[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6151378B2 - - Google Patents

Info

Publication number
JPS6151378B2
JPS6151378B2 JP53066134A JP6613478A JPS6151378B2 JP S6151378 B2 JPS6151378 B2 JP S6151378B2 JP 53066134 A JP53066134 A JP 53066134A JP 6613478 A JP6613478 A JP 6613478A JP S6151378 B2 JPS6151378 B2 JP S6151378B2
Authority
JP
Japan
Prior art keywords
gasket
cathode
polishing
current collector
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53066134A
Other languages
Japanese (ja)
Other versions
JPS54157227A (en
Inventor
Yoshio Uetani
Yasuyoshi Taniguchi
Seiichi Matsushima
Masami Takemori
Hachiro Azuma
Nobuhiko Yoneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP6613478A priority Critical patent/JPS54157227A/en
Publication of JPS54157227A publication Critical patent/JPS54157227A/en
Publication of JPS6151378B2 publication Critical patent/JPS6151378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は電解液としてアルカリ電解液を使用
する酸化銀電池,酸化マンガン電池などのアルカ
リ電池の製造法に関する。 一般に電池の封口においては、陽極缶開口部に
ポリエチレン,ポリプロピレンなどの合成樹脂製
もしくはゴム製のガスケツトを配設し、このガス
ケツトを陽極缶の内方への締付けにより陰極リー
ド体や陰極端子板などの陰極集電体に押し付けて
陽極缶−ガスケツト−陰極集電体間の接面を相互
に密着させることにより、これら接面からの電解
液の漏出を防ぐようにしている。 しかるに苛性カリのようなアルカリ電解液を使
用する電池では上述した封口手段にもかかわらず
耐漏液性が低くなりがちであり、このため今日ま
で陰極端子板の形状を耐漏液性を向上できるよう
な形状に改良したり、またガスケツトと陽極缶お
よび陰極集電体との接面にピツチ,フツ素オイル
などの液状パツキングを介在させるなどの多くの
提案がなされてきたが、これらの提案法によつて
も腕時計,電子露出計などに利用する場合に要求
される高度の耐漏液性は必らずしも得られていな
い。 ところでアルカリ電池における電解液の漏出
は、一般に陽極缶とガスケツトとの接面からより
も、陰極集電体とガスケツトとの接面からの方が
おこりやすい。この理由は放電特性を向上させる
などのためアルカリ電解液の大半量を陰極側に注
入していることにもよるが、主として陰極集電体
特有の電子伝導的なクリープ現象によるものと考
えられている。 すなわち陰極集電体における陰極剤層からの立
ち上り部、つまり集電体と陰極剤層との接触が解
除される境界部で電解液が電子的に還元されて
OH-が生じると、アルカリ濃度が局部的に高く
なつて周辺の電解液が濃度差によつて上記の立ち
上り部に移行してくるが、この移行が電子伝導に
よる影響を受ける結果集電体表面に沿つて経時的
にはい上るクリープ現象として現われる。 また陰極集電体は、陰極活物質として一般的な
アマルカム化された亜鉛粉末との間で局部電池を
形成することがないように、集電体における少な
くとも陰極剤と接触する側が通常銅もしくは銅合
金で構成されているが、この金属と活物質である
亜鉛との電位差が比較的大きいことが前記した電
子伝導的なクリープ現象を顕著にする原因ともな
つている。また、このクリープ現象は酸素が供給
されると促進されるが、前記の銅もしくは銅合金
の表面には通常薄い酸化被膜が存在し、この酸化
被膜が酸素の供給源となり、前記のクリープ現象
をいつそう顕著にする原因となつている。 この発明の目的はこのような事情に照らしてと
くに陰極集電体とガスケツトとの接面からの電解
液の漏出を可及的に抑制して電池全体としての耐
漏液性を向上させようとするものである。 この耐漏液性を向上させるための基本的な考え
方として陰極集電体とガスケツトとの密着性を大
にすることが提案された。 すなわち陰極端子板の成形加工後にダイヤカツ
トなどの機械的研摩や電解研摩により平滑処理す
る報告がなされている(特公昭48−42290号公
報)。しかるにこの方法の工業的有用性に付き検
討してみたこの発明者らの知見によれば、いずれ
の方法もこのような処理にもかかわらず耐漏液性
の改善効果がほとんど認められない場合がある。 この理由は、おそらく成形加工後の複雑な曲り
面を有する陰極端子板においては、機械的研摩に
よる平滑処理では、平滑処理後においても研摩面
の凹部に金属の酸化被膜が残つているため、この
酸化被膜が前述したようにクリープ現象を促進す
ることに起因するものと考えられる。 一方、電解研摩による平滑処理では前記の酸化
被膜は除去されるが、研摩面に電解研摩による化
成膜が形成される。電解研摩による平滑処理では
耐漏液性の改善効果がほとんど認められないの
は、前記の理由とともにこの化成膜に起因すると
考えられる。すなわち、理由は明らかではないが
この化成膜がクリープ現象を促進すると考えられ
る。 この発明者らはこのような欠点を有し、しかも
本来的に作業性や設備的にも不利がある機械研摩
や電解研摩に代り、複雑な形状を有する陰極端子
板のような集電体の研摩面を均一かつ安定してし
かも簡易迅速に平滑処理できるとともに酸化被膜
を完全に取り除き、前記の化成膜などを形成する
ことなく清浄な金属表面を得ることができる方法
を探究したところ、この目的に特定の化学研摩法
が好適であることを知り、逐にこの発明を完成す
るに到つたものである。 以下この発明の一実施例を図面に基づいて説明
する。 第1図においてまず陰極集電体の一種である所
定形状の陰極端子板をつくる。第1図Aはこの方
法に使用する金属板1を示し、この金属板1はた
とえば銅板2の片面に美観ないし耐腐食性を満足
させるニツケル層3を、反対面に亜鉛活物質との
局部電池の形成を防止するための銅層4を設けた
構成からなり、銅層4は通常15〜50μ程度の厚み
にされている。 この金属板1を銅層4が内面側となるように絞
り加工して周辺折り返し部5を有する形状に成形
加工する(第1図B参照)。この成形加工中ニツ
ケル層3および銅層4の表面が数ケ所の折り曲げ
部や折り返し部近傍において著るしく粗くなり、
とくに折り返し部5近傍の銅層4は加工前の表面
粗さ(JISB0601による中心線平均粗さ;以下同
じ)が約1μ以下であつたのに対し、通常4〜7
μ程度の表面粗さに劣化する。 そこでこの成形加工後この発明の特徴とする化
学研摩処理を施こす。この処理は通常研摩液中に
