere to them, and it is difficult to remove them. In particular, cleaning medical instruments such as forceps and tweezers that have jagged anti-slip parts is quite troublesome and is one of the things that makes nurses cry. On the other hand, medical instruments made of stainless steel have the advantage of not rusting and being relatively easy to clean. However, the initial sharpness is significantly inferior, and repeated sterilization at high temperatures gradually loses elasticity. Forceps, tweezers, etc. have the above characteristics A and B.
There is a problem with this. Furthermore, medical instruments made of plated carbon steel also have poor initial sharpness. In addition, the plating tends to peel off due to rubbing between medical instruments or disinfection, but if this happens, problems similar to those of the above-mentioned carbon steel medical instruments will occur. In addition, medical instruments made of plastic have the great advantage of never rusting, but their nature makes them unsuitable for use with swords, etc., and they also have poor rigidity and toughness, so they are extremely difficult to use, such as disposable syringes. It is only used for some things. Problems to be Solved by the Invention An object of the present invention is to solve the above-mentioned drawbacks of conventional medical instruments and to provide a medical instrument having all of the above-mentioned characteristics A to D. Means for Solving the Problems This invention to achieve the above object contains at least 50 mol% of zirconia with a tetragonal crystal structure, and 10 mol% or less of zirconia with a cubic crystal structure. The invention is characterized by a medical device made of a zirconia sintered body. In the present invention, medical instruments are a general term for those used in various medical departments, and specifically include knives called scalpels (cutting power, pointed knives, curved knives, etc.), scissors (straight scissors, etc.) , scissors such as scissors), forceps (forceps for hemostasis, forceps for various organs, etc.), various forceps, various hooks, various suture needles, various chisels, thread guides, various saws, needle holders, various files, These include various forceps, tongue depressors, and peelers. To explain this invention in more detail, the medical instrument of the present invention has all or a part (for example, the blade part in a case where the handle part and the blade part are configured separately and detachably) made of zirconia sintered material. It starts from the body. The above-mentioned zirconia sintered body is made of zirconia with a tetragonal crystal structure (tetragonal zirconia) because it is possible to obtain medical instruments with high mechanical strength.
Or, tetragonal zirconia and zirconia with a monoclinic crystal structure (monoclinic zirconia) coexist, and the amount of tetragonal zirconia is 50 mol% of the total. In addition, the amount of zirconia having a cubic crystal structure (cubic zirconia) is 10 mol% or less. That is, the zirconia sintered body used in this invention contains at least 50 mol% of tetragonal zirconia.
It can be said that it contains cubic zirconia in an amount of 10 mol% or less. Therefore, the amount of tetragonal zirconia in the sintered body depends on various conditions such as the purity, particle size, and composition of the raw material powder, the sintering temperature and time, and the cooling conditions after sintering, which will be described later. Therefore, during production, these conditions are strictly controlled so as to obtain a zirconia sintered body containing at least 50 mol % of tetragonal zirconia as described above. The reason for using a zirconia sintered body containing at least 50 mol% of tetragonal zirconia is as follows. In other words, the tetragonal zirconia in the zirconia sintered body has a so-called stress-induced transformation mechanism in which the tetragonal zirconia transforms into monoclinic zirconia when the sintered body is subjected to stress, and the energy required for this transformation is It acts to relieve the applied stress and improves the mechanical strength of the sintered body, but when it contains as much as 50 mol% of tetragonal zirconia, the stress-induced transformation mechanism works sufficiently and the mechanical strength of the sintered body increases. The strength is greatly improved. Improving mechanical strength also means improving toughness and abrasion resistance. If it is less than 50 mol%, even if high strength can be developed, the toughness will be insufficient and a large amount of chipping will occur on the cutting edge during sharpening, or large chips will be formed. This results in a decrease in the above-mentioned properties, particularly a decrease in initial sharpness, making it impossible to obtain the medical instrument aimed at by the present invention. In addition, the presence of monoclinic zirconia means that microcracks have occurred around or near it due to the transformation of the crystal structure from tetragonal to monoclinic. When the body generates a crack due to mechanical or thermal shock, the propagation of the crack is obstructed by microcracks and follows a tortuous path, which increases not only mechanical strength but also thermal shock strength. It gets expensive. On the other hand, cubic zirconia does not have any of the above-mentioned functions that tetragonal zirconia and monoclinic zirconia have. Moreover, the inclusion of cubic zirconia means that the amount of tetragonal zirconia and monoclinic zirconia is reduced, and the mechanical strength and heat The effect of improving impact strength is reduced. Therefore, in this invention, cubic zirconia is limited to 10 mol% or less. Furthermore, the zirconia sintered body used in this invention is
