JPS6154296A - Treatment of sewage - Google Patents
Treatment of sewageInfo
- Publication number
- JPS6154296A JPS6154296A JP17514584A JP17514584A JPS6154296A JP S6154296 A JPS6154296 A JP S6154296A JP 17514584 A JP17514584 A JP 17514584A JP 17514584 A JP17514584 A JP 17514584A JP S6154296 A JPS6154296 A JP S6154296A
- Authority
- JP
- Japan
- Prior art keywords
- sewage
- dissolved oxygen
- treatment
- sludge
- denitrification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は回分式処理による小規模下水処理などの汚水
処理に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to sewage treatment such as small-scale sewage treatment using batch treatment.
従来、槽体内に収容される汚水を曝気処理する工程と、
その後の沈殿処理を行なう工程、更にその上澄水を放流
する工程とから成り立つ回分式汚水処理方法は公知であ
り、かつその実際処理に際しての流量変化の対応策につ
いては特公昭59−30158号公報にその改良案が示
されている。Conventionally, the process of aerating the wastewater contained in the tank body,
A batch sewage treatment method consisting of a subsequent step of sedimentation treatment and a step of discharging the supernatant water is well known, and measures to deal with changes in flow rate during actual treatment are described in Japanese Patent Publication No. 59-30158. A proposal for its improvement is presented.
概して下水処理場等で行なっている通常の活性汚泥法に
よる汚水処理方法は、BOD(生物的酸素要求量)低下
には有効であるが。Generally, sewage treatment methods using the normal activated sludge method used in sewage treatment plants and the like are effective in reducing BOD (biological oxygen demand).
汚水中に含有されている燐及び窒素の除去については充
分ではなく、これがため下水道普及地区においても、窒
素及び燐に起因すると思われる環境汚染の弊害が出てい
る現況である。そのため、一度活性汚泥処理をした後、
その処理水を更に炭素源供給を行ないながら嫌気性処理
による脱窒処理や別途燐化合物を使用する接触s濾過脱
燐などの併用処理を考慮しているが、本格的実施には未
だ至っていない状態にある。また前記の回分式汚水処理
方法においては、好気性処理、嫌気性処理を交互に反復
することによって脱窒、脱燐の効果も一応得られている
が、脱窒工程については汚水中のアンモニアを好気性処
理の曝気工程において酸化し、亜硝酸性窒素、硝酸性窒
素の形に変え、しかる後嫌気性処理工程によってBOD
中の炭素源を利用し、窒素ガスと炭酸ガスとに分解放散
せしめることにより、脱窒を行なうものであるが、この
硝化工程を重視するあまり、曝気処理を充分に行なうと
汚泥は自己消化して、その絶対量は当然減少することに
なる。汚泥量の減少はそれなりの利点もあるものの、こ
れに対し、脱所処理は水中の燐成分を前記汚泥の生物体
内にオルト琲酸の形でとり込んで、嫌気性状態のときこ
の燐を放出することにより、エネルギを得ているとの通
説があるから、したがって処理に際し汚泥の量を充分多
量に保持して、できるだけ多くの燐成分の生物体内への
過剰摂取をはかり、かつその汚泥の引き出しによって効
率的に燐を除去することが必要である。このため、脱窒
処理と、脱燐処理とは曝気処理工程においても相矛盾す
る問題点を有しているものである。Removal of phosphorus and nitrogen contained in sewage is not sufficient, and as a result, even in areas where sewage systems are widely used, environmental pollution that is thought to be caused by nitrogen and phosphorus is occurring. Therefore, after activated sludge treatment,
We are considering combining the treated water with denitrification treatment using anaerobic treatment while supplying carbon sources, and contact filtration dephosphorization using a separate phosphorus compound, but full-scale implementation has not yet been carried out. It is in. In addition, in the above-mentioned batch wastewater treatment method, denitrification and dephosphorization effects are obtained by repeating aerobic treatment and anaerobic treatment alternately, but in the denitrification process, ammonia in the wastewater is removed. In the aeration process of aerobic treatment, it is oxidized and converted into nitrite nitrogen and nitrate nitrogen, and then BOD is reduced in the anaerobic treatment process.
