[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6154123B2 - - Google Patents

Info

Publication number
JPS6154123B2
JPS6154123B2 JP53137955A JP13795578A JPS6154123B2 JP S6154123 B2 JPS6154123 B2 JP S6154123B2 JP 53137955 A JP53137955 A JP 53137955A JP 13795578 A JP13795578 A JP 13795578A JP S6154123 B2 JPS6154123 B2 JP S6154123B2
Authority
JP
Japan
Prior art keywords
water
drum
water level
steam
waste heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53137955A
Other languages
Japanese (ja)
Other versions
JPS5564108A (en
Inventor
Shozo Nakamura
Yoshihiro Uchama
Taiji Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13795578A priority Critical patent/JPS5564108A/en
Publication of JPS5564108A publication Critical patent/JPS5564108A/en
Publication of JPS6154123B2 publication Critical patent/JPS6154123B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、ガスタービン装置と該ガスタービン
排ガスの熱を利用して蒸気を発生させる廃熱回収
ボイラと該ボイラから出た蒸気で駆動される蒸気
タービン装置とで構成される複合サイクルプラン
トにおける廃熱回収ボイラのドラム水位制御方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a gas turbine device, a waste heat recovery boiler that generates steam using the heat of the gas turbine exhaust gas, and a steam turbine device that is driven by the steam emitted from the boiler. This paper relates to a drum water level control system for a waste heat recovery boiler in a combined cycle plant.

まず複合サイクルプラントの一般的な構成につ
き、その従来例を示す第3図を参照して説明す
る。
First, the general configuration of a combined cycle plant will be explained with reference to FIG. 3, which shows a conventional example thereof.

複合サイクルプラントは、一般に1台あるいは
複数台のガスタービン装置1と、このガスタービ
ン装置と同数の廃熱回収ボイラ11と、1台の蒸
気タービン装置40とにより構成されている。ガ
スタービン装置1は、コンプレツサ2と、該コン
プレツサ2で加圧された空気により燃料配管4か
ら送られて来る燃料を燃焼して高温高圧の燃焼ガ
スを発生する燃焼器3と、燃焼ガスにて駆動され
ガスタービン発電機6を回転させるガスタービン
5とから構成されている。このガスタービン装置
から排出される燃焼ガスは排ガスダクト7を通じ
て廃熱回収ボイラ11に導かれる。またこの排ガ
スダクト7には廃熱回収ボイラ11をバイパスす
るバイパスダクト10が設けられており、該ガス
ダクト7及びバイパスダクト10にはそれぞれ排
ガスの流通を調節するボイラ入口ダンパ8及びボ
イラバイパスダンパ9が設けられている。廃熱回
収ボイラ11は、ドラム式ボイラであつて、給水
配管14通して導入される給水を加熱するエコノ
マイザ15と、蒸気発生用のドラム16及び蒸発
器17と、過熱器18とから構成され、過熱器1
8から出る蒸気は、蒸気管19、ボイラ弁20を
通つて蒸気ヘツダ21へ集められ、該蒸気ヘツダ
21から加減弁22を通じて蒸気タービン23内
に送給されて発電機24を駆動し、復水器32で
復水される。復水された給水は給水ポンプ12に
より、給水調節弁13を備えた給水配管14を通
じて廃熱回収ボイラ11に戻される。また蒸気管
19にはボイラ出口弁20の上流側にバイパス弁
25を備えたバイパス蒸気管26が分岐して設け
られており、減温器27を介して復水器32に連
通しているが、廃熱回収ボイラ起動時などに蒸気
ヘツダ21内の蒸気圧力と廃熱回収ボイラ11の
発生蒸気圧力とのマツチングを図る場合に蒸気を
復水器32に導入するものであり、通常運転時に
は使用されない。28は前記給水ポンプ12の下
流の給水配管より分岐し、前記減温器27に接続
して設けられたスプレー配管、29はスプレー調
整弁である。
A combined cycle plant generally includes one or more gas turbine devices 1, the same number of waste heat recovery boilers 11 as the gas turbine devices, and one steam turbine device 40. The gas turbine device 1 includes a compressor 2, a combustor 3 that burns fuel sent from a fuel pipe 4 using air pressurized by the compressor 2 to generate high temperature and high pressure combustion gas, and a combustor 3 that generates high temperature and high pressure combustion gas. The gas turbine 5 is driven to rotate a gas turbine generator 6. Combustion gas discharged from this gas turbine device is led to a waste heat recovery boiler 11 through an exhaust gas duct 7. Further, the exhaust gas duct 7 is provided with a bypass duct 10 that bypasses the waste heat recovery boiler 11, and the gas duct 7 and the bypass duct 10 are provided with a boiler inlet damper 8 and a boiler bypass damper 9, respectively, that adjust the flow of exhaust gas. It is provided. The waste heat recovery boiler 11 is a drum-type boiler, and is composed of an economizer 15 that heats water supplied through the water supply pipe 14, a drum 16 for steam generation, an evaporator 17, and a superheater 18. Superheater 1
The steam coming out from the steam pipe 19 and the boiler valve 20 are collected in the steam header 21, and from the steam header 21, it is sent through the control valve 22 into the steam turbine 23 to drive the generator 24, and the condensate water is The water is condensed in a vessel 32. The condensed feed water is returned to the waste heat recovery boiler 11 by a feed water pump 12 through a water feed pipe 14 equipped with a feed water control valve 13 . Further, a bypass steam pipe 26 equipped with a bypass valve 25 is branched from the steam pipe 19 on the upstream side of the boiler outlet valve 20 and communicates with the condenser 32 via a desuperheater 27. , Steam is introduced into the condenser 32 to match the steam pressure in the steam header 21 and the steam pressure generated by the waste heat recovery boiler 11, such as when starting the waste heat recovery boiler, and is used during normal operation. Not done. 28 is a spray pipe branched from the water supply pipe downstream of the water supply pump 12 and connected to the desuperheater 27, and 29 is a spray adjustment valve.