It is preferable that the particles have an average particle diameter of 0.5 to 5 μm. That is, even if the average particle diameter is less than 0.5 μm, and even if it exceeds 5 μm, the mechanical strength tends to decrease, so either case is not preferable. The zirconia sintered body as described above can be obtained by dissolving a stabilizer such as yttria, calcia, magnesia, etc. in zirconia. Among them, itria is suitable for use because it can be sintered at a relatively low temperature, making it possible to reduce the crystal grain size, making the crystals denser, and producing a sintered body with even higher mechanical strength. It is preferable to use calcia or calcia. In that case, in the case of Ittria, it is sufficient to dissolve it in a solid solution of about 1 to 5 mol%, and in the case of Calcia, it is 1 to 6 mol%.
It is sufficient to make it a solid solution to some extent. Of course, Ittria and Calcia can also be used together. The medical device of the present invention is manufactured, for example, as follows. That is, first, zirconia powder and ittria powder, or zirconia powder, ittria powder, and calcia powder are mixed in a desired ratio, and then this is calcined at 800 to 1100°C and then pulverized. The calcination and pulverization are repeated as necessary to obtain a raw material powder. Next, the raw material powder is molded into the shape of a desired medical device using a well-known molding method such as a rubber press method or a mold molding method to obtain a molded body. Next, the above molded body is heated to 1500 to 1650 °C at a temperature increase rate of 20 to 100 °C/hour, held at that temperature for several hours, and then cooled to about 800 °C at a rate of 20 to 180 °C/hour. It is further cooled to room temperature and sintered. The surface of the zirconia sintered body thus obtained in the shape of a medical instrument is optically polished to prevent blood or chemicals from adhering to it, and even if it does, it can be easily cleaned. . Furthermore, for medical instruments that require cutting, etc., the cutting edge is sharpened by honing or wrapping. Next, the present invention will be explained in more detail based on examples. Example In order to produce the five types of zirconia sintered bodies shown in the table, zirconia powder with a purity of 99.9% and ittria powder were mixed so that the amount of ittria was the value shown in the table, and then heated at 900°C. After calcination for 2 hours in a urethane-lined ball mill, the calcination was repeated until the average particle size was
A raw material powder having a diameter of 0.1 μm was obtained. Next, the raw material powder was molded using a rubber press method to obtain a plate-shaped molded body. Molding pressure is 2000
Kg/ cm2 . Next, the above molded body is placed in a heating furnace, heated at a rate of 50℃/hour up to 900℃, and then at a rate of 30℃/hour, sintered under the conditions shown in the table, and further cooled. Five types of zirconia sintered bodies were obtained. Next, the amount of tetragonal zirconia and the amount of cubic zirconia were determined for each of the sintered bodies. In addition, bending strength and fracture toughness were measured. The bending strength was measured according to JIS R1601. Furthermore, the fracture toughness was measured using the MI method (microindentation method). In this method, a Vickers indentation is made on the surface of a sintered body under a load of 20 kg, the length of the crack that occurs at that time is measured, and the length is calculated using Shinhara's formula.
The measurement results are shown in the table. Next, medical instruments were made using the five types of zirconia sintered bodies, and the cutting edge was chipped and disinfected.
The sharpness, adhesion resistance, and durability were examined. For chipping of the cutting edge, the sintered body is 20 mm wide, 70 mm long, and thick.
After cutting to 0.25mm and polishing and finishing, #600
A surgical microtome was made by attaching a blade with a 20° cutting edge angle using a diamond grindstone from #3000 to #3000, and the blade edge was observed with an optical microscope, and the average value L of the maximum chip length and the depth were determined. It was determined by measuring the average value D of the maximum value. The number n was set to 5. In addition, disinfection resistance is achieved by using a sintered body with a width of 20 mm.
Make a blade with a length of 20mm, a thickness of 3mm, and a cutting edge angle of 60°, and put it in a steam sterilizer at a temperature of 120℃ and a pressure of
The blade was held under a pressure of 1.2 atmospheres, and the evaluation was based on the time it took for a crack to form on the blade that extended almost parallel to the cutting edge. Furthermore, the sharpness and adhesion resistance were evaluated by cutting rabbit tissue using the microtome mentioned above, and evaluating the size of chipping on the cutting edge after 10 cuts and the adhesion of blood proteins to the cutting edge and blade surface in descending order of 〇, △, and △. Evaluation was made by ranking with × marks. Furthermore, durability was evaluated by making a microsurgical scalpel with a blade length of 15 mm, thickness of 0.3 mm, and edge angle of 15 degrees from the above sintered body, cutting the squid's nerve with it, and measuring the number of cuts until the nerve could no longer be cut. did. The measurement results are shown in the table.

