[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6151869A - Semiconductor memory device and manufacture thereof - Google Patents

Semiconductor memory device and manufacture thereof

Info

Publication number
JPS6151869A
JPS6151869A JP59174540A JP17454084A JPS6151869A JP S6151869 A JPS6151869 A JP S6151869A JP 59174540 A JP59174540 A JP 59174540A JP 17454084 A JP17454084 A JP 17454084A JP S6151869 A JPS6151869 A JP S6151869A
Authority
JP
Japan
Prior art keywords
capacitor
patterns
fine
memory device
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59174540A
Other languages
Japanese (ja)
Inventor
Katsuhiro Tsukamoto
塚本 克博
Kenji Sugimoto
謙二 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59174540A priority Critical patent/JPS6151869A/en
Priority to DE19853521891 priority patent/DE3521891A1/en
Publication of JPS6151869A publication Critical patent/JPS6151869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To increase electric capacitance without augnmenting the occupying area of a memory cell by forming a plurality of grooves onto the surface of a substrate constituting a capacitor section at predetermined fine pitches. CONSTITUTION:An element isolation region 2 is formed to a substrate 1, and sections except a sections corresponding to a memory capacitor are coated with photo-resists 9. A photo-resist 10 is applied onto the whole surface of the substrate 1, and fine striped patterns are shaped onto the photo-resist 10 through laser holography. The striped patterns may be shaped onto the whole surface of the substrate regardless of foundation patterns at that time, thus requiring no mask-alignment accuracy needed for forming normal fine patterns, then forming fine patterns by a simple process. The substrate 1 is etched in predetermined depth while using the photo-resist patterns as a mask to shape striped patterns with fine irregularities to the memory capacitor 7 section. A memory storage is manufactured according to a normal process.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、キャパシタに電荷を蓄積して記憶動作を行
なうダイナミック型半導体記憶装置の構造とその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a structure of a dynamic semiconductor memory device that performs a storage operation by accumulating charge in a capacitor, and a method of manufacturing the same.

[従来の技1(i ] 第1図1ヨ、従来の1トランジスタ・1キヤパシタで構
成されるメモリセルの断面構造を示す図である。第1図
において、メモリセルはメモリキャパシタ7と転送ゲー
ト8とを含む。メモリキャパシタ7は半導体基板1とそ
の上に形成される極めて簿いゲート絶縁fAQ 3 a
を介して設けられるメモリセルプレート4とからW1成
される。メモリセルプレート4には電源、Cからの電圧
が印加される。転送ゲート8は半導体基板1表面に形成
されるn+拡散領R6a 、6bと、n+拡散@1g、
6a 。
[Conventional technique 1 (i)] Fig. 1 is a diagram showing a cross-sectional structure of a conventional memory cell composed of one transistor and one capacitor. In Fig. 1, the memory cell has a memory capacitor 7 and a transfer gate. 8. The memory capacitor 7 includes a semiconductor substrate 1 and a very low gate insulator fAQ 3 a formed thereon.
W1 is formed from the memory cell plate 4 provided via the memory cell plate 4. A voltage from a power supply C is applied to the memory cell plate 4. The transfer gate 8 includes n+ diffusion regions R6a, 6b formed on the surface of the semiconductor substrate 1, and n+ diffusion@1g,
6a.

6bの間の電荷転送領域上に極めて薄い酸化膜3bを介
して設けられるゲート電極(ワードライン)5とから構
成される。一方のn+拡散fi4域6aは信号読出/書
込用のビットラインと接続される。
A gate electrode (word line) 5 is provided on a charge transfer region between 6b with an extremely thin oxide film 3b interposed therebetween. One n+ diffusion fi4 region 6a is connected to a signal read/write bit line.

メモリセルの一方端はたとえば5t02からなる厚い絶
縁膜による素子分離領[2が形成されており、隣接する
メモリセルと電気的に絶縁される。
An element isolation region [2] made of a thick insulating film made of, for example, 5t02 is formed at one end of the memory cell, and is electrically insulated from adjacent memory cells.

以下上述のメモリセルの動作について説明する。The operation of the above-mentioned memory cell will be explained below.

