JPS6159905B2 - - Google Patents
Info
- Publication number
- JPS6159905B2 JPS6159905B2 JP169483A JP169483A JPS6159905B2 JP S6159905 B2 JPS6159905 B2 JP S6159905B2 JP 169483 A JP169483 A JP 169483A JP 169483 A JP169483 A JP 169483A JP S6159905 B2 JPS6159905 B2 JP S6159905B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- reinforced
- alloy
- temperature
- test piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010410 layer Substances 0.000 claims description 66
- 239000000463 material Substances 0.000 claims description 38
- 239000000956 alloy Substances 0.000 claims description 29
- 229910045601 alloy Inorganic materials 0.000 claims description 28
- 239000002131 composite material Substances 0.000 claims description 16
- 239000002344 surface layer Substances 0.000 claims description 14
- 230000007797 corrosion Effects 0.000 claims description 10
- 238000005260 corrosion Methods 0.000 claims description 10
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 238000003466 welding Methods 0.000 description 11
- 230000003014 reinforcing effect Effects 0.000 description 8
- 238000009749 continuous casting Methods 0.000 description 5
- 238000009661 fatigue test Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910001295 No alloy Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Continuous Casting (AREA)
- Laminated Bodies (AREA)
Description
本発明は、高温特性の優れた複合材料に係り、
さらに詳しくは高温疲労特性が必要とされる機械
設備および機械構造部材例えば分塊ロール、型鋼
用ロール、および連続鋳造用ピンチロールなどに
用いられる複合材料に関するものである。
現在これらロールには、全面に肉盛りしたり摩
耗の著しい部分に局部的に肉盛りしたりして耐用
寿命を長くしている。しかしながら高温疲労強さ
の点では、これを著しく改善させる合金材料や複
合材料製造法に関しては現在必ずしも優れたもの
は見出されていない。
例えば第1図は連続鋳造装置の態様を示すもの
であつて、図において溶鋼がレードル1からタン
デイシユ2を経てモールド3に鋳込まれたのちモ
ールド3から送り出され、表面層から凝固が進行
しているスラブ4を、連鋳用ピンチロール5の間
にはさみ、圧力をかけて送り出すものである。こ
の場合、スラブ4と接触している時点で、ピンチ
ロール5の高温に加熱されかつ圧縮方向の曲げ荷
重のかかつた部分は180゜回転した時点では、図
示しない水冷装置による水冷のため温度が室温近
く下がり、引張方向の曲げ荷重が作用する。この
ためロール表面は加熱、冷却の繰返しと圧縮・引
張曲げ荷重の繰返しによる熱疲労を受け、この結
果熱き裂が発生し遂には折損する場合が生ずる。
このような折損部材の破面に見られる疲労き裂
の伝播形態を観察したところ、ロール表面に発生
した熱き裂が、繰返し回転曲げ荷重により、ロー
ル径方向に沿つて進展する際、それらの伝播速度
は一様ではなく、進展し易いものとし難いものと
があることが見出された。この場合、優先的に発
達したき裂先端では、き裂の伝播速度が早くな
り、このき裂を起点とした折損が起こる。
これらの観点から表面に発生した熱き裂の中
で、疲労き裂として優先成長するものの進行速度
を遅らせ、優先成長するき裂を無くして多くのき
裂の平均伝播速度を一様にして、ゆつくりと進展
させることができれば、折損寿命や廃棄までの寿
命を長くすることが可能と考えられる。このため
にはき裂が発生する部材において、その表面近傍
に、疲労き裂の発生し易い層と発生し難い層とを
人為的に交互に作り、き裂の発生し易い層で発達
した前記優先き裂の進展を、き裂の発生し難い部
分で阻止し、以後き裂が内部に進展するのに伴つ
てこのようなき裂伝播形態を繰返させれば疲労特
性の優れた材料ができると考えた。
そこで本発明者らはこれを確認するため次のよ
うな試験を行つた。
まず基材として21/4Cr−1Mo鋼、径6mmの丸
棒を用い、その表面の長手方向にTIG溶接によ
り、第2図イ,ロに夫々正面断面図及び側面断面
図を示すように、21/4Cr−1Mo鋼に1%Wを含
む強化合金層7を余盛厚さ1mmとして基材8の全
面に設け、さらにその表面に基材8と同じ組成の
非強化層6を、余盛厚さ2mmとして全面にTIG溶
接によつて設けて試験片素材11を作製した。こ
の素材11に第2図ハの9に示すつかみ部を溶接
により取付け、第2図ニに示す形状の試験片とし
た。つかみ部9の材質は基材と同一組成のものを
用いた。
この試験片の形状、寸法を第2図ホに示した。
第2図ホにおいて、lは180mm、l1は50mm、l2は
40mm、l3は20mm、d1は12mm〓、d2は10mm〓、d3は
22mm〓である。。
この他に比較材として第3図イ,ロに示すよう
な21/4Cr−11Mo鋼の基材と同じ組成のワイヤ
で全余盛厚さ3mmとして、2層の肉盛層を設けた
素材11′につかみ部9を取りつけて第3図ハの
形状とした試験片、および21/4Cr−1Mo鋼の丸
棒そのものから、第2図ロと同じ形状寸法の試験
片を切出し、これにつかみ部9をとりつけ第2図
ホと同じ形状・寸法とした試験片を準備し、これ
らにつき、温度500℃、歪振幅±1%の条件で高
温疲労試験を行つた。
試験結果を第1表に示した。同表から判るよう
に破断までの繰返し数Nfは強化合金層と非強化
合金層とを組合わせた第2図の試験片Aが、非強