Denitrification is carried out by utilizing the carbon source in the sludge and dispersing it into nitrogen gas and carbon dioxide gas.However, too much emphasis is placed on this nitrification process, and if sufficient aeration treatment is performed, the sludge will self-extinguish. Therefore, its absolute amount will naturally decrease. Although reducing the amount of sludge has its own advantages, desaturation treatment, on the other hand, incorporates the phosphorus components in the water into the organisms in the sludge in the form of orthophosphoric acid, and releases this phosphorus under anaerobic conditions. There is a general belief that energy is obtained by sludge treatment, so it is important to maintain a sufficiently large amount of sludge during treatment to ensure that as much phosphorus component as possible is absorbed into living organisms, and to draw out the sludge. It is necessary to efficiently remove phosphorus by Therefore, denitrification treatment and dephosphorization treatment have contradictory problems even in the aeration treatment process.
この発明は前記問題点を解決するため1回分式汚水処理
について種々比較実験を行なった結果、好気性処理工程
において、水中の溶存酸素を通常の半分位に抑えた低溶
存酸素の状態で処理しても窒素分の硝化は進行し、これ
による脱窒効率は86%と富溶存酸素の場合と変りない
ことが判明したので、好気性処理の操作を制限すること
により、その問題の解決をはかった。In order to solve the above-mentioned problems, this invention was developed as a result of conducting various comparative experiments on single-batch wastewater treatment.In the aerobic treatment process, the water is treated in a low dissolved oxygen state where the dissolved oxygen in the water is reduced to about half of the normal level. However, it was found that the denitrification efficiency was 86%, which was the same as in the case of dissolved oxygen, so we attempted to solve this problem by restricting the aerobic treatment operation. Ta.
このため、好気性処理における好気の状態を曝気時間の
短縮或いはQB気量の調節等によって溶存酸素濃度を0
.5+ng Oz/ Q程度の低溶存酸素濃度に止め
、汚泥の硝化工程を抑制処理することに看目し、これに
より汚泥量の減少を防止して、燐の摂取効率を高め、結
果的に脱燐効果を、富溶存酸素の場合が40〜50%程
度に低下するのに対して、95%程度に向上させること
ができるのである。For this reason, it is possible to reduce the dissolved oxygen concentration to zero by shortening the aeration time or adjusting the QB volume during aerobic treatment.
.. We aim to suppress the nitrification process of sludge by keeping the dissolved oxygen concentration as low as 5+ng Oz/Q, thereby preventing a decrease in the amount of sludge, increasing the phosphorus intake efficiency, and resulting in dephosphorization. The effect can be improved to about 95%, whereas it drops to about 40-50% in the case of rich dissolved oxygen.
次に実施例によりその実施の態様を説明する。 Next, the mode of implementation will be explained with reference to Examples.
第1図に示すように、反応槽1の一側を阻流壁2で原水
流入部を両段し、反応側にはコンプレッサ3から流量計
4.タイマー付き電磁弁5を介して散気管6を槽底付近
に開口させ、同じく○RPメータ7、PHメータ8.酸
素濃度計9の各センサを投入する。また、槽底付近から
引抜管10を挿入し、タイマー設定付き循環ポンプ11
を有する循環配管12を設け、嫌気性時の処理に対処す
る。そして別に処理水引出口13、汚泥引抜口14、ヒ
ーター15を設けると共に、原水タンク16.原水ポン
プ17、原水ピット18を配して、反応槽1に原水を供
給するようにする。As shown in FIG. 1, one side of the reaction tank 1 is provided with a baffle wall 2 for the inflow of raw water in two stages, and a compressor 3 is connected to a flow meter 4 on the reaction side. A diffuser pipe 6 is opened near the bottom of the tank via a solenoid valve 5 with a timer, and a RP meter 7, a PH meter 8. Insert each sensor of the oxygen concentration meter 9. Also, insert the pull-out pipe 10 from near the bottom of the tank, and insert the circulation pump 11 with a timer setting.
A circulation piping 12 is provided to deal with processing during anaerobic conditions. Separately, a treated water outlet 13, a sludge outlet 14, and a heater 15 are provided, and a raw water tank 16. A raw water pump 17 and a raw water pit 18 are arranged to supply raw water to the reaction tank 1.