従来の給水系の制御装置は、廃熱回収ボイラ1
1に備えたドラム16の水位を一定に保持するよ
うにドラム水位の信号を検出し伝送するドラム水
位検出器51と、ドラム発生蒸気量の信号を伝送
する蒸気流量計52と、給水流量の信号を伝送す
る給水流量計53の3つの測定器からの信号に従
つてドラム水位を一定に制御するために給水調整
弁13を調節する、いわゆる3要素制御による給
水制御装置54が設置されている。
The conventional water supply system control device is a waste heat recovery boiler 1.
a drum water level detector 51 that detects and transmits a drum water level signal so as to keep the water level of the drum 16 constant; a steam flow meter 52 that transmits a signal of the amount of steam generated in the drum; and a feed water flow rate signal. A water supply control device 54 using so-called three-element control is installed, which adjusts the water supply regulating valve 13 in order to control the drum water level to a constant level in accordance with signals from three measuring devices of the water supply flowmeter 53 that transmits the water.

この給水制御装置54により、廃熱回収ボイラ
への熱供給量の変化などにもとづく水位の変動に
対して十分安定した制御を実現できる。
This water supply control device 54 can realize sufficiently stable control against fluctuations in water level due to changes in the amount of heat supplied to the waste heat recovery boiler.

しかしながら、この復水サイクルプラントを過
渡的な微少負荷変化に追従させる場合、ガスター
ビンの負荷変化のみならず、加減弁22の操作に
よるボイラ保有熱の利用により蒸気タービン23
の負荷を先行的に変化させる負荷制御方法があ
り、この制御方法において、特に加減弁22を先
行的に開く場合、ボイラ11内の圧力が急に下が
り、ドラム16内の飽和水が自己蒸発を起し、こ
の発生蒸気泡によりドラム水位が過渡的に盛り上
がる、いわゆる逆応答特性を示す。このようにし
てドラム水位が異常に上昇すると、発生蒸気中に
水滴が混入して廃熱回収ボイラ11内の過熱器1
8や蒸気タービン23などにエロージヨンを引き
起す原因となる。なお、ボイラ圧力が急に低下す
る原因としては、前記のような加減弁22の開操
作以外に、ボイラ出口弁20あるいはバイパス弁
25などの急開操作がある。
However, when this condensate cycle plant is made to follow transient minute load changes, not only the load change of the gas turbine but also the steam turbine 2
There is a load control method that changes the load in advance. In this control method, especially when the regulating valve 22 is opened in advance, the pressure in the boiler 11 suddenly decreases and the saturated water in the drum 16 self-evaporates. The drum water level rises transiently due to the generated steam bubbles, which is a so-called reverse response characteristic. When the drum water level rises abnormally in this way, water droplets are mixed into the generated steam and the superheater 1 in the waste heat recovery boiler 11
This may cause erosion in the steam turbine 8, steam turbine 23, etc. In addition to the above-mentioned opening operation of the control valve 22, the cause of the sudden drop in the boiler pressure is the sudden opening operation of the boiler outlet valve 20 or the bypass valve 25.

