[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6156209A - Production of ultrafine noble metal particle - Google Patents

Production of ultrafine noble metal particle

Info

Publication number
JPS6156209A
JPS6156209A JP17654884A JP17654884A JPS6156209A JP S6156209 A JPS6156209 A JP S6156209A JP 17654884 A JP17654884 A JP 17654884A JP 17654884 A JP17654884 A JP 17654884A JP S6156209 A JPS6156209 A JP S6156209A
Authority
JP
Japan
Prior art keywords
noble metal
ultrafine
nitrogen
particles
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17654884A
Other languages
Japanese (ja)
Other versions
JPS6139372B2 (en
Inventor
Masahiro Uda
雅広 宇田
Satoru Ono
悟 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP17654884A priority Critical patent/JPS6156209A/en
Publication of JPS6156209A publication Critical patent/JPS6156209A/en
Publication of JPS6139372B2 publication Critical patent/JPS6139372B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce easily ultrafine noble metal particles with high efficiency and nonpolluting means by melting the noble metal (alloy) selected from the groups I b, VIIa and VIII of periodic table by a hot plasma flame in a nitrogen- contg. atmosphere. CONSTITUTION:The hot plasma flame 3 is generated by a torch 2 for generating the hot plasma to heat and melt the noble metal sample 4 in a hermetic vessel 1 in which a gaseous atmosphere of gaseous nitrogen or gaseous mixture composed of the gaseous nitrogen and inert gas or further the gas mixed with hydrogen is maintained. The sample 4 is the noble metal (alloy) such as Ag, Au, Re, Ru, Rh, Pd, Os, Ir or Pt belonging to the above-mentiond groups of the periodic table and the molten sample 4 is forcibly evaporated by the activated nitrogen in the flame 3 by which the ultrafine noble metal particles are generated. Such ultrafine particles are sucked together with the atmosphere gas with a sucker 6 and is captured by a capturing device 9 after cooling in a cooler 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒径1μm以下の貴金属超微粒子の製造法に関
する。更に詳しくは、触媒材料や導電材料として広く利
用される周期表におけるIb族に属するkfXAu、■
a族に属するBe、■族に属するRuXRh、 I’d
、 Os、 Ir、 Pt等の貴金属またはその合金の
超微粒子を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing ultrafine noble metal particles having a particle size of 1 μm or less. More specifically, kfXAu, which belongs to group Ib in the periodic table and is widely used as a catalyst material and a conductive material,
Be belonging to group a, RuXRh belonging to group ■, I'd
, Os, Ir, Pt, or other noble metals or their alloys.

従来技術 従来の貴金属超微粒子の製造法としては、貴金属塩を水
溶液中で液相還元し、該貴金属を超微粒子として沈殿さ
せ、沈殿を濾過、洗浄、乾燥する方法が行われている。
BACKGROUND ART Conventional methods for producing ultrafine noble metal particles include reducing a noble metal salt in an aqueous solution in a liquid phase, precipitating the noble metal as ultrafine particles, and filtering, washing, and drying the precipitate.

この方法は製造工程が極めて煩雑であるばかりでなく、
塩素等の有害な物質を含む多量の廃液を生じ、また薬品
による超微粒子の汚染を完全に除去することが極めて困
難であるなどの欠点があった。
This method not only requires an extremely complicated manufacturing process, but also
There are disadvantages such as the generation of a large amount of waste liquid containing harmful substances such as chlorine, and the fact that it is extremely difficult to completely remove ultrafine particle contamination caused by chemicals.

発明の目的 本発明は従来法の欠点をかくすべくなされたものであり
、その目的は簡易な設備により、無公害的手段によって
高純度の貴金属またはその合金の超微粒子を極めて高能
率にかつ容易に製造する方法を提供することにある。
Purpose of the Invention The present invention was made in order to hide the drawbacks of conventional methods, and its purpose is to produce ultrafine particles of high-purity precious metals or their alloys very efficiently and easily using simple equipment and non-polluting means. The purpose is to provide a manufacturing method.