実験に際し、定常的に同成分の汚水を供給するために人
工下水を使用した。その内容は、BOD源としてはペフ
トン、グルコース、肉エキスを水道水に混入し、BOD
として200ppm、窒素源としては上記のBOD分に
混在する窒素の不足分として尿iA (N I(2CO
N II z )を用い、窒素(N)として30〜40
ppmとした。During the experiment, artificial sewage was used to constantly supply wastewater with the same composition. Its contents include peftone, glucose, and meat extract mixed into tap water as BOD sources, and BOD
As a nitrogen source, urine iA (N I (2CO
30 to 40 as nitrogen (N)
It was set as ppm.
別に燐の供給源としては、燐酸カリ(K2HPk)、燐
酸二水素カリ(KH2POり)、燐酸水素ナトリウム(
NaHPOw 12H20)を燐として4〜5ppm
が原水中に存在するように調整した。Other sources of phosphorus include potassium phosphate (K2HPk), potassium dihydrogen phosphate (KH2PO), and sodium hydrogen phosphate (KH2PO).
NaHPOw 12H20) as phosphorus 4-5 ppm
was adjusted so that it existed in the raw water.
運転に際しては、先ず原水ポンプ17によって原水を原
水ピット18に揚げ、タイマー付き電磁弁5を経て反応
槽1に湛水してから、タイマー設定付き循環ポンプ11
を運転して原水を槽底から抜き出し、上方から槽内に戻
して一時間嫌気性運転で攪拌を行なう。この攪拌により
、新旧液の接触によって、脱窒菌の活動が活発化し、そ
れに加えて汚泥の燐の放出をも促進し、好気性処理時の
、より多量のオルト燐酸の吸収を促進するのである。During operation, raw water is first pumped up to the raw water pit 18 by the raw water pump 17, and then filled in the reaction tank 1 via the solenoid valve 5 with a timer, and then pumped into the circulation pump 11 with a timer setting.
The raw water was extracted from the bottom of the tank by operating the tank, and returned to the tank from above, where it was stirred in an anaerobic mode for one hour. This agitation activates the activity of denitrifying bacteria through contact between the old and new solutions, and also promotes the release of phosphorus from the sludge, promoting the absorption of a larger amount of orthophosphoric acid during aerobic treatment.
次にコンプレッサ3を運転し、圧縮空気を流量計4とタ
イマー付き電磁弁5を介して、散気管6から原水曝気を
行なう、この時、原水中の溶存酸素の状態は、第2図に
示すチャート図に示すように、この図の右方から左方に
向って移行する最下段の軌跡は溶存酸素、その上段の折
線グラフはORPメータ値であるが、先ず嫌気性攪拌の
ときは当然に溶存酸素は0であり、曝気を開始した時点
直後には溶存酸素の上昇はみられないが、oRP値は明
らかに上昇カーブを描いている。そして一時間の曝気工
程による好気性処理をつづけてから、タイマーにより′
rri磁弁5全弁5すれば。Next, the compressor 3 is operated, and the compressed air is passed through the flow meter 4 and the solenoid valve 5 with a timer to aerate the raw water from the aeration pipe 6. At this time, the state of dissolved oxygen in the raw water is shown in Figure 2. As shown in the chart, the trajectory at the bottom of the diagram moving from the right to the left is dissolved oxygen, and the line graph above it is the ORP meter value, but first of all, during anaerobic stirring, naturally Dissolved oxygen was 0, and no increase in dissolved oxygen was observed immediately after aeration was started, but the oRP value clearly drew an increasing curve. Then, after continuing the aerobic treatment with an aeration process for one hour, the timer
If rri magnetic valve 5 full valve 5.
