JPS6150372B2 - - Google Patents
Info
- Publication number
- JPS6150372B2 JPS6150372B2 JP55120360A JP12036080A JPS6150372B2 JP S6150372 B2 JPS6150372 B2 JP S6150372B2 JP 55120360 A JP55120360 A JP 55120360A JP 12036080 A JP12036080 A JP 12036080A JP S6150372 B2 JPS6150372 B2 JP S6150372B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- thin film
- base material
- silicide compound
- hydrogen silicide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007789 gas Substances 0.000 claims description 33
- -1 hydrogen silicide compound Chemical class 0.000 claims description 22
- 239000004065 semiconductor Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 20
- 239000010409 thin film Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 229910021332 silicide Inorganic materials 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 5
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 5
- 230000005684 electric field Effects 0.000 claims description 4
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 claims description 2
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 claims description 2
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 claims description 2
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 claims description 2
- 239000005052 trichlorosilane Substances 0.000 claims description 2
- WPPVEXTUHHUEIV-UHFFFAOYSA-N trifluorosilane Chemical compound F[SiH](F)F WPPVEXTUHHUEIV-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910052571 earthenware Inorganic materials 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 229910052990 silicon hydride Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/517—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】
本発明は薄膜半導体とくに太陽電池用薄膜半導
体の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thin film semiconductor, particularly a thin film semiconductor for solar cells.
従来、太陽電池用の半導体の製造方法として
は、シリコン溶融体から結晶成長させた単結晶イ
ンゴツトを輪切りにしたシリコンウエハ若しくは
リボン結晶等を基板としてこの基板に不純物の拡
散等を施こす方法やモノシラン(SiH4)に不純物
を添加したガス中のグロー放電により不純物制御
された非晶質シリコン半導体薄膜を形成させる方
法等が知られている。しかしながら、単結晶を基
板とする前者の場合は、原材料として高純度多結
晶シリコンを必要とし、更に該高純度多結晶シリ
コンの高温融解物から長時間かけて結晶を成長さ
せて単結晶を形成させ使用に供されるが、高純度
多結晶を製造する段階及び単結晶を作る段階で要
する電力はKg当り1000KW以上となり莫大なエネ
ルギーを必要とする他、太陽電池を形成するため
に複雑な工程を必要とするため、得られる太陽電
池は非常に高価なものになるという問題点があつ
た。 Conventionally, methods for manufacturing semiconductors for solar cells include using a silicon wafer or ribbon crystal, which is made by cutting a single crystal ingot grown from a silicon melt, as a substrate, and diffusing impurities into this substrate, or using monosilane. A method is known in which an amorphous silicon semiconductor thin film with controlled impurities is formed by glow discharge in a gas containing impurities (SiH 4 ). However, in the former case where a single crystal is used as a substrate, high purity polycrystalline silicon is required as a raw material, and a crystal is grown over a long period of time from a high temperature melt of the high purity polycrystalline silicon to form a single crystal. However, the power required to produce high-purity polycrystals and single crystals is over 1000KW per kg, which is a huge amount of energy.In addition, complex processes are required to form solar cells. However, there was a problem in that the resulting solar cells were extremely expensive.
一方、モノシランガスのグロー放電分解法で作
成される非晶質シリコンを用いる後者の方法は、
非晶質半導体自体が構造不敏感であるので基材と
して、ガラス、プラスチツクといつた廉価な材料
を使用することが出来たり、又薄膜化が容易なた
め、数ミクンロのものの作成が可能であり、原材
料や電力エネルギーが少なくて済み、且つ結晶質
半導体では困難であつた連続生産や大面積化も可
能であることなどから、近年各国に於いて精力的
に研究開発され、一部は実用に供されるまでにな
つている。 On the other hand, the latter method uses amorphous silicon created by glow discharge decomposition of monosilane gas.