発明の構成 本発明者らは、前記目的を達成すべく研究の結果、窒素
ガスまたは窒素ガスと不活性ガスの混合ガスあるいはi
* s套71−シ粂諧tt71からなる雰囲気中で熱プ
ラズマを発生させ、該熱プラズマフレームにより周期表
1b族、■a族及び■族から選ばれた貴金属またはその
合金(以下貴金属と総称する。)を溶融すると該金属の
超微粒化が生ずることを知見し、この知見に基いて本発
明を完成した。
Structure of the Invention As a result of research to achieve the above object, the present inventors discovered that nitrogen gas, a mixed gas of nitrogen gas and an inert gas, or i
* A thermal plasma is generated in an atmosphere consisting of s-71-shi-kei-tt71, and the thermal plasma flame is used to generate precious metals selected from groups 1b, ) was found to cause ultrafine graining of the metal, and based on this knowledge, the present invention was completed.

との貴金属超微粒子の生成機構の詳細は明らかでは々い
が、大路次のように考えられる。
Although the details of the formation mechanism of precious metal ultrafine particles are not clear, it is thought to be as follows.

熱プラズマ(大略10,0OOK以上)の高温下におい
ては、窒素ガスの大部分は解離し、窒素原子あるいは窒
素イオンの状態とな抄、通常の金属の溶融温度(約30
00℃以下)における窒素(分子状9素)に比べて著し
く反応性の高い活性化状態にある。この活性化した窒素
を含む熱プラズマにより金属を溶融した場合、例えばお
ける再結合や溶融金属中への溶解など)が生ずる。L、
かじ、該金属が貴金属の場合、上記界面における窒素原
子の再結合と共に、溶融貴金属中への溶解した窒素も全
て再結合して二分子状窒素へ変換するため、窒素原子の
再結合エネルギーが効率よく溶融貴金属に付与される。
Under the high temperature of thermal plasma (approximately 10,000 OOK or higher), most of the nitrogen gas dissociates and becomes nitrogen atoms or nitrogen ions.
It is in an activated state with significantly higher reactivity than nitrogen (molecular 9 elements) at temperatures below 00°C. When metal is melted by this activated thermal plasma containing nitrogen, recombination in the molten metal, dissolution into the molten metal, etc.) occur. L,
However, if the metal is a noble metal, at the same time as the nitrogen atoms recombine at the interface, all the nitrogen dissolved in the molten precious metal is also recombined and converted into bimolecular nitrogen, so the recombination energy of the nitrogen atoms is efficiently used. Often applied to molten precious metals.

その結果、溶融貴金属の強制蒸発現象が誘起され、貴金
属の超微粒子化が生ずるものと考えられる。
As a result, a forced evaporation phenomenon of the molten precious metal is induced, and it is considered that the precious metal becomes ultra-fine particles.

本発明において超微粒子化される金属は、周期表のTb
s■aおよび■族に属する貴金属、すなわち、A f 
、 A u XRe 、 Tt、11、Rh、 Pd、
 Os。
The metal to be made into ultrafine particles in the present invention is Tb of the periodic table.
Noble metals belonging to the s■a and ■groups, namely A f
, A u XRe , Tt, 11, Rh, Pd,
Os.

Tr、Ptの金属および合金が挙げられる。Examples include metals and alloys of Tr and Pt.

本発明における貴金属超微粒子の発生速度は雰囲気窒素
濃度の高い程大きいため、この点よ松すれば窒素ガスの
みが好ましい。しかし、発生じた超微粒子の二次成長を
抑制(粒径制御)したり、熱プラズマの安定維持等の目
的で、A r −。
Since the rate of generation of ultrafine precious metal particles in the present invention increases as the atmospheric nitrogen concentration increases, in this respect, only nitrogen gas is preferable. However, for the purpose of suppressing the secondary growth of generated ultrafine particles (particle size control), maintaining stability of thermal plasma, etc., Ar −.

He等の不活性ガスや水素ガスで希釈してもよい。It may be diluted with an inert gas such as He or hydrogen gas.

々お、超微粒子の水素吸着あるいは吸蔵を極力避けるた
め、前記窒素あるいは窒素と不活性ガ    (スの混
合ガス中への水素の添加量は最大でも10チ以下である
ことが望ましい。
In order to avoid hydrogen adsorption or occlusion by the ultrafine particles as much as possible, it is desirable that the amount of hydrogen added to the nitrogen or the mixed gas of nitrogen and inert gas is at most 10% or less.

本発明における雰囲気ガスの圧力は、熱プラズマが安定
に発生しうる圧力であればよく、通常その圧力の下限は
約50Torr程度である。
The pressure of the atmospheric gas in the present invention may be any pressure at which thermal plasma can be stably generated, and the lower limit of the pressure is usually about 50 Torr.