化合金層だけを肉盛りした第3図の試験片Bや基
材そのものの試験片Cより高温疲労寿命が4倍以
上長くなつた。
The present invention relates to a composite material with excellent high-temperature properties,
More specifically, the present invention relates to composite materials used in mechanical equipment and mechanical structural members that require high-temperature fatigue properties, such as blooming rolls, rolls for shaped steel, and pinch rolls for continuous casting. Currently, these rolls are built up over the entire surface or locally built up in areas of significant wear to extend their useful life. However, in terms of high-temperature fatigue strength, no alloy material or composite material production method that significantly improves this has currently been found. For example, Fig. 1 shows an embodiment of a continuous casting apparatus, in which molten steel is cast from a ladle 1 through a tundish 2 into a mold 3, and then sent out from the mold 3, where solidification progresses from the surface layer. The slab 4 is sandwiched between pinch rolls 5 for continuous casting, and pressure is applied to send it out. In this case, the portion of the pinch roll 5 that is heated to a high temperature and subjected to a bending load in the compressive direction at the time of contact with the slab 4 is rotated 180 degrees, and the temperature is reduced to room temperature due to water cooling by a water cooling device (not shown). It will soon drop and a bending load in the tensile direction will be applied. For this reason, the roll surface is subject to thermal fatigue due to repeated heating and cooling and repeated compressive and tensile bending loads, resulting in thermal cracks and eventual breakage. When we observed the propagation mode of fatigue cracks seen on the fracture surface of such a broken member, we found that when thermal cracks generated on the roll surface propagate along the roll radial direction due to repeated rotational bending loads, they propagate. It was found that the speed is not uniform, with some progressing easily and others difficult. In this case, the propagation speed of the crack becomes faster at the tip of the crack that developed preferentially, and breakage occurs starting from this crack. From these points of view, among thermal cracks generated on the surface, fatigue cracks that preferentially grow can be slowed down, those cracks that preferentially grow can be eliminated, and the average propagation speed of many cracks can be made uniform. If improvements can be made in the construction, it is possible to extend the lifespan before breakage or disposal. For this purpose, layers where fatigue cracks are likely to occur and layers where fatigue cracks are less likely to occur are artificially created alternately near the surface of the member where cracks occur. It is believed that if the propagation of preferential cracks is stopped in areas where cracks are unlikely to occur, and then this type of crack propagation pattern is repeated as the cracks propagate internally, a material with excellent fatigue