【表】 表から、正方晶ジルコニアの量が50モル%以上
であり、しかも立方晶ジルコニアが10モル%以下
であるジルコニア焼結体を使用したもの、すなわ
ちNo.3および4のものは、これらの条件を欠いて
いるNo.1、2および5のものに比べて、曲げ強
度、破壊靭性、欠け、耐消毒性、切れ味および耐
付着性、耐久性のいずれにおいても大変優れ、有
用な医用器具であることがわかる。 発明の効果 この発明の医用器具は、正方晶ジルコニアを少
なくとも50モル%含み、かつ立方晶ジルコニアが
10モル%以下であるジルコニア焼結体からなるも
のである。しかして、正方晶ジルコニアは応力誘
起変態機構による応力緩和効果をもつているの
で、この発明の医用器具は機械的強度や靭性が大
変高く、落ちたり器具同士が激しく衝突しても損
壊の心配がほとんどないばかりか、刃先を鋭角に
加工しても金属のようにかえりを発生しないので
よく切れ、しかもその切れ味の低下が大変少な
い。また、高温に十分耐え、しかも金属のように
焼戻し作用がないので、高温で長時間消毒しても
弾力や切れ味の低下がほとんどない。たとえば、
500℃で長時間消毒しても何ら支障がなく、疫学
的にも安心して再使用できる。さらに、ジルコニ
ア焼結体は本質的に酸化物であるから、熱湯や蒸
気などで消毒したり、血液や薬品が付着しても錆
びることがない。さらにまた、上述したジルコニ
ア焼結体は表面粗さを大変小さくすることができ
るので、切断時の接触抵抗を低くすることがで
き、よく切れるばかりか、血液や薬品などが付着
しにくく、たとえ付着しても水洗によつて容易に
取り除くことができる。
[Table] From the table, it can be seen that those using zirconia sintered bodies in which the amount of tetragonal zirconia is 50 mol% or more and the cubic zirconia is 10 mol% or less, that is, Nos. 3 and 4, are Compared to Nos. 1, 2, and 5, which lack the following conditions, it is a useful medical device that is superior in bending strength, fracture toughness, chipping, disinfection resistance, sharpness, adhesion resistance, and durability. It can be seen that it is. Effects of the Invention The medical device of the present invention contains at least 50 mol% of tetragonal zirconia, and contains cubic zirconia.
It is made of a zirconia sintered body with a content of 10 mol% or less. Since tetragonal zirconia has a stress-relieving effect due to the stress-induced transformation mechanism, the medical instruments of this invention have very high mechanical strength and toughness, and there is no fear of damage even if they are dropped or the instruments collide violently with each other. Not only is there almost no burr, but even if the cutting edge is sharpened, unlike metal, it does not produce burrs, so it cuts well and there is very little loss of sharpness. In addition, it can withstand high temperatures well, and unlike metal, it does not have the effect of tempering, so even if it is sterilized at high temperatures for a long period of time, there is almost no loss of elasticity or sharpness. for example,
There is no problem even if it is sterilized at 500℃ for a long time, and it can be reused with peace of mind from an epidemiological point of view. Furthermore, since the zirconia sintered body is essentially an oxide, it will not rust even if it is disinfected with hot water or steam, or even if it is exposed to blood or chemicals. Furthermore, the surface roughness of the zirconia sintered body mentioned above can be made very small, so it is possible to lower the contact resistance during cutting, which not only cuts well but also prevents blood and chemicals from adhering. However, it can be easily removed by washing with water.