本発明を実施する装置としては、通常のアーク溶解炉や
プラズマ溶解炉を使用することができる。しかし、生成
した貴金属超微粒子の粒径制御や捕集効率の向上などの
ためには、本発明者らの発明に係わる特公昭58−05
4166号公報記載の装置を使用することが好ましい。
An ordinary arc melting furnace or plasma melting furnace can be used as an apparatus for carrying out the present invention. However, in order to control the particle size and improve the collection efficiency of the produced ultrafine precious metal particles, it is necessary to
It is preferable to use the apparatus described in Publication No. 4166.

その具体例を第1図に示す。同図において、1は密閉容
器であり、該容器上部には熱プラズマ発生用トーチ2が
設けられ、下部には貴金属溶解台5が配置されている。
A specific example is shown in FIG. In the figure, reference numeral 1 denotes a closed container, in which a thermal plasma generating torch 2 is provided in the upper part of the container, and a noble metal melting table 5 is arranged in the lower part.

貴金属超微粒子の製造は、該トーチにより発生した熱プ
ラズマフレーム3によね貴金属試料4を加熱する。これ
により、貴金属試料は溶融され、同時に溶融貴金属は熱
プラズマフレーム中の活性化された窒素により、該貴金
属の強制蒸発が生じ貴金属超微粒子が発生する。該溶融
貴金属から発生した超微粒子は、該溶融貴金属の周囲に
設けられた吸引器6よね雰囲気ガスとともに吸引され、
冷却器7で冷却された後、捕集器9で捕集される。
To manufacture ultrafine noble metal particles, a noble metal sample 4 is heated by a thermal plasma flame 3 generated by the torch. As a result, the noble metal sample is melted, and at the same time, the molten noble metal undergoes forced evaporation due to activated nitrogen in the thermal plasma flame, generating ultrafine noble metal particles. The ultrafine particles generated from the molten precious metal are sucked together with the atmospheric gas by a suction device 6 provided around the molten precious metal,
After being cooled by the cooler 7, it is collected by the collector 9.

すなわち、生成した貴金属超微粒子を速やかに冷却・捕
集できるような装置であることが好ましい。
That is, it is preferable that the device be capable of quickly cooling and collecting the generated ultrafine precious metal particles.

発明の効果 窒素が使用されるため、極めて安全性も高く、かつその
製造装置々らびに製造工程も簡単で操業性も容易である
優れた効果を有する。そして得られた貴金属超微粒子は
、触媒材料や導電材料として使用することによね、それ
らの性能を一段と向上させるととができる。
Effects of the Invention Since nitrogen is used, the invention has excellent effects such as extremely high safety, simple manufacturing equipment and manufacturing process, and easy operability. The obtained ultrafine noble metal particles can be used as catalyst materials or conductive materials to further improve their performance.

実施例 以下の実施例においては、熱プラズマの発生方法として
は直流アークプラズマ(正極性、電流は1気圧とした。
EXAMPLES In the following examples, the thermal plasma generation method was direct current arc plasma (positive polarity, current was 1 atm).

表お、直流アークに変え、プラズマジェットや高周波プ
ラズマなどにより発生させた熱プラズマを使用してもは
寸同様な結果が得られる。
However, similar results can be obtained by using thermal plasma generated by a plasma jet or high-frequency plasma instead of a DC arc.

実施例1 貴金属として銀を、雰囲気として30 %N2−70 
%Arを使用し、優越微粒子を製造した。得られた優越
微粒子の最大粒径は約0.5μmで、平均粒径は約0.
1μmであった。啼た、超微粒子の形態は第2図に示す
ように、球状もしくは球状粒子の連なった状態であった
。なお、本実施例における優越微粒子の発生速度は大略
69/hであった。
Example 1 Silver as the noble metal, 30%N2-70 as the atmosphere
%Ar was used to produce superior microparticles. The maximum particle size of the obtained superior fine particles was about 0.5 μm, and the average particle size was about 0.5 μm.
It was 1 μm. As shown in FIG. 2, the shape of the ultrafine particles was spherical or a series of spherical particles. Note that the generation rate of superior fine particles in this example was approximately 69/h.

実施例2 貴金属として銀を、雰囲気として100%歯を使用12
、優越微粒子を製造した。得られた優越微粒子の最大粒
径は約0.5μmで、平均粒径は約02μmであった。
Example 2 Using silver as the precious metal and 100% tooth as the atmosphere12
, produced superior microparticles. The maximum particle size of the obtained superior fine particles was about 0.5 μm, and the average particle size was about 0.2 μm.