properties can be created. Ta. Therefore, the present inventors conducted the following test to confirm this. First, a round bar made of 21/4Cr-1Mo steel with a diameter of 6 mm was used as a base material, and the surface was TIG welded in the longitudinal direction to form a 21 A reinforcing alloy layer 7 containing 1% W on /4Cr-1Mo steel is provided on the entire surface of the base material 8 with a reinforcement thickness of 1 mm, and a non-reinforced layer 6 with the same composition as the base material 8 is further provided on the entire surface with a reinforcement thickness of 2 mm. A test piece material 11 was prepared by TIG welding. A grip portion shown at 9 in FIG. 2C was attached to this material 11 by welding to obtain a test piece having the shape shown in FIG. 2D. The gripping portion 9 was made of a material having the same composition as the base material. The shape and dimensions of this test piece are shown in FIG. 2E. In Figure 2 E, l is 180 mm, l 1 is 50 mm, l 2 is
40mm, l3 is 20mm, d1 is 12mm〓, d2 is 10mm〓, d3 is
It is 22mm〓. . In addition, as a comparative material, a material 11' was prepared by forming two overlay layers using a wire having the same composition as the base material of 21/4Cr-11Mo steel and having a total overlay thickness of 3 mm, as shown in Figure 3 A and B. A test piece with the grip part 9 attached and shaped as shown in Figure 3 C, and a test piece with the same shape and dimensions as in Figure 2 B were cut from the 21/4Cr-1Mo steel round bar itself, and the grip part 9 was attached to it. Test specimens with the same shape and dimensions as those shown in Fig. 2 (E) were prepared, and a high-temperature fatigue test was conducted on them at a temperature of 500°C and a strain amplitude of ±1%. The test results are shown in Table 1. As can be seen from the table, the number of repetitions until fracture N f is the test specimen A in Figure 2, which combines a reinforced alloy layer and a non-reinforced alloy layer, and the test in Figure 3, in which only the non-reinforced alloy layer is built up. The high-temperature fatigue life was more than 4 times longer than that of specimen B and specimen C of the base material itself.
【表】
さらに本発明者らはこのような合金層の上にさ
らに高温耐食性に優れた表面層が設けられた場合
でも、表面層から進展してきたき裂が、その下の
合金層によつて成長が抑制され、高温疲労寿命が
長くなるという知見を得た。
本発明は以上の様な知見に基づいてなされたも
のであつて、その要旨とするところは、材料表面
にほぼ一定の厚さで高温疲労強さの高い合金強化
層を設け、この合金強化層の表面全面に非強化層
を設け、このように少なくとも各1層以上の合金
強化層と非強化層とをほぼ同心状に交互に設ける
か、あるいはさらにその最外層部に耐高温腐食性
に優れた表面層を設けたこと特徴とする高温特性
の優れた複合材料にある。
以下本発明を詳細に説明する。
第4図は本発明の複合材料の一態様を示すもの
であつて、同図において8は複合材料の基材であ
つて、基材の上に高温疲労強さの高い合金強化層
7と合金強化しない層6とがほぼ同心状に夫々1
層以上交互に設けられている構成を示したもので
ある。この場合、最初に述べた如く、本発明の対
象とする技術分野は高温において繰返し荷重が作
用したり、繰返し荷重と熱サイクルが重畳して作
用する機械設備部材であるから、複合材料基材と
してはCr−Mo系低合金耐熱鋼などの鋼材が主と
して使用される。また高温疲労強さの高い合金強
化層としては、先に例示したWをはじめ、V、
Nb、Tiなどの合金成分の1種または2種以上を
基材金属と合金せしめたものを用いる。一方合金
強化しない層としては基材組成と同材質でも当然
かまわないが、たとえば、表層部のみ高温で、あ
まり厳しくない疲労環境のもとで使用される機械
部材などの場合は耐熱鋼としてよく知られている
21/4Cr−1Mo鋼の如き材料を用い基材に軟鋼を
用いると云うような構成は当然考えられる。
合金強化層の合金成分範囲は特に定めないが、
耐高温疲労強さの見地から21/4Cr−1Moをベー
スにしC0.07〜0.12%、W、V、Nb、Ti、Siの1