Claims (1)

【特許請求の範囲】[Claims] 1 正方晶系の結晶構造をもつジルコニアを少な
くとも50モル%含み、かつ立方晶系の結晶構造を
もつジルコニアが10モル%以下であるジルコニア
焼結体からなる医用器具。
1. A medical device made of a zirconia sintered body containing at least 50 mol% of zirconia with a tetragonal crystal structure and 10 mol% or less of zirconia with a cubic crystal structure.
JP56147771A 1981-09-21 1981-09-21 Medical appliance Granted JPS5850946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147771A JPS5850946A (en) 1981-09-21 1981-09-21 Medical appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147771A JPS5850946A (en) 1981-09-21 1981-09-21 Medical appliance

Publications (2)

Publication Number Publication Date
JPS5850946A JPS5850946A (en) 1983-03-25
JPS6160697B2 true JPS6160697B2 (en) 1986-12-22

Family

ID=15437804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147771A Granted JPS5850946A (en) 1981-09-21 1981-09-21 Medical appliance

Country Status (1)

Country Link
JP (1) JPS5850946A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669458B2 (en) * 1983-11-15 1994-09-07 オリンパス光学工業株式会社 Endoscopic forceps device manufacturing method
JPS60217820A (en) * 1984-04-12 1985-10-31 東レ株式会社 Tea pick-up blade
JPH0624534B2 (en) * 1986-02-28 1994-04-06 大光炉材株式会社 Ceramic pinsets
JP2020121902A (en) * 2019-01-30 2020-08-13 京セラ株式会社 Member for medical device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668478A (en) * 1979-11-08 1981-06-09 Sony Corp Scissors in ceramic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668478A (en) * 1979-11-08 1981-06-09 Sony Corp Scissors in ceramic

Also Published As

Publication number Publication date
JPS5850946A (en) 1983-03-25

Similar Documents

Publication Publication Date Title
Egilmez et al. Factors affecting the mechanical behavior of Y-TZP
TWI357319B (en) Highly polished cutting instruments and method of
US7662170B2 (en) Medical needle and cutting tool
US11219504B1 (en) Dental cosmetic scalpel
JPS6160697B2 (en)
Wang et al. The adverse effects of tungsten carbide grinding on the strength of dental zirconia
Candido et al. Characterization of a diamond ground Y-TZP and reversion of the tetragonal to monoclinic transformation
CA2764261A1 (en) Scalpel, in particular for ophthalmologic applications
Gureckis et al. Cutting effectiveness of diamond instruments subjected to cyclic sterilization methods
CN109811289B (en) Surface modified titanium alloy and preparation method and application thereof
JPH0212712B2 (en)
Pires et al. Comparison of heat generated by alumina-toughened zirconia and stainless steel burs for implant placement.
JPH02234754A (en) Apparatus for dental and medical treatment
CN113637938A (en) High-performance ultrasonic knife and preparation method thereof
JPH0833701A (en) Zirconia medical material and manufacture therefor
JP2016510667A (en) Bone cutting device
Clement et al. Performance test of different 3.5 mm drill bits and consequences for orthopaedic surgery
RU2220674C1 (en) Material based on zirconium dioxide, cutting instrument manufactured from material based on zirconium dioxide and instrument manufactured from material based on zirconium dioxide
Rokaya et al. Alloys for endodontic files and hand instruments
Kohorst et al. Machining human dentin by abrasive water jet drilling
RU2167622C2 (en) Surgical blade
KR101889010B1 (en) Manufacturing method of dental surgical guide
Menecy et al. Evaluation of Surface Characteristic Changes of WaveOne Gold and WaveOne Single Reciprocating Files Using Scanning Electron Microscopy: An in-vitro Study.
US20240164761A1 (en) Surgical or endoscopic instrument and production thereof
RU177226U1 (en) SURGICAL Spoon for curving soft tissues and bones