成形体全体を浸漬するという方法で行なわれる
が、研摩処理の目的は飽くまでも電池組立て時に
ガスケツトを当接させる面16を平滑かつ清浄に
することにあるから、この平滑かつ清浄にすべき
面16に相当する前述した表面粗さを有する折り
返し部5近傍だけを研摩液中に浸漬するようにし
て行なつてもよい。 ここに使用する研摩液は酸化能を有するエツチ
ング剤であれば広く使用でき、具体的には過酸化
水素−酸系のエツチング剤、硝酸を主体とする研
摩剤などが挙げられるが、この内とくに望ましい
のは過酸化水素−酸系のエツチング剤である。さ
らに望ましいのは酸としてとくに硫酸を使用した
過酸化水素−硝酸系の研摩剤が好適である。 このような研摩液中に浸漬すると研摩面におけ
る突部がまず酸化されて金属酸化物となりこれが
研摩液中に次第に溶出してくる。この溶出を助け
るため一般に研摩液中に浸漬した後通常の化学研
摩の場合と同様に硫酸などによる酸洗浄を行なう
のが望ましい。この酸化、溶出機構によれば研摩
液中に浸漬した部分を一様にかつ再現性よく平滑
処理できる。 このようにして研摩処理した後充分に水洗し乾
燥すると、少なくとも折り返し部5近傍の銅層4
表面が通常約1〜3μ以下の表面粗さに均一に調
整されかつ酸化被膜や化成膜などがなく清浄にさ
れた第1図Bに示されるようなこの発明に係る陰
極端子板6が得られる。 第2図および第3図はこの陰極端子板6を使用
して製造したボタン型電池を示したもので、7は
酸化第一銀,二酸化マンガン,酸化第二銀,酸化
水銀などの陽極活物質と、カーボンブラツク,リ
ン状黒鉛のような導電助剤とを含み、これにアル
カリ電解液の一部を含浸させてなる陽極合剤、3
はこの合剤7および合剤周縁に固着された金属製
環状台座9に接触する、たとえば親水処理された
微孔性フイルム10と、セロフアンフイルム11
と、ビニロン−レーヨン混抄紙のような吸液層1
2とからなるセパレータ、13はアマルガム化さ
れた亜鉛活物質とポリアクリル酸ソーダ、カルボ
キシメチルセルロース、でんぷんのような糊剤と
を含みこれにアルカリ電解液の大半量を注入して
なる陰極剤である。 14は陽極合剤7およびセパレータ8を内填さ
せた鉄にニツケルメツキした缶などの陽極缶で、
缶開口部に陰極合剤13が内填された陰極端子板
6の周辺折り返し部5を、ポリエチレン,ポリプ
ロピレンなどの各種樹脂もしくはゴムからなる断
面L字状の環状ガスケツト15を介装して嵌合さ
せ、陽極缶14を内方に締付けて陰極端子板6の
周辺折り返し部5近傍における銅層4面にガスケ
ツト15を押し付けて電池内部を密閉構造にする
(第3図参照)。 この構成によれば、陰極端子板6の周辺折り返
し部5近傍における銅層4面が酸化能を有するエ
ツチング剤により化学研摩され、この化学研摩に
よると記述した機械研摩や電解研摩のような銅層
の局部的な欠損部がロツト間のばらつきのない均
一かつ安定した平滑面にされるため、この平滑面
にガスケツト15との密着性が良くなり、さらに
この平滑面は酸化被膜や化成膜などのクリープ現
象を促進する膜のない清浄な面とされているため
結果として電子伝導的なクリープを主体とする陰
極端子板6とガスケツト15との接面16からの
電解液の漏出が電池性能を損なうことなくより確
実に抑制される。 次表は、酸化第一銀を陽極活物質、アマルガム
化された亜鉛粉末を陰極活物質とし電解液として
荷性カリ水溶液を使用したこの発明の前記の構成
からなるボタン型電池Aの耐漏液性(45℃,90%
RH)を、この発明とは異なる構成のボタン型電
池B,Cと対比して示したものである。
The present invention relates to a method for manufacturing alkaline batteries such as silver oxide batteries and manganese oxide batteries that use an alkaline electrolyte as the electrolyte. Generally, when sealing a battery, a gasket made of synthetic resin such as polyethylene or polypropylene or rubber is placed in the opening of the anode can, and this gasket is tightened inward of the anode can to seal the cathode lead body, cathode terminal plate, etc. By pressing the anode can, gasket, and cathode current collector against the cathode current collector, the contact surfaces between the anode can, the gasket, and the cathode current collector are brought into close contact with each other, thereby preventing electrolyte from leaking from these contact surfaces. However, batteries that use alkaline electrolytes such as caustic potash tend to have low leakage resistance despite the above-mentioned sealing means, and for this reason, until now, the shape of the cathode terminal plate has been modified to improve leakage resistance. Many proposals have been made, such as improving the gasket, interposing liquid packing such as pitch or fluorine oil on the contact surfaces of the gasket, anode can, and cathode current collector. However, the high degree of leakage resistance required for use in wristwatches, electronic exposure meters, etc., is not necessarily achieved. By the way, electrolyte leakage in alkaline batteries is generally more likely to occur from the contact surface between the cathode current collector and the gasket than from the contact surface between the anode can and the gasket. The reason for this is that most of the alkaline electrolyte is injected into the cathode side in order to improve discharge characteristics, but it is thought to be mainly due to the electron conductive creep phenomenon unique to the cathode current collector. There is. In other words, the electrolyte is electronically reduced at the rising edge from the cathode agent layer in the cathode current collector, that is, at the boundary where the contact between the current collector and the cathode agent layer is broken.