種以上合計が0.8%〜2.0%程度が適当である。
このような合金強化層と非強化層の形成手段は
たとえば前述の第2図イ,ロの場合に示したよう
に、基材表面にほぼ一定の厚さで、析出強化、固
溶強化を促進させる合金元素を含む例えば21/4
Cr−1Mo−WワイヤーをTIGアーク溶接法などに
よつて肉盛溶接して合金強化層を設け、この上に
基材と同一組成あるいは強化元素を含まないワイ
ヤを用いTIGアーク溶接などで非強化層を設けて
もかまわないが、工業的には例えば、強化作用を
有する合金元素を含有する帯状電極と非強化金属
からなる帯状電極を用いた、サブマージアーク溶
接によつて肉盛層を設けても良い。
また帯状電極を用いたサブマージアーク溶接の
場合には帯状電極として非強化金属からなる材料
のみを用い、強化合金層を設ける際には強化合金
元素を調整添加したフラツクスを使用する手段を
用いても良い。
さらにたとえば最初に述べた連鋳機のピンチロ
ールのように高温疲労強さのみならず、高温腐食
性も要求されるような部材においては、これまで
のべたような複合材料の外層にさらに耐高温腐食
性の優れた表面層を設けることができる。第5図
はかかる構成の一態様を示したもので強化層7と
非強化層6を中間層としてその最外表面に耐高温
腐食性の優れた表面層10を設けたものである。
かかる性質を有する表面層材料としてはたとえば
耐熱、耐食性に優れたステンレス鋼などのものを
用いることができる。かかる表面層の形成手段と
しては通常の肉盛溶接による手段の他、エレクト
ロスラグ溶接、プラズマアーク溶接などによる溶
接、複合鋳造、ドブ漬けなどいずれの手段を用い
ても良い。このような構成とすることにより、表
面層よりき裂の進展が生じた場合、これを高温疲
労強さの強い中間層7でくいとめて、基材8への
き裂伝播を防ぎ、表面層10による耐高温腐食性
と共に中間層7による耐高温疲労強さの優れた複
合材料を得ることができる。
なおこれら強化層、非強化層、表面層の厚みは
特に限定するものではないが、実用的見地からは
強化層、非強化層については各層の強さが2mm〜
10mm、表面層については0.1〜4mm程度とし全層
の厚さを40mm以下とするのが適当である。
また、これ迄の説明は丸棒状の複合材料につい
て行つたが、これにこだわることなく、円筒状の
機械部材例えば中空ロールなど、高温腐食、高温
疲労特性を必要とする各種ロールなどの、機械構
造部材すべてについて適用可能であることはもち
ろんである。
実施例 1
基材として21/4Cr−1Mo鋼から直径6mmの丸
棒を切出し、サブマージアーク溶接により、第2
表に示すワイヤとW粉末を添加したフラツクスを
用い、第2図イ,ロに示す要領で強化層7一層を
基材に肉盛溶接し、この上に基材とほぼ同一組成
のワイヤで非強化層6を肉盛溶接したものから作
製した試験片素材に、同図ハの要領でつかみ部9
をとりつけたもの(試験片D)と第3図イ,ロの
ように非強化層を肉盛りしたものから作製した試
験片素材に同図ハ要領でつかみ部9をとりつけた
もの(試験片E)および基材から素材を採取し、
これに第3図ハの要領でつかみ部9をとりつけた
試験片(試験片F)のそれぞれについて、温度
500℃、歪振幅±1%で大気中における高温疲労
試験を行つた。試験片形状は全て第2図ホの場合
と同じ寸法・形状とした。試験結果を第3表に示
す。これらの結果から高温酸化性雰囲気と繰返し
歪振幅とが重なつた使用環境のもとにおいても、
肉盛材のように欠陥の少ない合金層の存在する複
合材料は、優れた高温疲労特性を示すことが判
り、したがつて酸化性雰囲気の中で熱サイクルと
歪振幅とが重なつた熱疲労特性に対しても本発明
の複合材料は優れた性質を示すことが明らかであ
る。[Table] Furthermore, the present inventors have found that even if a surface layer with excellent high-temperature corrosion resistance is provided on top of such an alloy layer, cracks that have propagated from the surface layer will grow due to the alloy layer below. We obtained the knowledge that the fatigue life of the steel is suppressed and the high-temperature fatigue life is extended. The present invention has been made based on the above findings, and its gist is to provide an alloy reinforced layer with a substantially constant thickness and high high temperature fatigue strength on the surface of a material, and to A non-reinforced layer is provided on the entire surface of the material, and at least one alloy reinforced layer and a non-reinforced layer are alternately provided in a substantially concentric manner, or the outermost layer is provided with a material having excellent high-temperature corrosion resistance. It is a composite material with excellent high-temperature properties, characterized by the provision of a surface layer. The present invention will be explained in detail below. FIG. 4 shows one embodiment of the composite material of the present invention, in which reference numeral 8 is a base material of the composite material, on which an alloy reinforcing layer 7 with high high temperature fatigue strength is formed. The non-reinforced layer 6 and the layer 1 are arranged approximately concentrically.