ゲート絶縁膜3aの誘電率をε、膜厚をtとし、メモリ
キャパシタ7の面積をSとするとキャパシタ7の電気容
量Cは、 C−εS/l となる。電気容量Cを持つキャパシタ7に電源Vccか
らの電圧Vを印加するとメモリキャパシタ7に蓄積され
る電気ff1Qは、 Q=C−V となり、この電気ff1Qの有無に応じて情報が記憶さ
れる。電気mQは転送ゲート8のビットラインへ転送さ
れ、ビットラインに接続されるセンスアンプで電気fd
Qの有無が検出され、記憶情報の読出しが行なわれる。
When the dielectric constant of the gate insulating film 3a is ε, the film thickness is t, and the area of the memory capacitor 7 is S, the electric capacitance C of the capacitor 7 is C-εS/l. When voltage V from the power supply Vcc is applied to capacitor 7 having electric capacity C, electricity ff1Q accumulated in memory capacitor 7 becomes Q=CV, and information is stored depending on the presence or absence of electricity ff1Q. Electricity mQ is transferred to the bit line of transfer gate 8, and electricity fd is transferred to the sense amplifier connected to the bit line.
The presence or absence of Q is detected, and the stored information is read out.

従来の11′・ランジスタ・1キャパシタ方式のメモリ
セルは以上のように構成されており、キャパシタ部に蓄
積しく9る電気量Qを大きくするためには、キャパシタ
部の電気容量Cを大きくする必要がある。電気容量cを
大きくするため、ゲート絶縁膜3a(7)膜厚を1欅く
する方法があり、膜厚100A程度の酸化シリコン膜が
実用化されつつある。
The conventional 11'-transistor-1-capacitor type memory cell is constructed as described above, and in order to increase the amount of electricity Q that accumulates in the capacitor section, it is necessary to increase the electric capacitance C of the capacitor section. There is. In order to increase the capacitance c, there is a method of reducing the thickness of the gate insulating film 3a (7) by 1 inch, and a silicon oxide film with a thickness of about 100 Å is being put into practical use.

しかし、これ以下の膜厚のゲート絶縁膜ではピンホール
などの欠陥が増加し、歩留りが低下するとともに、ゲー
ト絶縁1rA3 aに印加される電界強度が著しく大ぎ
くなり絶縁破壊が生じるなど信預性上問題が生ずる。ま
た、キャパシタの面積Sを大きくすることにより、電気
容量cを大きくすることも可能である。しかしこのこと
はメモリセルの占有面積の増大を来たし、集積密度の大
きな大容量記憶装置を実現する上で大きなFIJ書とな
っていた。
However, if the gate insulating film is thinner than this, defects such as pinholes will increase, yield will decrease, and the electric field strength applied to the gate insulator 1rA3a will become extremely large, resulting in dielectric breakdown and other defects. The above problem arises. Furthermore, by increasing the area S of the capacitor, it is also possible to increase the electric capacitance c. However, this resulted in an increase in the area occupied by the memory cells, and became a major FIJ requirement in realizing a large capacity storage device with a high integration density.

し発明の概要] この発明の目的は、上述のような従来の装置の持つ欠点
を除去し、メモリセルの占有面積を増大させずに電気容
量を大きくすることが可能な半導体記憶装置とその製造
方法を提供することである。
[Summary of the Invention] An object of the present invention is to provide a semiconductor memory device that eliminates the drawbacks of the conventional device as described above and can increase the electric capacity without increasing the area occupied by memory cells, and its manufacture. The purpose is to provide a method.

この発明は、要約すれば、レーザホログロフィを用いて
微101なストライプ状パターンを半導体基板上のフォ
トレジストに形成し、このフォトレジストのスト・ライ
ブ状パターンをマスクとして用いて、キャパシタを形成
する半導体基板表面上に一定聞mの複数個の溝を形成し
、この溝の表面ずべてを主11パシタ而積として利用す
ることによりキャパシタ面積の増大を図った半導体記憶
装置およびその製造方法である。
In summary, this invention uses laser holography to form a minute 101 striped pattern on a photoresist on a semiconductor substrate, and uses this striped pattern of the photoresist as a mask to form a capacitor. A semiconductor memory device and a method for manufacturing the same, in which a plurality of grooves of a certain length m are formed on the surface of a semiconductor substrate, and the entire surface of the grooves is used as a main 11 pacitor area, thereby increasing the capacitor area. be.

この発明の目的および他の目的と特徴は以下に図面を参
照して行なう詳細な説明から一層明らかとなろう。
The objects and other objects and features of the present invention will become more apparent from the detailed description given below with reference to the drawings.

[発明の実施例] 以下、この発明の一実施例を図を参照して説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to the drawings.