Since the amorphous semiconductor itself is structurally insensitive, it is possible to use inexpensive materials such as glass and plastic as the base material, and because it is easy to make thin films, it is possible to create a film of several micrometers. , they require less raw materials and electric energy, and can be produced continuously and over large areas, which was difficult with crystalline semiconductors, so they have been actively researched and developed in many countries in recent years, and some of them have been put into practical use. It has reached the point where it is being served.
該非晶質シリコン半導体の形成方法としては、
デイビツド・エミル・カールソンによるグロー放
電分解法による非晶質シリコンの製造方法(特公
昭53−37718号公報)が広く採用されているほか
にスパツタリング法が提案されている。しかしな
がら、グロー放電分解法及びスパツタリング法は
ともにモノシランガス又は水素もしくはアルゴン
ガスの数トールから10-2トール程度の比較的真空
度の低い低圧雰囲気中に於けるプラズマを利用し
ているため、形成されるシリコン膜の膜質が悪く
なつたり、又、プラズマ制御の困難性から生ずる
物性上のバラツキや不均一性が生じる等の難点を
有し、廉価な太陽電池を大面積で連続生産するに
は、未だ解決しなければならない問題点を多く残
していた。本発明は上記グロー放電法及びスパツ
タリング法による非晶質シリコン薄膜半導体の製
造方法に於ける問題点を解消して、とくに太陽電
池として品質のすぐれた非晶質シリコン薄膜半導
体を連続的に生産出来、しかも大面積化が可能な
薄膜半導体の製造方法を提供することを目的とし
てなされたものである。 The method for forming the amorphous silicon semiconductor is as follows:
In addition to David Emil Carlson's method for producing amorphous silicon by glow discharge decomposition (Japanese Patent Publication No. 53-37718), which has been widely adopted, a sputtering method has also been proposed. However, both the glow discharge decomposition method and the sputtering method use plasma in a low-pressure atmosphere with a relatively low degree of vacuum of several torr to 10 -2 torr of monosilane gas, hydrogen, or argon gas. It is still difficult to continuously produce large-area inexpensive solar cells due to problems such as poor silicon film quality and variations and non-uniformity in physical properties caused by difficulties in plasma control. Many problems remained that needed to be resolved. The present invention solves the problems in the methods of manufacturing amorphous silicon thin film semiconductors using the glow discharge method and sputtering method, and makes it possible to continuously produce high quality amorphous silicon thin film semiconductors, especially for use in solar cells. Moreover, the purpose of this invention is to provide a method for manufacturing a thin film semiconductor that can be manufactured in a large area.
本発明の要旨は8×10-4トール以下の高真空に
排気された真空槽内に、一般式SiH4-oXn(但
し、式中Xは弗素原子又は塩素原子を示し、nは
0乃至4の数値を示す)で示されるケイ化水素化
合物ガス、上記ケイ化水素化合物とジボランとの
混合ガス及び上記ケイ化水素化合物とホスフイン
との混合ガスからなり群より選ばれたガスを導入
し、該導入されたガスに加速電子を衝突させて電
離若しくは分解させ、かくして生成したシリコン
イオン等の分解生成イオンを負の高電圧電解によ
り加速して基材表面に衝突させて、該基材表面に
非晶質薄膜を形成することを特徴とする薄膜半導
体の製造方法に存する。以下図面を参照しながら
本発明の薄膜半導体の製造方法について説明す
る。 The gist of the present invention is that a vacuum chamber of the general formula SiH 4- o Introducing a gas selected from the group consisting of a hydrogen silicide compound gas represented by 4), a mixed gas of the above hydrogen silicide compound and diborane, and a mixed gas of the above hydrogen silicide compound and phosphine, The introduced gas is ionized or decomposed by colliding with accelerated electrons, and the resulting decomposed ions such as silicon ions are accelerated by negative high voltage electrolysis and collided with the surface of the base material, thereby causing the gas to ionize or decompose. The present invention resides in a method for manufacturing a thin film semiconductor characterized by forming an amorphous thin film. The method for manufacturing a thin film semiconductor of the present invention will be described below with reference to the drawings.