This figure shows a structure in which more than one layer is provided alternately. In this case, as stated at the beginning, the technical field targeted by the present invention is mechanical equipment members that are subjected to repeated loads at high temperatures or are subjected to repeated loads and thermal cycles, so that Steel materials such as Cr-Mo based low alloy heat resistant steel are mainly used. In addition, examples of alloy reinforcement layers with high high temperature fatigue strength include W, which was exemplified above, V,
One or more alloy components such as Nb and Ti are alloyed with the base metal. On the other hand, the material that is not reinforced by the alloy may naturally be made of the same material as the base material, but for example, in the case of mechanical parts that are used in a not-so-severe fatigue environment where only the surface layer is exposed to high temperatures, heat-resistant steel is commonly used. Naturally, it is conceivable to use a material such as 21/4Cr-1Mo steel and use mild steel as the base material. Although the alloy composition range of the alloy reinforcement layer is not particularly determined,
From the viewpoint of high temperature fatigue strength, based on 21/4Cr-1Mo, C0.07~0.12%, W, V, Nb, Ti, Si.
A total of about 0.8% to 2.0% for more than one species is appropriate. The means for forming such an alloy reinforced layer and non-reinforced layer is, for example, as shown in the case of Figure 2 A and B above, which promotes precipitation strengthening and solid solution strengthening by forming a substantially constant thickness on the base material surface. For example, 21/4 containing alloying elements
Cr-1Mo-W wire is overlay welded using TIG arc welding to form an alloy reinforcing layer, and then a non-reinforced layer is formed using TIG arc welding using a wire that has the same composition as the base material or does not contain reinforcing elements. Although a layer may be provided, industrially, for example, a built-up layer may be provided by submerged arc welding using a strip electrode containing an alloying element that has a reinforcing effect and a strip electrode made of a non-reinforced metal. Also good. In addition, in the case of submerged arc welding using a strip electrode, only a material made of non-reinforced metal may be used as the strip electrode, and when providing a reinforcing alloy layer, a method may be used in which a flux to which reinforcing alloy elements are adjusted is used. good. Furthermore, for parts that require not only high-temperature fatigue strength but also high-temperature corrosion resistance, such as the pinch rolls of the continuous casting machine mentioned above, the outer layer of the composite material mentioned above must have additional high-temperature resistance. A surface layer with excellent corrosion resistance can be provided. FIG. 5 shows one embodiment of such a structure, in which a reinforced layer 7 and a non-reinforced layer 6 are used as an intermediate layer, and a surface layer 10 having excellent high-temperature corrosion resistance is provided on the outermost surface thereof.
As the surface layer material having such properties, for example, stainless steel having excellent heat resistance and corrosion resistance can be used. As a means for forming such a surface layer, in addition to ordinary overlay welding, any means such as electroslag welding, plasma arc welding, composite casting, and dipping may be used. With this structure, if a crack develops from the surface layer, the intermediate layer 7, which has strong high-temperature fatigue strength, can stop it, prevent the crack from propagating to the base material 8, and prevent the crack from propagating from the surface layer. A composite material having excellent high-temperature corrosion resistance due to the intermediate layer 7 and excellent high-temperature fatigue strength due to the intermediate layer 7 can be obtained. Note that the thickness of the reinforced layer, non-reinforced layer, and surface layer is not particularly limited, but from a practical standpoint, the strength of each layer is 2 mm or more for the reinforced layer and non-reinforced layer.
It is appropriate that the thickness of the surface layer is about 0.1 to 4 mm, and the total thickness of the entire layer is 40 mm or less. In addition, although the explanation so far has been about round bar-shaped composite materials, the mechanical structure of cylindrical mechanical parts such as hollow rolls and various rolls that require high-temperature corrosion and high-temperature fatigue properties is not limited to this. Of course, it is applicable to all members. Example 1 A round bar with a diameter of 6 mm was cut from 21/4Cr-1Mo steel as a base material, and a second
Using the wire shown in the table and the flux added with W powder, one layer of reinforcing layer 7 is overlay welded to the base material in the manner shown in Figure 2 A and B. A grip portion 9 is attached to a test piece material made from a reinforced layer 6 welded by overlay welding in the same manner as shown in Figure C.