圧力スイッチによりコンプレッサ3は停止し、再び循環
ポンプ11の運転を開始して、嫌気性攪拌に入り、また
一時間後、再度曝気運転を行ない、この動作を交互に繰
り変して、好気性、嫌気性の両方法による汚水の処理を
行なうものである。この場合、チャート図(第2図)に
示すように、曝気を開始して溶存酸素が上昇しはじめ、
0.5m 01/Qに到達する直前に曝気を停止す
るようにすればよいのであるが、本実験ではコンプレッ
サ3を通常運転の場合は一時間交互曝気のとき結果的に
この状態が保たれた。The compressor 3 is stopped by the pressure switch, the circulation pump 11 is started again, and anaerobic agitation is started.An hour later, aeration operation is performed again, and this operation is repeated alternately to produce aerobic, Wastewater is treated using both anaerobic and anaerobic methods. In this case, as shown in the chart (Figure 2), aeration is started and dissolved oxygen begins to rise.
It would be better to stop aeration just before reaching 0.5m 01/Q, but in this experiment, when compressor 3 was operated normally, this state was maintained during alternate aeration for one hour. .
そして汚水処理が終了した後は、2時間静置′して汚泥
を沈殿させ、その上澄水を排出することにより、目的を
達成する。その時の水質変化のデータを示したのが次に
示す第1表であり、特にそのうち、窒素の変化及び燐の
除去の状態を示したものが、第3図の折線グラフ中のN
013であり、他のNo、 1. No、 2は同時に
示している運転状態のグラフである。After the sewage treatment is completed, the sludge is allowed to stand for 2 hours to settle, and the supernatant water is discharged to achieve the purpose. Table 1 below shows data on changes in water quality at that time, and in particular, the changes in nitrogen and the status of phosphorus removal are shown in the line graph in Figure 3.
013, and other Nos. 1. No. 2 is a graph of the operating state shown at the same time.
上記実施例ではたまたま好気性処理、嫌気性処理を各−
間交互に行なった場合に良好な結果が得られているが、
この発明は、好気性処理時の原水中の溶存酸素の状態を
追跡して実施するものであり、装置、規模の変化、汚水
の性質特に有機性窒素、鱗の状態により当然に曝気処理
の態様はその曝気時間によってのみ定まるものではない
。そして溶存酸素は本来D○メータによって測定し、0
.5mg−(h/Q程度に抑制するものであるが、同一
処理場、同時期の原水についてD○1直を測定し、その
時の白金電極法によるoRP値を知っておけば、チャー
ト図にも示すように、それがDO値の上昇に付随して上
昇する傾向にあるので、常にDO値を測定することがな
くとも、測定が容易なoRP値でも制御できるものであ
る。In the above example, it happened that aerobic treatment and anaerobic treatment were performed.
Good results have been obtained when alternating between
This invention is carried out by tracking the state of dissolved oxygen in raw water during aerobic treatment, and the mode of aeration treatment naturally depends on changes in equipment, scale, properties of wastewater, especially organic nitrogen, and the state of scales. is not determined only by the aeration time. Dissolved oxygen was originally measured with a D○ meter, and was 0.
.. 5mg-(h/Q), but if you measure the D○1 direct of raw water from the same treatment plant and at the same time, and know the oRP value measured by the platinum electrode method at that time, you can also see the chart. As shown, it tends to increase as the DO value increases, so it is possible to control the oRP value, which is easy to measure, without constantly measuring the DO value.
そして、第1図に示すように、ORPメータ7、酸素濃
度計9の各々を演算機能を有する制御機19と連結し、
またこの制御器19でコンプレツサ3及び電磁弁5を連
動制御するようにすれば、この電磁弁5を制御する好気
処理時間による硝化制御のほかに、コンプレッサ3の圧
力制御による曝気量の調節によってもその目的を達成す
ることができる。なお図において20は記録計を示す。Then, as shown in FIG. 1, each of the ORP meter 7 and the oxygen concentration meter 9 is connected to a controller 19 having a calculation function,
Furthermore, if the compressor 3 and the solenoid valve 5 are controlled in conjunction with this controller 19, in addition to the nitrification control based on the aerobic treatment time that controls the solenoid valve 5, the aeration amount can be adjusted by controlling the pressure of the compressor 3. can also achieve that purpose. In the figure, 20 indicates a recorder.