When OH - is generated, the alkali concentration locally increases and the surrounding electrolyte migrates to the above-mentioned rising part due to the concentration difference, but as this migration is affected by electron conduction, the current collector surface This appears as a creep phenomenon that creeps up over time. In addition, the cathode current collector is usually made of copper or copper at least on the side of the current collector that comes into contact with the cathode agent, in order to prevent the formation of local batteries with amalcamized zinc powder, which is common as a cathode active material. Although it is composed of an alloy, the relatively large potential difference between this metal and zinc, which is an active material, is also a cause of the above-mentioned electron conductive creep phenomenon. In addition, this creep phenomenon is accelerated when oxygen is supplied, but there is usually a thin oxide film on the surface of the copper or copper alloy, and this oxide film acts as a source of oxygen and accelerates the creep phenomenon. When did it become so noticeable? In light of the above circumstances, the purpose of the present invention is to improve the leakage resistance of the battery as a whole by suppressing leakage of electrolyte from the contact surface between the cathode current collector and the gasket as much as possible. It is something. As a basic idea for improving this leakage resistance, it has been proposed to increase the adhesion between the cathode current collector and the gasket. That is, it has been reported that after the cathode terminal plate is formed, it is smoothed by mechanical polishing such as diamond cutting or electrolytic polishing (Japanese Patent Publication No. 42290/1983). However, according to the findings of the inventors who investigated the industrial usefulness of this method, there are cases in which either method shows almost no improvement in leakage resistance despite such treatment. . The reason for this is probably that when a cathode terminal plate has a complicated curved surface after molding, a metal oxide film remains in the recesses of the polished surface even after smoothing by mechanical polishing. This is thought to be due to the fact that the oxide film promotes the creep phenomenon as described above. On the other hand, in smoothing treatment by electrolytic polishing, the oxide film is removed, but a chemically formed film by electrolytic polishing is formed on the polished surface. The reason why almost no improvement in leakage resistance is observed in the smoothing treatment by electrolytic polishing is thought to be due to this chemically formed film as well as the above-mentioned reason. That is, although the reason is not clear, it is thought that this chemically formed film