(test piece D), and a test piece material prepared from a non-reinforced layer as shown in Figure 3 A and B, with a grip part 9 attached in the same manner as shown in Figure 3 (C) (test piece E). ) and the base material,
For each test piece (test piece F) to which the grip part 9 was attached in the manner shown in Figure 3 C, the temperature
A high-temperature fatigue test was conducted in the atmosphere at 500°C and a strain amplitude of ±1%. All test pieces had the same dimensions and shape as those shown in Figure 2 (e). The test results are shown in Table 3. These results show that even under usage environments where high-temperature oxidizing atmospheres and repeated strain amplitudes overlap,
It has been found that composite materials with alloy layers with few defects, such as overlay materials, exhibit excellent high-temperature fatigue properties. It is clear that the composite material of the present invention also exhibits excellent properties.
【表】
実施例 2
実施例1と同じ試験片の最外層に14%Crステ
ンレス鋼の肉盛層を第5図に示す要領でサブマー
ジアーク溶接によつて作り、これにつかみ部9を
とりつけた試験片Gを作製した。この場合平行部
の最外層表面のステンレス層の厚さを0.5mmとし
た。実施例1と同じ条件で高温疲労試験を行つた
結果を下記の第3表に併記した。表面にステンレ
ス鋼を肉盛したものは表面酸化が起こり難いので
このためにき裂の発生が遅く、繰返し寿命がさら
に長くなることが明らかである。[Table] Example 2 A built-up layer of 14% Cr stainless steel was made on the outermost layer of the same test piece as in Example 1 by submerged arc welding as shown in Figure 5, and the grip part 9 was attached to this. Test piece G was prepared. In this case, the thickness of the stainless steel layer on the outermost surface of the parallel portion was 0.5 mm. The results of a high temperature fatigue test conducted under the same conditions as in Example 1 are also listed in Table 3 below. It is clear that when stainless steel is applied to the surface, surface oxidation is less likely to occur, so cracks occur more slowly and the cycle life becomes longer.
第1図は連続鋳造装置の構造を概念的に示す模
式図、第2図、第3図は高温疲れ試験片および素
材の形状、断面態様を示す模式図、第4図、第5
図は本発明の複合材料断面の態様例を夫々示す模
式図である。
1……レードル、2……タンデツシユ、3……
モールド、4……スラブ、5……ピンチロール、
6……非強化層、7……合金強化層、8……複合
材料基材、9……高温疲労試験片つかみ部、10
……耐熱・耐食合金層、11,11′……試験片
素材。
Fig. 1 is a schematic diagram conceptually showing the structure of the continuous casting equipment, Figs. 2 and 3 are schematic diagrams showing the shape and cross-section of the high-temperature fatigue test piece and the material, and Figs. 4 and 5.
The figures are schematic views showing examples of cross-sections of the composite material of the present invention. 1...Ladle, 2...Tandeshyu, 3...
Mold, 4... Slab, 5... Pinch roll,
6... Non-reinforced layer, 7... Alloy reinforced layer, 8... Composite material base material, 9... High temperature fatigue test piece gripping part, 10
...Heat-resistant/corrosion-resistant alloy layer, 11, 11'... Test piece material.