本発明の目的は、上記したドラム水位の異常高
を先行的に防止しうる安定したドラム水位制御方
式を提供することにあり、特に、起動操作時のみ
でなく、通常運転中においても負荷変動などによ
る過渡的な蒸気圧力変動に自動的に対応してドラ
ム水位の上昇を防止し得る制御装置を提供するも
のである。
An object of the present invention is to provide a stable drum water level control system that can proactively prevent the above-mentioned abnormal drum water level. The purpose of the present invention is to provide a control device that can automatically respond to transient steam pressure fluctuations and prevent a rise in drum water level.

上記の目的を達成するため、本発明に係るドラ
ム水位制御装置は、廃熱回収ボイラから流出する
蒸気流量、流入給水流量及びドラム水位にもとづ
いて給水流量を制御する3要素制御手段を備えた
複合サイクルプラントにおいて、 A 前記廃熱回収ボイラのドラムに缶水ブロー系
統を設けるとともに、該缶水ブロー系統に缶水
低減弁を設け、 B (イ)ドラム水位が前記缶水低減弁作動のための
設定値を越え、かつ、(ロ)廃熱回収ボイラ内圧力
を表わす信号の変化率が設定値を越えたとき、
前記缶水位低減弁を開弁せしめる缶水位低減弁
制御装置を設けて、 前記3要素制御手段の作動と独立に、ドラム水
を缶水ブロー系統によつて逃がす構造とし、前記
(イ),(ロ)の条件が両立したときは前記3要素制御手
段の作動に先行してドラム水位を低下せしめ得べ
く為したることを特徴とする。
In order to achieve the above object, the drum water level control device according to the present invention is a composite device comprising three-element control means for controlling the feed water flow rate based on the steam flow rate outflowing from the waste heat recovery boiler, the inflow feed water flow rate, and the drum water level. In the cycle plant, A. A can water blowing system is provided in the drum of the waste heat recovery boiler, and a can water reduction valve is provided in the can water blowing system, B. When the set value is exceeded, and (b) the rate of change of the signal representing the internal pressure of the waste heat recovery boiler exceeds the set value,
A can water level reducing valve control device for opening the can water level reducing valve is provided, and the structure is such that drum water is released through a can water blowing system independently of the operation of the three-element control means,
The present invention is characterized in that when the conditions (a) and (b) are compatible, the drum water level is lowered prior to the operation of the three-element control means.

以下本発明の一実施例を図面により説明する。
この実施例は、第3図に示した従来例に本発明を
適用して改良したものである。従来例に比して異
なるところは、仮想線で囲んで示したE部の構成
を付設した点である。32はブロータンク、30
はドラム16とブロータンク32とを連結する缶
水ブローダウン管、55は廃熱回収ボイラ11の
発生蒸気圧力を測定するために設置された圧力
計、56は該圧力計の出力である圧力信号の変化
率を算出する変化率演算器、54はドラム水位検
出器51の出力である水位信号と前記変化率演算
器の出力である圧力変化率信号を入力し、両信号
が共に設定値以上である時に前記缶水低減弁31
を開とする缶水低減弁制御装置であつて、例えば
加減弁22を急開することによつて発生蒸気圧力
が急に低下した時に、ドラム水位が設定レベル以
上であれば制御装置57によつて缶水低減弁31
が開放し、ドラム16内の缶水をブロータンク3
2に排出することによつてドラム16の水位の上
昇を防止するものである。
An embodiment of the present invention will be described below with reference to the drawings.
This embodiment is an improvement of the conventional example shown in FIG. 3 by applying the present invention. The difference from the conventional example is that the configuration of section E shown surrounded by a phantom line is added. 32 is a blow tank, 30
55 is a pressure gauge installed to measure the steam pressure generated by the waste heat recovery boiler 11, and 56 is a pressure signal that is the output of the pressure gauge. A change rate calculator 54 inputs the water level signal which is the output of the drum water level detector 51 and the pressure change rate signal which is the output of the change rate calculator, and when both signals are equal to or higher than the set value. At some point, the canned water reduction valve 31
If the drum water level is above a set level when the generated steam pressure suddenly decreases, for example, by suddenly opening the control valve 22, the control device 57 Canned water reduction valve 31
opens and blows the canned water in the drum 16 into the blow tank 3.
By discharging water into the drum 16, the water level in the drum 16 is prevented from rising.