超微粒子の形態は、実施例1と同様に、球状もL <は
球状粒子の連なった状態であった。
As in Example 1, the shape of the ultrafine particles was spherical, and L<< was a series of spherical particles.

また、優越微粒子の発生速度は約7,5f/hであった
Further, the generation rate of superior fine particles was about 7.5 f/h.

実施例3 貴金属と1.て白金を、雰囲気として100チN2を使
用し、白金超微粒子を製造l〜だ。得られた白金超微粒
子の最大粒径は約0.1μmであり、平均粒径は約00
3μmであった。第3図に示すように、粒子の形状は主
と1〜て球形であり、一部には多角形の形状を有する粒
子も認められた。なお、本実施例における白金超微粒子
の発生速度は約1(1/hであった。
Example 3 Precious metals and 1. Ultrafine platinum particles were produced using platinum and 100 cm of N2 as an atmosphere. The maximum particle size of the obtained ultrafine platinum particles was about 0.1 μm, and the average particle size was about 0.00 μm.
It was 3 μm. As shown in FIG. 3, the particles were mainly spherical in shape, and some particles were also found to have a polygonal shape. Note that the generation rate of ultrafine platinum particles in this example was approximately 1 (1/h).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の1例を示しだも
のである。 第2図は優越微粒子の透過電子顕微鏡写真。 第3図は白金超微粒子の透過電子顕微鏡写真。 1;密閉容器  2:熱プラズマ発生用トーチ 3:熱プラズマフレーム 4;貴金属試料  5:貴金属溶解台 6:吸引器    7:冷却器 8.8′:雰囲気ガス導入口 9:捕集器   lO:吸引ポンプ 特許出願人 科学技術庁金属材料技術研究所長中  川
  龍  − ′@1目
FIG. 1 shows an example of an apparatus for carrying out the method of the invention. Figure 2 is a transmission electron micrograph of superior fine particles. Figure 3 is a transmission electron micrograph of ultrafine platinum particles. 1; Sealed container 2: Torch for thermal plasma generation 3: Thermal plasma flame 4; Precious metal sample 5: Precious metal melting table 6: Suction device 7: Cooler 8.8': Atmospheric gas inlet 9: Collector 1O: Suction Pump patent applicant: Ryu Kawa, Director, Metal Materials Technology Research Institute, Science and Technology Agency - '@1me

Claims (1)

【特許請求の範囲】[Claims] 窒素ガスまたは窒素ガスと不活性ガスの混合ガスあるい
はこれらのガスに水素を混合したガスからなる雰囲気中
で熱プラズマを発生させ、該熱プラズマフレームにより
周期表 I b族、VIIa族及びVIII族から選ばれた貴金属
またはその合金を溶融することを特徴とする貴金属超微
粒子の製造法。
A thermal plasma is generated in an atmosphere consisting of nitrogen gas, a mixture of nitrogen gas and an inert gas, or a mixture of these gases and hydrogen, and the thermal plasma flame is used to generate plasma from groups Ib, VIIa, and VIII of the periodic table. A method for producing ultrafine precious metal particles, which comprises melting a selected precious metal or its alloy.
JP17654884A 1984-08-27 1984-08-27 Production of ultrafine noble metal particle Granted JPS6156209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17654884A JPS6156209A (en) 1984-08-27 1984-08-27 Production of ultrafine noble metal particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17654884A JPS6156209A (en) 1984-08-27 1984-08-27 Production of ultrafine noble metal particle

Publications (2)

Publication Number Publication Date
JPS6156209A true JPS6156209A (en) 1986-03-20
JPS6139372B2 JPS6139372B2 (en) 1986-09-03

Family

ID=16015506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17654884A Granted JPS6156209A (en) 1984-08-27 1984-08-27 Production of ultrafine noble metal particle

Country Status (1)