第2図は、この発明の一実施例によるメモリセル構造の
断面を示す図である。第2図において、第1図の対応す
る部分と同一または相当部分を同一符号で示ず。第2図
のメモリキャパシタ7には、この発明の特徴として、0
.5μm以下のピッチを有する凹凸が形成されており、
この凹凸によりキャパシタとしての占有面積を増加させ
ることなくキャパシタの表面積Sを大きくしている。
FIG. 2 is a diagram showing a cross section of a memory cell structure according to an embodiment of the present invention. In FIG. 2, the same or corresponding parts as the corresponding parts in FIG. 1 are not indicated by the same reference numerals. As a feature of the present invention, the memory capacitor 7 in FIG.
.. Irregularities with a pitch of 5 μm or less are formed,
These irregularities increase the surface area S of the capacitor without increasing the area occupied by the capacitor.

凹凸のピッチを(溝の中心と隣接する溝の中心との距離
)を△、深さをDとすると、キャパシタ面積Sは凹凸が
形成される前の面積Soに比べて、S/5o=1 −ト
 2D/  △ に増加する。たとえばD/A−0,5のときS/So 
=2.D/Δ=1のときS/5o−3,D/△=2のと
きS/5o−5・・・となる。凹凸のピッチ八を0.5
μmとすると、深さ1μmの溝を形成すればD/A−2
となり、上式よりキャパシタの表面積を5倍にすること
が可能となる。
If the pitch of the unevenness (distance between the center of a groove and the center of an adjacent groove) is △ and the depth is D, then the capacitor area S is S/5o=1 compared to the area So before the unevenness is formed. -G increases to 2D/△. For example, when D/A-0,5, S/So
=2. When D/Δ=1, S/5o-3, when D/Δ=2, S/5o-5, etc. The pitch of unevenness is 0.5
μm, if a groove with a depth of 1 μm is formed, D/A-2
According to the above equation, the surface area of the capacitor can be increased five times.

凹凸のピッチAは小さければ小さいほど溝の深さDも小
さくすることが可能であるが、通常の写真製版技術では
2μm以下のピッチを有する凹凸パターンの形成は実用
上困難である。
The smaller the pitch A of the unevenness is, the smaller the depth D of the groove can be, but it is practically difficult to form an uneven pattern with a pitch of 2 μm or less using ordinary photolithography technology.

この困難を解消するため本発明の実施例では、レーザホ
ログラフィを用いて微細なストライプ状パターンを形成
する技術を用いる。
In order to overcome this difficulty, the embodiments of the present invention employ a technique of forming fine striped patterns using laser holography.

第3図は、レーザホログラフィの原理を示す概略図であ
る。第3図において、@e−Cdレーザ発振器からレー
ザビーム(波長λ−325nm)を発生させ、レンズL
2で半導体基板の大きさとほぼ等しいビーム径を有する
平行光線にした後、ハーフミラ−BSでレーザ光線を2
つに分離し、各々のレーザ光線を反射11M2.M3で
反射させ、フォトレジス1−が塗布された半導体基板上
に結像させる。フォトレジストが塗布された半導体基板
上にはフォトレジストが塗布された半導体u板上には2
つのシー1f光線の干渉パターンが形成される。
FIG. 3 is a schematic diagram showing the principle of laser holography. In Figure 3, a laser beam (wavelength λ-325 nm) is generated from an @e-Cd laser oscillator, and a lens L
After converting the laser beam into a parallel beam with a beam diameter approximately equal to the size of the semiconductor substrate in step 2, the laser beam is converted into a parallel beam with a half mirror BS.
The laser beams are separated into 11M2. It is reflected by M3 and an image is formed on the semiconductor substrate coated with photoresist 1-. On the semiconductor substrate coated with photoresist, on the semiconductor U board coated with photoresist, there are two
An interference pattern of two sea 1f rays is formed.

この干渉パターンのピッチΔは Δ=λ/ 2 sinθ となる。したがって、θ −90″の場合にはΔ−16
2.5n+++の干渉パターンが得られ、半導体基板上
に塗15されたフォトレジストを感光し、△=162.
5n+++のピッチを有するストライプ状のフォトレジ
ストパターンが得られる。
The pitch Δ of this interference pattern is Δ=λ/ 2 sin θ. Therefore, for θ −90″, Δ−16
An interference pattern of 2.5n+++ was obtained, and the photoresist coated on the semiconductor substrate was exposed to light, and Δ=162.
A striped photoresist pattern with a pitch of 5n+++ is obtained.