promotes the creep phenomenon. In place of mechanical polishing and electrolytic polishing, which have these drawbacks and are inherently disadvantageous in terms of workability and equipment, the inventors proposed a current collector such as a cathode terminal plate with a complicated shape. We searched for a method that could uniformly and stably smoothen the polished surface easily and quickly, as well as completely remove the oxide film and obtain a clean metal surface without forming the chemical film mentioned above. It was discovered that a specific chemical polishing method was suitable for the purpose, and the present invention was gradually completed. An embodiment of the present invention will be described below based on the drawings. In FIG. 1, first, a cathode terminal plate having a predetermined shape, which is a type of cathode current collector, is made. FIG. 1A shows a metal plate 1 used in this method, which includes, for example, a copper plate 2 with a nickel layer 3 on one side that satisfies aesthetics and corrosion resistance, and a local battery with a zinc active material on the other side. It has a structure in which a copper layer 4 is provided to prevent the formation of .The copper layer 4 usually has a thickness of about 15 to 50 microns. This metal plate 1 is drawn into a shape having a peripheral folded portion 5 by drawing so that the copper layer 4 is on the inner surface side (see FIG. 1B). During this molding process, the surfaces of the nickel layer 3 and the copper layer 4 became extremely rough at several bends and near the folded portions.
In particular, the surface roughness of the copper layer 4 near the folded portion 5 before processing (center line average roughness according to JISB0601; hereinafter the same) was approximately 1μ or less, whereas it is usually 4 to 7μ.
The surface roughness deteriorates to about μ. Therefore, after this molding process, a chemical polishing treatment, which is a feature of the present invention, is performed. This treatment is usually carried out by immersing the entire molded body in a polishing solution, but the purpose of polishing is to make the surface 16 that contacts the gasket during battery assembly smooth and clean. Further, it is also possible to immerse only the vicinity of the folded portion 5 having the above-mentioned surface roughness, which corresponds to the surface 16 to be cleaned, into the polishing liquid. The polishing liquid used here can be broadly used as long as it is an etching agent with oxidizing ability, and specific examples include hydrogen peroxide-acid etching agents and polishing agents mainly based on nitric acid. Preferred is a hydrogen peroxide-acid type etching agent. More desirable is a hydrogen peroxide-nitric acid based abrasive using sulfuric acid as the acid. When immersed in such a polishing liquid, the protrusions on the polished surface are first oxidized to form metal oxides, which gradually dissolve into the polishing liquid. In order to aid this elution, it is generally desirable to perform acid cleaning with sulfuric acid or the like after immersion in a polishing solution, as in the case of ordinary chemical polishing. According to this oxidation and elution mechanism, the portion immersed in the polishing liquid can be smoothed uniformly and with good reproducibility. After polishing in this manner, the copper layer 4 at least near the folded portion 5 is washed thoroughly with water and dried.