Claims (1)
さの高い合金強化層を設け、この合金強化層の表
面全面に非強化層を設け、このように少なくとも
各1層以上の合金強化層と非強化層とをほぼ同心
状に交互に設けたことを特徴とする高温特性の優
れた複合材料。 2 材料表面全面にほぼ一定の厚さで高温疲労強
さの高い合金強化層を設け、この合金強化層の表
面全面に非強化層を設け、このように少なくとも
各1層以上の合金強化層と非強化層とをほぼ同心
状に交互に設けると共にさらにその最外層部に耐
高温腐食性に優れた表面層を設けたことを特徴と
する高温特性の優れた複合材料。[Scope of Claims] 1. A reinforced alloy layer with a substantially constant thickness and high high temperature fatigue strength is provided on the entire surface of the material, and a non-reinforced layer is provided on the entire surface of this reinforced alloy layer, and in this way, at least one layer of each layer is provided. A composite material with excellent high-temperature properties, characterized in that the alloy reinforced layers and non-reinforced layers described above are alternately provided substantially concentrically. 2. An alloy reinforced layer with high high temperature fatigue strength is provided on the entire surface of the material with a substantially constant thickness, and a non-reinforced layer is provided on the entire surface of this alloy reinforced layer, and in this way, at least one alloy reinforced layer and A composite material with excellent high-temperature properties, characterized in that non-reinforced layers and non-reinforced layers are provided alternately substantially concentrically, and a surface layer with excellent high-temperature corrosion resistance is provided on the outermost layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP169483A JPS59127753A (en) | 1983-01-11 | 1983-01-11 | Composite material having excellent high-temperature characteristic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP169483A JPS59127753A (en) | 1983-01-11 | 1983-01-11 | Composite material having excellent high-temperature characteristic |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59127753A JPS59127753A (en) | 1984-07-23 |
JPS6159905B2 true JPS6159905B2 (en) | 1986-12-18 |
Family
ID=11508633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP169483A Granted JPS59127753A (en) | 1983-01-11 | 1983-01-11 | Composite material having excellent high-temperature characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59127753A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0277307U (en) * | 1988-11-30 | 1990-06-13 | ||
JPH0425526Y2 (en) * | 1985-05-10 | 1992-06-18 | ||
JPH04126002U (en) * | 1991-04-30 | 1992-11-17 | 黒田精工株式会社 | cylinder device |
JPH0561563U (en) * | 1991-08-15 | 1993-08-13 | 株式会社コガネイ | Cylinder tube and cylinder device using the same |
JPH0743458Y2 (en) * | 1990-01-10 | 1995-10-09 | エスエムシー株式会社 | Fluid pressure cylinder with magnetic proximity switch |
-
1983
- 1983-01-11 JP JP169483A patent/JPS59127753A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0425526Y2 (en) * | 1985-05-10 | 1992-06-18 | ||
JPH0277307U (en) * | 1988-11-30 | 1990-06-13 | ||
JPH0743458Y2 (en) * | 1990-01-10 | 1995-10-09 | エスエムシー株式会社 | Fluid pressure cylinder with magnetic proximity switch |
JPH04126002U (en) * | 1991-04-30 | 1992-11-17 | 黒田精工株式会社 | cylinder device |
JPH0561563U (en) * | 1991-08-15 | 1993-08-13 | 株式会社コガネイ | Cylinder tube and cylinder device using the same |
Also Published As
Publication number | Publication date |
---|---|
JPS59127753A (en) | 1984-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5024051B2 (en) | Centrifugal cast composite roll | |
US5919577A (en) | Fe-based alloy foil for liquid-phase diffusion bonding of Fe-based materials by enabling bonding in oxidizing atmospheres | |
WO1988007594A1 (en) | Abrasion-resistant composite roll and process for its production | |
JPS6159905B2 (en) | ||
JPH0443977B2 (en) | ||
CN108568617A (en) | A kind of brazing material of no brazing flux | |
JP4394860B2 (en) | Welding method using ultra low temperature transformation melt, high fatigue strength joint and ultra low temperature transformation melt | |
JPS626635B2 (en) | ||
JP3509634B2 (en) | Low alloy cast steel and its heat treatment method | |
JPH0543773B2 (en) | ||
JPS5966995A (en) | Composite material having excellent high temperature fatigue characteristic | |
JPH02151377A (en) | Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere | |
JPH04147706A (en) | Plug for producing seamless steel pipe | |
Gaspar et al. | Melt overflow process for direct cast fiber, ribbon and strip | |
JPH02151378A (en) | Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere | |
JPH07124785A (en) | Seamless flux cored wire for heat resistant ferritic stainless steel | |
RU2124962C1 (en) | Shrouding ring of roller and process of its manufacture | |
JP2810762B2 (en) | Wear resistant composite roll | |
JPH06122937A (en) | Wear-resistant composite roll excellent in crack propagating resistance | |
JP4267494B2 (en) | Iron-based amorphous alloy foil for bonding | |
DE615656C (en) | Process for producing iron rollers by casting around a highly heated metal core | |
JPH04182011A (en) | Wear resistant composite roll having excellent surface roughening resistance and its manufacture | |
JPH04124255A (en) | Continuously cast roll excellent in heat crack resistance | |
JP3562483B2 (en) | Method for manufacturing high-strength thick steel plate with excellent constraint weld cracking resistance | |
JPH03238169A (en) | Joining method for materials for high temperature device |