第4八図ないし第4H図は、上述のレーザホログラフィ
による微細パターン形成法を用いた半導体記憶装置の製
造工程を示す図である。以下、第4八図ないし第4H図
を参照して、この発明による半導体記憶装置の製造工程
について説明する。  ゛半導体基板1に素子分離領v
A2を形成した後(第4A図)、メモリキャパシタに相
当する部分 。
FIGS. 48 to 4H are diagrams showing the manufacturing process of a semiconductor memory device using the above-described fine pattern forming method by laser holography. Hereinafter, the manufacturing process of the semiconductor memory device according to the present invention will be explained with reference to FIGS. 48 to 4H.゛Element isolation region v on semiconductor substrate 1
After forming A2 (FIG. 4A), the portion corresponding to the memory capacitor.

以外をフォトレジスト9で覆う(第4B図)。次に、第
4C図において、半導体基板1全表面にフオトレジスI
−10を塗布した後、レーザホログラフ1′により微細
なストライプ状のパターンをフォトレジスト10上に形
成する。このとぎ、下地パターンに関係なく、半導体基
板表面全面にストライプ状パターンを形成してもよいの
で、通常の微細パターン形成で必要とされるマスク合わ
せ蹟度を全く必要とせず、非常に簡単な工程で微細パタ
ーンを形成することができる。次に、第4D図に示すよ
うにフォトレジストパターンをマスクとして、半導体曇
仮1を所定の深さまでエツチングしメモリキャパシタ7
の部分に微細な凹凸を有するストライプ状のパターンを
形成する。この後、通常の工程に従い、薄い絶縁膜3の
形成(第4E図)、メモリセルプレート4の形成(第4
F図)、転送ゲート8の形成(第4G図)、ソース・ド
レイン(0“拡散領域)68.6b、コンタクト(図示
せず)、リンガラス層11.アルミニウム配線12を形
成して(第4H図)半導体記憶装置を製造する。
The remaining portions are covered with photoresist 9 (FIG. 4B). Next, in FIG. 4C, a photoresist I is formed on the entire surface of the semiconductor substrate 1.
-10, a fine stripe pattern is formed on the photoresist 10 using a laser hologram 1'. At this point, a striped pattern can be formed on the entire surface of the semiconductor substrate regardless of the underlying pattern, so there is no need for mask alignment required in normal fine pattern formation, making it a very simple process. can form fine patterns. Next, as shown in FIG. 4D, using the photoresist pattern as a mask, the semiconductor cloud 1 is etched to a predetermined depth to form a memory capacitor 7.
A striped pattern with fine irregularities is formed in the area. Thereafter, according to the usual steps, a thin insulating film 3 is formed (FIG. 4E), and a memory cell plate 4 is formed (FIG. 4E).
Formation of transfer gate 8 (FIG. 4G), source/drain (0" diffusion region) 68.6b, contact (not shown), phosphor glass layer 11, and aluminum wiring 12 (FIG. 4H) Figure) Manufacturing a semiconductor memory device.

[発明の効果] 以上のように、この発明によれば、半導体記憶!I!置
としてキャパシタ部 に複数個の溝を形成することによりキャパシタの電気容
量の増大を図っている。
[Effects of the Invention] As described above, according to the present invention, semiconductor memory! I! In addition, by forming a plurality of grooves in the capacitor portion, the capacitance of the capacitor is increased.

また、キャパシタ部の溝の製造方法としてレーデホログ
ラフィを用いているので、極めて微細なピッチ(0,1
5〜0.5μ釦程度のピッチ)の溝をマスク合わせを必
要とせずに形成することができる。
In addition, since Radhe holography is used as the manufacturing method for the grooves in the capacitor section, extremely fine pitches (0, 1
Grooves with a pitch of about 5 to 0.5 micron buttons can be formed without the need for mask alignment.