この発明は上述のようにして実施するものであるから、
好気性処理と嫌気性処理とを交互に反復操作する回分式
汚水処理方法において、好気性処理における汚水中の溶
存酸素の状態を低溶存酸素領域におさめることで、脱窒
に加えて、有効な脱燐効果が得られるため、在来の問題
点を解決でき、環境改善に寄与するところの大きい方法
であると言える。Since this invention is carried out as described above,
In a batch wastewater treatment method that alternately repeats aerobic treatment and anaerobic treatment, in addition to denitrification, effective Since it has a dephosphorizing effect, it can be said to be a method that can solve conventional problems and contribute greatly to environmental improvement.
第1図はこの発明の方法を実施すべき装置の概略配置図
、第2図は原水中の溶存酸素の状態を示すチャート図で
、第3図はこの発明の方法の実施による原水中の窒素の
変化及び燐の除去の状態を示すグラフである。
なお図において、
1 反応槽
5 タイマー付き電磁弁
7 0RPメータ
9 酸素濃度計
11 タイマー設定付き循環ポンプである。
特許出顕人 水道機二株式会社
第2図
第3図Figure 1 is a schematic layout of the equipment to carry out the method of this invention, Figure 2 is a chart showing the state of dissolved oxygen in raw water, and Figure 3 is a diagram of nitrogen in raw water resulting from implementation of the method of this invention. 2 is a graph showing changes in phosphorus and the state of phosphorus removal. In the figure, 1 reaction tank 5 solenoid valve with timer 7 RP meter 9 oxygen concentration meter 11 circulation pump with timer setting. Patent author: Suidoki Ni Co., Ltd. Figure 2 Figure 3
Claims (1)
分式汚水処理方法において、好気性処理時における汚水
中の溶存酸素の状態を曝気時間の短縮或いは曝気量の調
節等によつて溶存酸素濃度を0.5mg−O_2/l程
度の低溶存酸素領域におさめて汚泥の硝化を抑制し、こ
れにより汚泥に含有される燐保持量の増大をはかつて脱
窒に加えて脱燐効率の向上をうることを特徴とする汚水
処理方法。 2、好気性処理と嫌気性処理とを交互に反復操作する回
分式汚水処理方法において、好気性処理時における汚水
中の溶存酸素の濃度調整をORPメータ(酸化環元電位
差計)の指示によつて自動制御し、溶存酸素濃度を0.
5mg−O_2/l程度の低溶存酸素領域におさめて汚
泥の硝化を抑制し、これにより汚泥に含有される燐保持
量の増大をはかつて脱窒に加えて脱燐効率の向上をうる
ことを特徴とする特許請求の範囲第1項記載の汚水処理
方法[Claims] 1. In a batch wastewater treatment method in which aerobic treatment and anaerobic treatment are alternately repeated, the state of dissolved oxygen in wastewater during aerobic treatment can be adjusted by shortening the aeration time or increasing the amount of aeration. Nitrification of the sludge is suppressed by controlling the dissolved oxygen concentration to a low dissolved oxygen range of around 0.5 mg-O_2/l, and this increases the amount of phosphorus retained in the sludge, which was previously considered to be a denitrification method. In addition, a wastewater treatment method characterized by improving dephosphorization efficiency. 2. In a batch wastewater treatment method that alternately repeats aerobic treatment and anaerobic treatment, the concentration of dissolved oxygen in wastewater during aerobic treatment is adjusted according to instructions from an ORP meter (oxidation ring potentiometer). automatically controls the dissolved oxygen concentration to 0.