Country Link
JP (1) JPS6156209A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384448B2 (en) 2004-02-16 2008-06-10 Climax Engineered Materials, Llc Method and apparatus for producing nano-particles of silver
KR101009656B1 (en) 2008-09-17 2011-01-19 희성금속 주식회사 Method of Ultra Fine Powder of Precious Metals
KR101024971B1 (en) 2008-12-12 2011-03-25 희성금속 주식회사 A Method of Powder and Target of Precious Metals by Thermal Plasma
KR101118635B1 (en) * 2009-12-14 2012-03-06 희성금속 주식회사 Method of an enhanced platinum materials using a thermal plasma process
WO2012121444A1 (en) * 2011-03-10 2012-09-13 희성금속 주식회사 Plasma-aided manufacturing method for oxide-dispersion-strengthened platinum material
WO2012124840A1 (en) * 2011-03-11 2012-09-20 희성금속 주식회사 Method for manufacturing titanium powder for manufacturing oxide-dispersion strengthening-type titanium material
WO2013147337A1 (en) * 2012-03-26 2013-10-03 희성금속 주식회사 Method for manufacturing oxide dispersion-strengthened platinum-gold alloy
JP2016028176A (en) * 2014-02-14 2016-02-25 三井金属鉱業株式会社 Method for manufacturing copper powder
JP2019094555A (en) * 2017-11-20 2019-06-20 国立大学法人弘前大学 Production method of high strength silver sintered body and high strength silver sintered body

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384448B2 (en) 2004-02-16 2008-06-10 Climax Engineered Materials, Llc Method and apparatus for producing nano-particles of silver
GB2425779B (en) * 2004-02-16 2008-08-06 Climax Engineered Mat Llc Method and apparatus for producing nano-particles of silver
US7575711B2 (en) 2004-02-16 2009-08-18 Climax Engineered Materials, Llc Apparatus for producing nano-particles of silver
KR101009656B1 (en) 2008-09-17 2011-01-19 희성금속 주식회사 Method of Ultra Fine Powder of Precious Metals
KR101024971B1 (en) 2008-12-12 2011-03-25 희성금속 주식회사 A Method of Powder and Target of Precious Metals by Thermal Plasma
KR101118635B1 (en) * 2009-12-14 2012-03-06 희성금속 주식회사 Method of an enhanced platinum materials using a thermal plasma process
WO2012121444A1 (en) * 2011-03-10 2012-09-13 희성금속 주식회사 Plasma-aided manufacturing method for oxide-dispersion-strengthened platinum material
WO2012124840A1 (en) * 2011-03-11 2012-09-20 희성금속 주식회사 Method for manufacturing titanium powder for manufacturing oxide-dispersion strengthening-type titanium material
WO2013147337A1 (en) * 2012-03-26 2013-10-03 희성금속 주식회사 Method for manufacturing oxide dispersion-strengthened platinum-gold alloy
KR101419443B1 (en) * 2012-03-26 2014-07-14 희성금속 주식회사 Method of an oxide dispersion strengthened platinum-gold alloy
JP2016028176A (en) * 2014-02-14 2016-02-25 三井金属鉱業株式会社 Method for manufacturing copper powder
JP2019094555A (en) * 2017-11-20 2019-06-20 国立大学法人弘前大学 Production method of high strength silver sintered body and high strength silver sintered body

Also Published As

Publication number Publication date
JPS6139372B2 (en) 1986-09-03

Similar Documents

Publication Publication Date Title
JP2662986B2 (en) Method for producing ultrafine tungsten or tungsten oxide particles
JPS6330062B2 (en)
JP4392864B2 (en) Method for producing gold particles by aerosol decomposition
JPS6156209A (en) Production of ultrafine noble metal particle
EP1018386A1 (en) Method for producing metal powder
JPH0234707A (en) Method for pulverizing a metal and apparatus for performing it
CN109502572A (en) Carbon nanotube method of purification
Kumar et al. Synthesis of silver metal nanoparticles through electric arc discharge method: a review
JP2004124257A (en) Metal copper particulate, and production method therefor
CN111421142A (en) Preparation method of spherical titanium powder
JPH0438826B2 (en)
RU2432231C2 (en) Method of producing metal nano-sized powders
KR101537216B1 (en) A making process of silicon powder Using Plasma Arc Discharge
JPS63170212A (en) Production of hyper-fine powder of metal boride
JP2005154834A (en) Ruthenium ultrafine powder and its production method
JP3950042B2 (en) Method for producing carbon nanotube
JPH04281840A (en) Production of ultrafine particle of metallic oxide and producing equipment
CN107162038B (en) A kind of cuprous oxide powder and preparation method thereof
JPH0867503A (en) Production of hydrogenated titanium superfine particle
CN108356280A (en) A method of preparing ball shaped nano titanium valve
WO2024229935A1 (en) Vacuum distillation furnace and method for manufacturing high-purity copper particles
JPH0416504A (en) Method for purifying silicon
JPS5957904A (en) Production of ultrafine particle of metallic nitride
JPS63274725A (en) Method for recovering nb and ti from superconductive material
CN1562533A (en) Method for preparing nano metal powder