これらの構造および製造方法の特徴により、メモリキャ
パシタの占有面積を増加させずにメモリキャパシタの電
気容量を飛躍的に増加させることができ、このようなメ
モリセルを用いれば大容量の半導体記憶V4置を高歩留
で、かつ安価に製造することができる。
These features of the structure and manufacturing method make it possible to dramatically increase the electrical capacity of the memory capacitor without increasing the area occupied by the memory capacitor, and if such memory cells are used, large-capacity semiconductor memory V4 devices can be used. can be manufactured at high yield and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のメモリセルの断面構造を示す図である。 第2図はこの発明の一実施例による断面構造を示V図で
ある。第3図はレーザホログラフイによる微細パターン
形成力を示す概略図である。第4A図〜第4H図はこの
発明の一実施例に  ゛よる半導体記憶装置の製造法を
示ず工程図である。 図に5いて、1は半導体M仮、2は素子分殖饋域、3.
3a 、3bは薄い絶縁膜、4はメモリセルプレート、
5はゲー1− if tM、5a 、5bはn+拡散領
域、7はメモリキャパシタ、8は転送ゲート、9はフォ
トレジスト、10はフォトレジスト、11はリンガラス
、12はアルミニウム配線である。 なお、図中、同符
号は同一または相当部を示す。 代  理  人     大  岩  増  雄第11
図 8・軸重’I”’)     7、メLす午7パシタ第
 20 8、転1ゲ゛−ドア、メミヵむノぐシク%3図 第480 手続補正書(自発) 雰
FIG. 1 is a diagram showing a cross-sectional structure of a conventional memory cell. FIG. 2 is a V diagram showing a cross-sectional structure according to an embodiment of the present invention. FIG. 3 is a schematic diagram showing the ability to form fine patterns by laser holography. FIGS. 4A to 4H are process diagrams showing a method of manufacturing a semiconductor memory device according to an embodiment of the present invention. In the figure, 1 is a semiconductor M, 2 is a device growth region, and 3.
3a and 3b are thin insulating films, 4 is a memory cell plate,
5 is a gate 1-if tM, 5a and 5b are n+ diffusion regions, 7 is a memory capacitor, 8 is a transfer gate, 9 is a photoresist, 10 is a photoresist, 11 is a phosphorus glass, and 12 is an aluminum wiring. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa 11th
Fig. 8 Axle load 'I''

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板と絶縁膜と電極とから構成されるキャ
パシタ部に電荷を蓄積させて記憶動作を行なう半導体記
憶装置であつて、 前記キャパシタ部を構成する半導体基板の表面上に一定
の微細なピッチで複数個の溝が形成された、半導体記憶
装置。
(1) A semiconductor memory device that performs a memory operation by accumulating charges in a capacitor section composed of a semiconductor substrate, an insulating film, and an electrode, in which a certain fine pattern is formed on the surface of the semiconductor substrate constituting the capacitor section. A semiconductor memory device in which multiple grooves are formed at pitches.
(2)前記一定の微細なピッチは0.5μm以下である
、特許請求の範囲第1項記載の半導体記憶装置。
(2) The semiconductor memory device according to claim 1, wherein the certain fine pitch is 0.5 μm or less.
(3)前記半導体記憶装置は、MOSトランジスタで構
成される転送ゲートと、前記キャパシタとからなるメモ
リセルである、特許請求の範囲第1項または第2項記載
の半導体記憶装置。(4)半導体基板と絶縁膜と電極と
から構成されるキャパシタ部を有する半導体記憶装置の
製造方法であつて、 前記半導体基板表面上にフォトレジストを塗布するステ
ップと、 前記塗布されたフォトレジスト表面上に短波長レーザ光
を用いたホログラフィにより干渉パターンを結像させ、
前記フォトレジストに微細なストライプ状パターンを形
成するステップと、 前記形成されたフォトレジストのストライプ状パターン
をマスクとして前記キャパシタ部を構成する半導体基板
表面をエッチングするステップと、前記絶縁膜を形成す
るステップと、 前記形成された絶縁膜上に前記電極を形成するステップ
とを含む、半導体記憶装置の製造方法。
(3) The semiconductor memory device according to claim 1 or 2, wherein the semiconductor memory device is a memory cell consisting of a transfer gate constituted by a MOS transistor and the capacitor. (4) A method for manufacturing a semiconductor memory device having a capacitor section composed of a semiconductor substrate, an insulating film, and an electrode, comprising the steps of: applying a photoresist on the surface of the semiconductor substrate; and the surface of the applied photoresist. An interference pattern is imaged on top using holography using short wavelength laser light,
forming a fine striped pattern on the photoresist; etching the surface of the semiconductor substrate constituting the capacitor portion using the formed striped pattern of the photoresist as a mask; and forming the insulating film. and forming the electrode on the formed insulating film.
JP59174540A 1984-08-20 1984-08-20 Semiconductor memory device and manufacture thereof Pending JPS6151869A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59174540A JPS6151869A (en) 1984-08-20 1984-08-20 Semiconductor memory device and manufacture thereof
DE19853521891 DE3521891A1 (en) 1984-08-20 1985-06-19 Semiconductor storage device and process for fabricating it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59174540A JPS6151869A (en) 1984-08-20 1984-08-20 Semiconductor memory device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6151869A true JPS6151869A (en) 1986-03-14