Nitrification of sludge is suppressed by keeping the dissolved oxygen in the low dissolved oxygen range of about 5 mg-O_2/l, and this increases the amount of phosphorus retained in the sludge, which has been shown to improve dephosphorization efficiency in addition to denitrification. The sewage treatment method according to claim 1 characterized in
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17514584A JPS6154296A (en) | 1984-08-24 | 1984-08-24 | Treatment of sewage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17514584A JPS6154296A (en) | 1984-08-24 | 1984-08-24 | Treatment of sewage |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6154296A true JPS6154296A (en) | 1986-03-18 |
Family
ID=15991066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17514584A Pending JPS6154296A (en) | 1984-08-24 | 1984-08-24 | Treatment of sewage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6154296A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4917805A (en) * | 1988-12-20 | 1990-04-17 | Reid John H | Cyclical complete mix activated sludge process |
JPH02169095A (en) * | 1988-12-20 | 1990-06-29 | Hanshin Doryoku Kikai Kk | Treatment of sewage and controller |
US5076928A (en) * | 1987-04-11 | 1991-12-31 | Schreiber Corporation, Inc. | Process for biological wastewater treatment |
JPH04197497A (en) * | 1990-11-29 | 1992-07-17 | Kubota Corp | Treatment of sewage |
KR20000066472A (en) * | 1999-04-16 | 2000-11-15 | 유호원 | Denitrification Processing System and the Method for the Wastewater |
KR20010086936A (en) * | 2000-03-04 | 2001-09-15 | 김창원 | High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59132998A (en) * | 1983-01-19 | 1984-07-31 | Kubota Ltd | Water disposal |
-
1984
- 1984-08-24 JP JP17514584A patent/JPS6154296A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59132998A (en) * | 1983-01-19 | 1984-07-31 | Kubota Ltd | Water disposal |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5076928A (en) * | 1987-04-11 | 1991-12-31 | Schreiber Corporation, Inc. | Process for biological wastewater treatment |
US4917805A (en) * | 1988-12-20 | 1990-04-17 | Reid John H | Cyclical complete mix activated sludge process |
JPH02169095A (en) * | 1988-12-20 | 1990-06-29 | Hanshin Doryoku Kikai Kk | Treatment of sewage and controller |
JPH04197497A (en) * | 1990-11-29 | 1992-07-17 | Kubota Corp | Treatment of sewage |
KR20000066472A (en) * | 1999-04-16 | 2000-11-15 | 유호원 | Denitrification Processing System and the Method for the Wastewater |
KR20010086936A (en) * | 2000-03-04 | 2001-09-15 | 김창원 | High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9169142B2 (en) | Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor | |
Cheng et al. | Nitrification/denitrification in intermittent aeration process for swine wastewater treatment | |
CN201343460Y (en) | Device for strengthening the process control in CAST step-feed synchronous nitrogen and phosphorus removal | |
CN101186387A (en) | Method for increasing organism synchronous dephosphorization denitrogenation effect of sewage under anaerobic-hypoxia condition | |
CN109052618A (en) | Activate persulfate, the method for degradation of contaminant, application | |
CN201229714Y (en) | Segmental influent and biological denitrification process control experimental apparatus by circulating type active sludge process | |
Lin et al. | Characterization of Denitrification and Nitrification in a Step‐Feed Alternating Anoxic–Oxic Sequencing Batch Reactor | |
CN107032498B (en) | The method that SBR technique deep denitrification is strengthened in batch water inlet | |
JPS6154296A (en) | Treatment of sewage | |
CN100545102C (en) | A kind of anaerobic-hypoxia condition is the method for biological treatment while dephosphorization denitrogenation down | |
Núnez et al. | Evaluation of an anaerobic/aerobic system for carbon and nitrogen removal in slaughterhouse wastewater | |
JPH05228493A (en) | Method for treating waste water using sulfur bacterium and apparatus therefor | |
Yu et al. | Dynamic control of a continuous-inflow SBR with time-varying influent loading | |
JPH0691294A (en) | Operation control method of batch type active sludge treatment | |
JPH0148834B2 (en) | ||
JPH0483594A (en) | Biological treatment of organic sewage | |
JPS6154295A (en) | Denitrifying and dephosphorizing method of sewage | |
Juan et al. | Biological nitrogen removal in a step-feed CAST with real-time control treating municipal wastewater | |
JPH0691292A (en) | Operation control method of aerobic-anaerobic active sludge treatment apparatus | |
JP2005000715A (en) | Method for controlling operation of aerating stirrer | |
CN110240274B (en) | Two-stage shortcut nitrification endogenous denitrification dephosphorization process based on real-time control | |
JPH06182390A (en) | Operation control method for batch type active sludge treatment | |
JPS61118194A (en) | Biological treatment of waste water | |
JPS61118196A (en) | Biological treatment of waste water | |
JPH08168796A (en) | Aerobic nitrating denitrification process |