第2図にこの缶水低減弁制御装置57をより詳
細に示す。58は前記変化率演算器56の出力信
号が変化率設定器59による設定値以上となつた
時に、信号X1を出力するコンパレータ、60は
水位検出器51からの水位信号がドラム水位設定
器61による設定値以上となつた際に信号X2
出力するコンパレータ、62は前記信号X1,X2
が共に入力された時に缶水低減弁31を開く弁開
度制御装置である。前記ドラム水位の設定値は、
標準水位と等しいかあるいはわずかに高い水位に
設定される。
FIG. 2 shows this canned water reduction valve control device 57 in more detail. 58 is a comparator that outputs a signal X1 when the output signal of the rate of change calculator 56 exceeds the value set by the rate of change setter 59; 60 is a comparator that outputs a signal 62 is a comparator that outputs the signal X 2 when the value exceeds the set value.
This is a valve opening degree control device that opens the canned water reduction valve 31 when both are input. The set value of the drum water level is
The water level is set equal to or slightly higher than the standard water level.

第2図の構成において、水位検出器51によつ
て検出されるレベルが設定値以下であれば、コン
パレータ60の出力信号X2は出力されないか
ら、仮に圧力計55、変化率演算器56によつて
求められる圧力変化率が大であつても制御装置6
2は缶水低減弁31を開とすることはない。ま
た、水位が設定値を越えている場合であつても、
圧力変化率が設定値以下であれば同様に制御装置
62は缶水低減弁31を開くことはない。これら
の場合には、ドラム水位が異常高となるおそれが
ないからである。
In the configuration shown in FIG. 2, if the level detected by the water level detector 51 is below the set value, the output signal Even if the required pressure change rate is large, the control device 6
2 does not open the canned water reduction valve 31. Also, even if the water level exceeds the set value,
Similarly, if the pressure change rate is below the set value, the control device 62 will not open the canned water reduction valve 31. This is because in these cases, there is no risk that the drum water level will become abnormally high.

一方、過渡的に標準水位と等しいかわずかに高
く設定された缶水低減弁作動用ドラム水位よりも
実際のドラム水位が上昇している状態において、
廃熱回収ボイラ11の器内圧力が変化率設定器5
9で設定された値を越えるような急激な低下をし
た場合、そのままの状態にしておくと、ドラム水
の自己蒸発にもとづく蒸気泡によりドラム水位が
異常高になるので、これを防ぐために、信号
X1,X2が発生した時には缶水低減弁31を開
き、ドラム水をブローダウン管30を通してブロ
ータンク32に逃がすのである。このようにして
ドラム水を逃がすことによつてドラム水位が低下
し、設定された缶水低減弁作動用ドラム水位より
も低くなるとコンパレータ58の出力信号X1
なくなり、缶水低減弁31は閉となる。
On the other hand, in a state where the actual drum water level is higher than the drum water level for actuating the can water reduction valve, which is temporarily set equal to or slightly higher than the standard water level,
The internal pressure of the waste heat recovery boiler 11 is set by the change rate setting device 5.
If the drum water level drops suddenly beyond the value set in step 9, if left as it is, the drum water level will become abnormally high due to steam bubbles caused by self-evaporation of the drum water.
When X 1 and X 2 occur, the can water reduction valve 31 is opened and the drum water is released into the blow tank 32 through the blowdown pipe 30. By letting the drum water escape in this way, the drum water level decreases, and when it becomes lower than the set drum water level for operating the can water reduction valve, the output signal X1 of the comparator 58 disappears, and the can water reduction valve 31 closes. becomes.