Family

ID=15980323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59174540A Pending JPS6151869A (en) 1984-08-20 1984-08-20 Semiconductor memory device and manufacture thereof

Country Status (2)

Country Link
JP (1) JPS6151869A (en)
DE (1) DE3521891A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005584A1 (en) * 1990-09-13 1992-04-02 Siemens Aktiengesellschaft Circuit structure capable of integration and manufacturing process thereof
US5204280A (en) * 1992-04-09 1993-04-20 International Business Machines Corporation Process for fabricating multiple pillars inside a dram trench for increased capacitor surface
DE19713052A1 (en) * 1997-03-27 1998-10-01 Siemens Ag Capacitor structure
DE19940825A1 (en) * 1999-08-27 2001-04-05 Infineon Technologies Ag Capacitor structure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1319011A (en) * 1961-05-01 1963-02-22 Pacific Semiconductors Silicon surface treatment
US3457633A (en) * 1962-12-31 1969-07-29 Ibm Method of making crystal shapes having optically related surfaces
GB1439351A (en) * 1972-06-02 1976-06-16 Texas Instruments Inc Capacitor
US3945825A (en) * 1974-05-22 1976-03-23 Rca Corporation Method for producing width-modulated surface relief patterns
US3894872A (en) * 1974-07-17 1975-07-15 Rca Corp Technique for fabricating high Q MIM capacitors
US4055423A (en) * 1976-04-15 1977-10-25 Rca Corporation Organic medium for thin-phase holography
US4353086A (en) * 1980-05-07 1982-10-05 Bell Telephone Laboratories, Incorporated Silicon integrated circuits
US4403827A (en) * 1980-09-12 1983-09-13 Mcdonnell Douglas Corporation Process for producing a diffraction grating
US4336320A (en) * 1981-03-12 1982-06-22 Honeywell Inc. Process for dielectric stenciled microcircuits
JPS58154256A (en) * 1982-03-10 1983-09-13 Hitachi Ltd Semiconductor memory and preparation thereof
JPS5982761A (en) * 1982-11-04 1984-05-12 Hitachi Ltd Semiconductor memory
JPS59161860A (en) * 1983-03-07 1984-09-12 Hitachi Ltd Semiconductor memory device
JPS60113963A (en) * 1983-11-25 1985-06-20 Toshiba Corp Semiconductor memory device
DE3404673A1 (en) * 1984-02-10 1985-08-14 Ibm Deutschland Gmbh, 7000 Stuttgart Photolithographic device and magnetic surface memories produced thereby

Also Published As

Publication number Publication date
DE3521891A1 (en) 1986-02-20
DE3521891C2 (en) 1992-07-30

Similar Documents

Publication Publication Date Title
US5364811A (en) Method of manufacturing a semiconductor memory device with multiple device forming regions
US5296410A (en) Method for separating fine patterns of a semiconductor device
JPH01282855A (en) Forming capacitor on semiconductor substrate
JP3110328B2 (en) Semiconductor storage device
JP2528737B2 (en) Semiconductor memory device and manufacturing method thereof
KR960011652B1 (en) Stack capacitor and the method
JPH0828476B2 (en) Semiconductor device and manufacturing method thereof
JP3359945B2 (en) Method for manufacturing semiconductor memory device
US4487795A (en) Method of forming patterned conductor lines
JPH02106958A (en) Semiconductor device
JPS6151869A (en) Semiconductor memory device and manufacture thereof
KR100291252B1 (en) How to Form Accumulation Nodes in Semiconductor Memory Devices
JPH03174767A (en) Manufacture of semiconductor memory device
JPH0438144B2 (en)
KR100278643B1 (en) Semiconductor Memory Device Manufacturing Method
JPH05110026A (en) Manufacture of semiconductor device
KR960001331B1 (en) Semiconductor memory device and the manufacturing method
KR0165459B1 (en) Semiconductor isolation film and manufacture thereof
JPS6223154A (en) Semiconductor memory and manufacture thereof
KR950005261B1 (en) Contact hole forming method of semiconductor device
JP3263870B2 (en) Method of manufacturing semiconductor device having fine pattern conductive layer
JP2989068B2 (en) Method for manufacturing semiconductor device
KR100243258B1 (en) Semiconductor memory device and manufacturing method thereof
KR960003770B1 (en) Semiconductor memory device and the manufacturing method
KR930011126B1 (en) Method of manufacturing dram having a capacitor cell