A cathode terminal plate 6 according to the present invention as shown in FIG. 1B is obtained, the surface of which is uniformly adjusted to a surface roughness of usually about 1 to 3 μm or less, and which is free from oxide films or chemically formed films and is clean. It will be done. Figures 2 and 3 show a button-type battery manufactured using this cathode terminal plate 6, and 7 is an anode active material such as ferrous oxide, manganese dioxide, ferric oxide, or mercury oxide. and a conductive additive such as carbon black or phosphorous graphite, and a part of the alkaline electrolyte is impregnated into the anode mixture; 3.
For example, a hydrophilically treated microporous film 10 and a cellophane film 11 are in contact with the mixture 7 and the metal annular pedestal 9 fixed to the periphery of the mixture.
and a liquid-absorbing layer 1 like vinylon-rayon mixed paper.
2, and 13 is a cathode material containing an amalgamated zinc active material and a sizing agent such as sodium polyacrylate, carboxymethyl cellulose, and starch, into which most of the alkaline electrolyte is injected. . 14 is an anode can such as a nickel-plated iron can containing an anode mixture 7 and a separator 8;
The peripheral folded portion 5 of the cathode terminal plate 6 containing the cathode mixture 13 in the can opening is fitted with an annular gasket 15 having an L-shaped cross section made of various resins such as polyethylene, polypropylene, or rubber. Then, the anode can 14 is tightened inward and the gasket 15 is pressed against the surface of the copper layer 4 in the vicinity of the peripheral folded portion 5 of the cathode terminal plate 6, thereby creating a sealed structure inside the battery (see FIG. 3). According to this configuration, the four surfaces of the copper layer in the vicinity of the peripheral folded portion 5 of the cathode terminal plate 6 are chemically polished with an etching agent having oxidizing ability, and the copper layer is polished by mechanical polishing or electrolytic polishing as described above. Since the local defects in the gasket 15 are made into a uniform and stable smooth surface with no variation between lots, this smooth surface has good adhesion with the gasket 15, and furthermore, this smooth surface is coated with oxide films, chemical coatings, etc. As a result, leakage of electrolyte from the contact surface 16 between the cathode terminal plate 6 and the gasket 15, which is mainly caused by electronic conductive creep, impairs battery performance. It is suppressed more reliably without any damage. The following table shows the leakage resistance of button-type battery A having the above-described configuration of the present invention, in which silver oxide is used as an anode active material, amalgamated zinc powder is used as a cathode active material, and a charged potassium aqueous solution is used as an electrolyte. (45℃, 90%
RH) is shown in comparison with button-type batteries B and C having a different configuration from that of the present invention.