第1図は、本発明方法を実施するための装置の
一例を示す態様図であり、真空槽1内の真空室2
は排気口3に連結される排気系装置(油回転ポン
プ,油拡散ポンプ等で構成されているが、図示さ
れていない)によつて8×10-4トールより高度の
高真空に排気されることが可能なようになされて
いる。そして真空室2には一般式SiH4-oXn(但
し、式中Xは弗素原子又は塩素原子を示し、nは
0乃至4の数値を示す)で示されるケイ化水素化
合物ガス、上記ケイ化水素化物とジボランとの混
合ガス及び上記ケイ化水素化合物とホスフインと
の混合ガスからなる群より選ばれたガスを導入す
るための細管ノズル4を有するガス導入管5、該
導入ガスを電離若しくは分解させるための電子発
生装置6、基材ホルダー7、及びそれに取り付け
られた基材8が設置されており、更に真空槽1の
外方には、装置を動作させるための電源9〜11
とその回路、ガス導入管5にストツプバルブ18
及びスローリークバルブ15〜17によつて切換
及び流量調節可能に接続された前記各種ガスが充
填されたボンベ12〜14が設置されている。但
しボンベ12にはモノシラン,ジクロロシラン,
トリクロロシラン,テトラクロロシラン,トリフ
ルオロシラン又はテトラフルオロシラン等のケイ
化水素化合物が、ボンベ13にはホスフインが、
ボンベ14にはジポランが充填されている。電子
発生装置6はループ状のフイラメント61、クシ
型円筒状の電子加速用細線電極63及び電界制御
のためのガード電極62から構成されている。 FIG. 1 is a diagram showing an example of an apparatus for carrying out the method of the present invention, in which a vacuum chamber 2 in a vacuum chamber 1 is shown.
is evacuated to a high vacuum higher than 8×10 -4 Torr by an exhaust system device (consisting of an oil rotary pump, an oil diffusion pump, etc., not shown) connected to the exhaust port 3. It has been made possible. In the vacuum chamber 2, a hydrogen silicide compound gas represented by the general formula SiH 4-o A gas introduction tube 5 having a capillary nozzle 4 for introducing a gas selected from the group consisting of a mixed gas of a hydride and diborane and a mixed gas of the above-mentioned hydrogen silicide compound and phosphine, ionizing or decomposing the introduced gas An electron generator 6, a substrate holder 7, and a substrate 8 attached thereto are installed to operate the device, and power supplies 9 to 11 are provided outside the vacuum chamber 1 to operate the device.
and its circuit, a stop valve 18 in the gas introduction pipe 5
Also installed are cylinders 12 to 14 filled with the various gases, which are connected to each other by slow leak valves 15 to 17 so that they can be switched and their flow rates can be adjusted. However, cylinder 12 contains monosilane, dichlorosilane,
A hydrogen silicide compound such as trichlorosilane, tetrachlorosilane, trifluorosilane or tetrafluorosilane is contained in the cylinder 13, and phosphine is contained in the cylinder 13.
The cylinder 14 is filled with Ziporan. The electron generator 6 is composed of a loop-shaped filament 61, a comb-shaped cylindrical thin wire electrode 63 for electron acceleration, and a guard electrode 62 for electric field control.
尚、本発明において用いられる基材8としては
ポリ塩化ビニル,ポリフツ化ビニル,ポリエチレ
ンテレフタレート,ポリグチレンテレフタレー
ト,ポリエチレン,ポリプロピレン,ポリカーボ
ネート,ポリイミド,ポリエーテルサルホン,ポ
リパラバン酸等の高分子材料、ガラス、磁器、陶
器等のセラミツク材料或いはアルミニウム,ステ
ンレススチール等の金属材料などのフイルム状物
又は薄板状物が挙げられる。 The base material 8 used in the present invention includes polymeric materials such as polyvinyl chloride, polyvinyl fluoride, polyethylene terephthalate, polygethylene terephthalate, polyethylene, polypropylene, polycarbonate, polyimide, polyether sulfone, polyparabanic acid, and glass. , film-like materials or thin plate-like materials such as ceramic materials such as porcelain and earthenware, or metal materials such as aluminum and stainless steel.