上記実施例では、廃熱回収ボイラ11の器内圧
力を直接変化率演算器56に入力する例について
示したが、上例の作用、効果から容易に理解し得
るように、ボイラ11の器内圧力信号に代えて、
ボイラ器内圧力と共に変化する量を表わす信号、
すなわち第1図の加減弁11の急開、あるいはボ
イラ出口弁20、バイパス弁25の急開信号を圧
力変化信号に換算してコンパレータ58に入力す
るようにすることによつてもドラム水位の異常上
昇を防ぐことができる。また、ブローダウン管3
0によつて排出するドラム水の排出先は、復水器
32かあるいは脱気器(図示せず)の熱源側とし
てもよい。
In the above embodiment, an example was shown in which the internal pressure of the waste heat recovery boiler 11 is directly input to the rate of change calculator 56. However, as can be easily understood from the operation and effect of the above example, Instead of a pressure signal,
A signal that represents a quantity that changes with the pressure inside the boiler,
In other words, abnormalities in the drum water level can also be detected by converting the sudden opening of the control valve 11 shown in FIG. rise can be prevented. Also, blowdown pipe 3
The drum water discharged by the pump 0 may be discharged to the condenser 32 or the heat source side of the deaerator (not shown).

以上述べたように、本発明は、ドラム水位の制
御として、従来の3要素制御に加え、圧力変化率
が大きくかつ水位が高いときに缶水低減弁を開い
てドラムから缶水を流出させる先行制御を行なう
制御方式であるから、ボイラ内圧力が急に低下し
た場合であつてもドラム水位が異常高となること
を防止することができる。従つて、ボイラ発生蒸
気中への水滴のキヤリオーバを防止することがで
き、ボイラ伝熱管や主蒸気管、蒸気タービンのエ
ロージヨンを防止することができる。このため、
複合サイクルプラントにおいて、急激な微少負荷
変動に対し、ガスタービンの負荷を追従させると
共に、蒸気タービン入口の加減弁を先行的に操作
することにより、ボイラ保有熱の過渡的な有効利
用が可能となり、蒸気タービンの応答性を高める
ことができる。また、これに伴ない、複合サイク
ルプラントの応答性をより高めることができる。
As described above, in addition to conventional three-element control to control the drum water level, the present invention provides an advance method in which the can water reduction valve is opened when the rate of pressure change is large and the water level is high to allow can water to flow out of the drum. Since this is a control system that performs control, it is possible to prevent the drum water level from becoming abnormally high even if the boiler internal pressure suddenly decreases. Therefore, carryover of water droplets into the steam generated by the boiler can be prevented, and erosion of the boiler heat exchanger tubes, main steam pipes, and steam turbine can be prevented. For this reason,
In a combined cycle plant, by making the gas turbine load follow the rapid minute load fluctuations and proactively operating the control valve at the steam turbine inlet, it is possible to make effective transient use of the boiler heat. The responsiveness of the steam turbine can be improved. Moreover, in connection with this, the responsiveness of the combined cycle plant can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す複合サイクル
プラントの系統図、第2図は第1図における本発
明に係る部分の詳細を示す系統図である。第3図
は従来の3要素制御手段を備えたドラム水位制御
装置の説明図である。 1……ガスタービン装置、11……廃熱回収ボ
イラ、16……ドラム、21……蒸気ヘツダ、2
2……加減弁、23……蒸気タービン、30……
ブローダウン管、31……缶水低減弁、32……
ブロータンク、51……ドラム水位検出器、52
……蒸気流量計、53……給水流量計、54……
給水制御装置、55……圧力計、56……変化率
演算器、57……缶水低減弁制御装置、58……
コンパレータ、60……コンパレータ、59……
変化率設定器、61……缶水低減弁作動用ドラム
水位設定器、62……弁開度制御装置。
FIG. 1 is a system diagram of a combined cycle plant showing one embodiment of the present invention, and FIG. 2 is a system diagram showing details of the portion of FIG. 1 relating to the present invention. FIG. 3 is an explanatory diagram of a drum water level control device equipped with a conventional three-element control means. 1...Gas turbine device, 11...Waste heat recovery boiler, 16...Drum, 21...Steam header, 2
2...Adjustment valve, 23...Steam turbine, 30...
Blowdown pipe, 31... Canned water reduction valve, 32...
Blow tank, 51...Drum water level detector, 52
... Steam flow meter, 53 ... Water supply flow meter, 54 ...
Water supply control device, 55... Pressure gauge, 56... Rate of change calculator, 57... Canned water reduction valve control device, 58...
Comparator, 60... Comparator, 59...
Change rate setting device, 61... Drum water level setting device for actuating canned water reduction valve, 62... Valve opening degree control device.