【表】 なおこの発明に係る電池Aは化学研摩の条件と
して4重量%の硫酸を含む過酸化水素水を研摩剤
としてこの液中に約30〜120秒間浸漬した後、硫
酸による酸洗および水洗を行なつて平滑処理した
陰極端子板を使用したものであり、電池Bは公知
のりん酸浴による電解研摩を行なつて平滑処理し
た陰極端子板を使用したもの、また電池Cは末処
理の陰極端子板を使用したものであり、表中の数
値は各電池100個に付き試験したときの電解液の
漏出が認められた電池個数である。 この表からこの発明に係る電池Aによれば電池
Bに比べてより確実に耐漏液性を向上できるもの
であることが理解できる。 第4図はこの発明の他の実施例を示したもので
あり、前例ではボタン型電池における陰極端子板
の少なくともガスケツトとの当接面を平滑処理し
た場合であるのに対し、筒型電池における銅と亜
鉛との合金である真ちゆう製の陰極リード体17
における少なくともガスケツト15との接面16
に予め酸化能を有するエツチング剤による化学研
摩処理を施こして電池内部を密閉構造にしたもの
である。図中前例と同一組成ないし機能を有する
ものに同一の番号を付しているが、陽極缶14は
内缶14aと外缶14bとから構成されている。 この例によれば陰極リード体17とガスケツト
15との密着性が前記と同様の理由により良くな
るとともに陰極リード体17とガスケツト15と
の接面16がクリープ現象を促進する膜のない清
浄な面となつているためリード体17に沿う接面
からの電子伝導的なクリープを主体とする電解液
の漏出により確実に防ぐことができる。 以上詳述したとおり、この発明は陰極集電体に
おける少なくともガスケツトを当接させる面に特
定の化学研摩処理を施こしたものであり、これに
よれば陰極集電体とガスケツトとの接面からの電
解液の漏出を電池性能の劣化を伴なうことなく、
また機械研摩や電解研摩に比べてより確実に防止
でき、電池全体としての耐漏液性を大巾に改善で
きる。
[Table] Battery A according to the present invention was chemically polished by immersing it in a hydrogen peroxide solution containing 4% by weight of sulfuric acid as an abrasive for about 30 to 120 seconds, followed by pickling with sulfuric acid and washing with water. Battery B uses a cathode terminal plate that has been smoothed by electrolytic polishing using a known phosphoric acid bath, and Battery C uses a cathode terminal plate that has been smoothed by electrolytic polishing using a known phosphoric acid bath. A cathode terminal plate is used, and the numbers in the table are the number of batteries in which electrolyte leakage was observed when 100 batteries were tested. From this table, it can be seen that battery A according to the present invention can more reliably improve leakage resistance than battery B. FIG. 4 shows another embodiment of the present invention. In the previous example, at least the contact surface of the cathode terminal plate with the gasket in a button-type battery was smoothed, whereas in a cylindrical battery, the contact surface with the gasket was smoothed. Cathode lead body 17 made of brass, which is an alloy of copper and zinc.
At least the contact surface 16 with the gasket 15 in
The inside of the battery is sealed by chemical polishing using an etching agent with oxidizing ability. In the figure, parts having the same composition or function as the previous example are given the same numbers, and the anode can 14 is composed of an inner can 14a and an outer can 14b. According to this example, the adhesion between the cathode lead body 17 and the gasket 15 is improved for the same reason as described above, and the contact surface 16 between the cathode lead body 17 and the gasket 15 is a clean surface free from a film that promotes the creep phenomenon. Therefore, it is possible to reliably prevent leakage of the electrolytic solution mainly due to electron conductive creep from the contact surface along the lead body 17. As described in detail above, the present invention applies a specific chemical polishing treatment to at least the surface of the cathode current collector that contacts the gasket, and according to this, from the contact surface of the cathode current collector and gasket electrolyte leakage without deteriorating battery performance.
Furthermore, it can be prevented more reliably than mechanical polishing or electrolytic polishing, and the leakage resistance of the battery as a whole can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bはこの発明による陰極端子板をつ
くる工程を示す説明図、第2図はこの発明により
製造されるボタン型電池の一例を示す部分断面
図、第3図は第2図における部分の拡大図、第
4図はこの発明により製造される筒型電池の一例
を示す断面図である。 6,17……陰極集電体、15……ガスケツ
ト、16……当接させる面。
1A and 1B are explanatory diagrams showing the process of making a cathode terminal plate according to the present invention, FIG. 2 is a partial sectional view showing an example of a button-type battery manufactured according to the present invention, and FIG. FIG. 4, an enlarged partial view, is a sectional view showing an example of a cylindrical battery manufactured according to the present invention. 6, 17... Cathode current collector, 15... Gasket, 16... Surface to be brought into contact.