本発明に基づいて薄膜半導体を製造するには、
第1図に示す様に基材8を基材ホルダー7に設置
した後、排気口3から排気系装置によつて真空室
2を8×10-4トール以下好ましくは1×10-7トー
ル以下の高真空に排気する。このとき、スローリ
ークバルブ15〜17は閉じておき、ストツプバ
ルブ18を開にしてガス導入管5内を充分に脱気
しておく。そして真空度が安定したところで、電
源10により−500Vの直流電圧を与えられたフ
イラメント61に、電源9により10V、30Aの交
流電流を通電し加熱せしめ熱電子を発生させると
共に電子加速用細線電極63を接地することによ
り上記熱電子を電界加速させる。このとき、上記
フイラメント61から放出される熱電子電流は
50mAから400mAの範囲が好ましい。 To manufacture a thin film semiconductor based on the present invention,
After the substrate 8 is placed on the substrate holder 7 as shown in FIG. 1, the vacuum chamber 2 is heated to 8×10 -4 Torr or less, preferably 1×10 -7 Torr or less, from the exhaust port 3 using an exhaust system device. Evacuate to high vacuum. At this time, the slow leak valves 15 to 17 are closed, and the stop valve 18 is opened to sufficiently evacuate the inside of the gas introduction pipe 5. When the degree of vacuum becomes stable, the filament 61, which has been given a DC voltage of -500V by the power supply 10, is heated by passing an AC current of 10V and 30A from the power supply 9 to generate thermoelectrons, and at the same time, the thin wire electrode 63 for accelerating electrons is heated. By grounding, the hot electrons are accelerated by an electric field. At this time, the thermionic current emitted from the filament 61 is
A range of 50mA to 400mA is preferred.
次にガス導入管5を経て細管ノズル4からスロ
ーリークバルブ15〜17を調節しながらケイ化
水素化合物ガス、ケイ化水素化合物とジポランと
の混合ガス及びケイ化水素化合物とホスフインと
の混合ガスからなる群より選ばれたガスを8×
10-4トール以下好ましくは8×10-4乃至1×10-5
トールの範囲の真空槽内圧を有するように導入す
る。導入ガスは細管ノズル4から高真空領域に噴
出するが、このとき、細管ノズル4によつて運動
方向が揃えられ、細管ノズル4を出た後も比較的
方向の揃つた分子流もしくは凝集体流となつて上
記加速電子発生装置6部に到達し、加速熱電子と
の衝突によりイオン化、分解され種々のイオン、
ラジカル又は励起分子等の活性種を生ぜしめる。
該生成した種々の活性種の中の荷電粒子すなわち
シリコンイオン等の分解生成イオンを電源11に
より加速電極を兼ねる基材ホルダー7に負の直流
高電圧を印加すると該分解生成イオンは電界加速
を受け、高運動エネルギーが付与されて基材8表
面に入射される。このとき荷電状態にない活性種
は細管ノズル4から噴出された運動エネルギーに
ほぼ等しい運動エネルギーで基材8表面に入射さ
れる。それにより連続的に基材8表面上に到達し
たイオン,ラジカル,励起種等の活性種及び荷電
状態にない活性種は基材8表面上を拡散、凝集
し、又一部は高真空領域へ再蒸発したり、スパツ
タリングを受けながら基材8表面上に連続膜が形
成される。該形成過程で上記各種の活性種の作用
により反応が進行し、主としてSiH及びSiH2ユニ
ツトを含有する非晶質のシリコン薄膜が形成され
るのである。 Next, a hydrogen silicide compound gas, a mixed gas of a hydrogen silicide compound and diporan, and a mixed gas of a hydrogen silicide compound and phosphine are introduced from the thin tube nozzle 4 through the gas introduction pipe 5 while adjusting the slow leak valves 15 to 17. Gases selected from the group 8×
10 -4 torr or less, preferably 8 x 10 -4 to 1 x 10 -5
The vacuum chamber is introduced to have an internal pressure in the range of Torr. The introduced gas is ejected from the capillary nozzle 4 into the high vacuum region, but at this time, the direction of motion is aligned by the capillary nozzle 4, and even after leaving the capillary nozzle 4, it remains a molecular stream or aggregate flow with a relatively uniform direction. The particles reach the accelerated electron generator 6 and are ionized and decomposed by collision with the accelerated thermionic electrons, resulting in various ions,
Generates active species such as radicals or excited molecules.