Claims (1)

【特許請求の範囲】 1 1台あるいは複数台のガスタービン装置と、
該ガスタービン装置の排ガスを熱源として蒸気を
発生する廃熱回収ボイラ装置と、該廃熱回収ボイ
ラで発生した蒸気により仕事を行なう蒸気タービ
ン装置との組み合わせより成り、かつ、廃熱回収
ボイラから流出する蒸気流量、流入給水流量及び
ドラム水位にもとづいて給水流量を制御する3要
素制御手段を備えた複合サイクルプラントにおい
て、 A 前記廃熱回収ボイラのドラムに缶水ブロー系
統を設けるとともに、該缶水ブロー系統に缶水
低減弁を設け、 B (イ)ドラム水位が前記缶水低減弁作動のための
設定値を越え、かつ、(ロ)廃熱回収ボイラ内圧力
を表わす信号の変化率が設定値を越えたとき、
前記缶水位低減弁を開弁せしめる缶水位低減弁
制御装置を設けて、 前記3要素制御手段の作動と独立に、ドラム水
を缶水ブロー系統によつて逃がす構造とし、前記
(イ),(ロ)の条件が両立したときは前記3要素制御手
段の作動に先行してドラム水位を低下せしめ得べ
く為したることを特徴とする、複合サイクルプラ
ントのドラム水位制御装置。
[Claims] 1. One or more gas turbine devices;
It consists of a combination of a waste heat recovery boiler device that generates steam using the exhaust gas of the gas turbine device as a heat source, and a steam turbine device that performs work with the steam generated by the waste heat recovery boiler, and the steam that flows out from the waste heat recovery boiler In a combined cycle plant equipped with a three-element control means for controlling the feed water flow rate based on the steam flow rate, the inflow feed water flow rate, and the drum water level, A. A can water blowing system is provided in the drum of the waste heat recovery boiler, and the can water A can water reduction valve is installed in the blow system, and B (a) the drum water level exceeds the set value for operating the can water reduction valve, and (b) the rate of change of the signal representing the internal pressure of the waste heat recovery boiler is set. When the value is exceeded,
A can water level reducing valve control device for opening the can water level reducing valve is provided, and the structure is such that drum water is released through a can water blowing system independently of the operation of the three-element control means,
A drum water level control device for a combined cycle plant, characterized in that when the conditions (a) and (b) are compatible, the drum water level is lowered prior to the operation of the three-element control means.
JP13795578A 1978-11-10 1978-11-10 Control system for water level in drum of composite cycle plant Granted JPS5564108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13795578A JPS5564108A (en) 1978-11-10 1978-11-10 Control system for water level in drum of composite cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13795578A JPS5564108A (en) 1978-11-10 1978-11-10 Control system for water level in drum of composite cycle plant

Publications (2)

Publication Number Publication Date
JPS5564108A JPS5564108A (en) 1980-05-14
JPS6154123B2 true JPS6154123B2 (en) 1986-11-20

Family

ID=15210615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13795578A Granted JPS5564108A (en) 1978-11-10 1978-11-10 Control system for water level in drum of composite cycle plant

Country Status (1)

Country Link
JP (1) JPS5564108A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137212U (en) * 1982-03-10 1983-09-14 バブコツク日立株式会社 Steam barrel water level control device for steam barrel boiler
US8539750B2 (en) * 2010-04-30 2013-09-24 Siemens Energy, Inc. Energy recovery and steam supply for power augmentation in a combined cycle power generation system

Also Published As

Publication number Publication date
JPS5564108A (en) 1980-05-14

Similar Documents

Publication Publication Date Title
US9593844B2 (en) Method for operating a waste heat steam generator
US4207842A (en) Mixed-flow feedwater heater having a regulating device
US3894396A (en) Control system for a power producing unit
US5307766A (en) Temperature control of steam for boilers
JPS6154123B2 (en)
JPH01318802A (en) Steam temperature control system for re-heating type combined plant
JPS6135441B2 (en)
JP3491967B2 (en) Gas turbine exhaust gas temperature control device
JPS61108814A (en) Gas-steam turbine composite facility
JPH0226122B2 (en)
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JPS6211167B2 (en)
JPS6211283Y2 (en)
JPS6239661B2 (en)
JPH0330761B2 (en)
JP3176435B2 (en) Steam generator
JPH07217802A (en) Waste heat recovery boiler
JPS6326801B2 (en)
JPS6235002B2 (en)
JPH0722563Y2 (en) Boiler equipment
JPS58200012A (en) Drum water level control device
JP2625422B2 (en) Boiler control device
JP2642389B2 (en) Steam turbine bypass device
JPH08178205A (en) Controller of boiler
JPH028201B2 (en)