Claims (1)

【特許請求の範囲】 1 成形加工された陰極集電体6,17の銅ない
し銅合金表面における少なくともガスケツト15
を当接させる面16を酸化能を有する研摩剤で予
め化学研摩することを特徴とするアルカリ電池の
製造法。 2 酸化能を有する研摩剤として過酸化水素−酸
系の研摩剤を使用する特許請求の範囲第1項記載
のアルカリ電池の製造法。
[Claims] 1. At least the gasket 15 on the copper or copper alloy surface of the formed cathode current collector 6, 17
A method for manufacturing an alkaline battery, which comprises chemically polishing the surface 16 that is brought into contact with the abrasive agent in advance using an abrasive having oxidizing ability. 2. The method for producing an alkaline battery according to claim 1, wherein a hydrogen peroxide-acid based abrasive is used as the abrasive having oxidizing ability.
JP6613478A 1978-05-31 1978-05-31 Method of producing alkaline battery Granted JPS54157227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6613478A JPS54157227A (en) 1978-05-31 1978-05-31 Method of producing alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6613478A JPS54157227A (en) 1978-05-31 1978-05-31 Method of producing alkaline battery

Publications (2)

Publication Number Publication Date
JPS54157227A JPS54157227A (en) 1979-12-12
JPS6151378B2 true JPS6151378B2 (en) 1986-11-08

Family

ID=13307083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6613478A Granted JPS54157227A (en) 1978-05-31 1978-05-31 Method of producing alkaline battery

Country Status (1)

Country Link
JP (1) JPS54157227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256112U (en) * 1988-10-13 1990-04-24

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139547A (en) * 1982-11-08 1984-08-10 Toshiba Battery Co Ltd Method for manufacturing alkaline battery
JPH0710178U (en) * 1993-07-27 1995-02-14 ナショナル住宅産業株式会社 Handrail joint material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256112U (en) * 1988-10-13 1990-04-24

Also Published As

Publication number Publication date
JPS54157227A (en) 1979-12-12

Similar Documents

Publication Publication Date Title
JPS5840304B2 (en) alkaline battery
US4220694A (en) Leak-proof alkaline cell and its production
JPS6151378B2 (en)
JPH06338327A (en) Negative electrode collector and button-shaped alkaline battery using same
JPH07326358A (en) Alkaline battery
JPH07302581A (en) Alkaline battery
JPS58155657A (en) Manufacture of alkaline battery
JP4618771B2 (en) Button-type alkaline battery
JP2956345B2 (en) Alkaline batteries
US2726279A (en) Anode for primary cells and method for making same
JPS6348394B2 (en)
JPS5841629B2 (en) alkaline battery
JPS6262024B2 (en)
JPH07254396A (en) Button type alkaline battery
JPS58155654A (en) Manufacture of alkaline battery
JPS6412063B2 (en)
JPS6141099B2 (en)
JPS6156285A (en) Alkali battery
JPS5841627B2 (en) alkaline battery
JPH0620694A (en) Alkaline dry battery
JPS58155653A (en) Manufacture of alkaline battery
JPH05109411A (en) Alkaline dry battery
JPS5837947B2 (en) alkaline battery
JP2946874B2 (en) Mercury-free alkaline batteries
JPS58155655A (en) Manufacture of alkaline battery