When a negative DC high voltage is applied to the substrate holder 7, which also serves as an acceleration electrode, by the power source 11, the charged particles among the various active species thus generated, that is, decomposition product ions such as silicon ions, are subjected to electric field acceleration. , high kinetic energy is applied to the surface of the base material 8. At this time, the active species that are not in a charged state are incident on the surface of the base material 8 with a kinetic energy approximately equal to the kinetic energy ejected from the capillary nozzle 4. As a result, active species such as ions, radicals, and excited species that continuously reach the surface of the base material 8 and active species that are not in a charged state diffuse and aggregate on the surface of the base material 8, and some of them go to the high vacuum region. A continuous film is formed on the surface of the base material 8 while undergoing re-evaporation or sputtering. During the formation process, reactions proceed due to the action of the various active species described above, and an amorphous silicon thin film containing mainly SiH and SiH 2 units is formed.
しかして、本発明における荷電粒子に与える高
運動エネルギーとしては、運動エネルギーが常温
において10eVから10KeVの範囲、即ち基材ホル
ダー7に印加する負の直流電圧が10Vから10KV
の範囲で加速することが好ましく、このような運
動エネルギーが付与されたシリコンイオンやシリ
コン水素化物イオン等が含まれる分解生成イオン
が基材7表面に入射されることにより、半導体と
しての性能を有するボイドフリーの緻密な非晶質
のシリコン薄膜が基材7表面に形成されるのであ
る。 Therefore, the high kinetic energy imparted to the charged particles in the present invention is such that the kinetic energy is in the range of 10 eV to 10 KeV at room temperature, that is, the negative DC voltage applied to the substrate holder 7 is 10 V to 10 KV.
It is preferable to accelerate within a range of 100 to 1000 nm, and the decomposition product ions including silicon ions, silicon hydride ions, etc. imparted with such kinetic energy are incident on the surface of the base material 7, thereby achieving performance as a semiconductor. A void-free, dense amorphous silicon thin film is formed on the surface of the base material 7.
本発明の薄膜半導体の製造方法は上述の通りの
方法であり、高真空の条件下でシリコンイオン等
の分解生成イオンに高エネルギーを付与させて基
材上に衝突させることにより非晶質シリコンから
なる薄膜を形成せしめ、特に太陽電池として優れ
た性質の半導体を高品質で簡単に、しかも連続的
に得ることができ、さらに大面積化も容易となる
ものである。又、導入ガスの種類を選択すること
によりn型,p型等の半導体を自在に作り分ける
ことができ、異なつたタイプの半導体が積層され
た積層タイプの半導体を製造することも簡単にで
きる。 The method for producing a thin film semiconductor of the present invention is as described above, and is made from amorphous silicon by imparting high energy to decomposition product ions such as silicon ions and colliding them onto a base material under high vacuum conditions. This makes it possible to easily and continuously obtain a high-quality semiconductor with excellent properties especially as a solar cell, and furthermore, it is easy to increase the area. Further, by selecting the type of gas to be introduced, it is possible to freely produce semiconductors of n-type, p-type, etc., and it is also possible to easily produce a stacked type semiconductor in which different types of semiconductors are stacked.
第1図は本発明方法を実施するための装置の一
例を示す説明図である。
1……真空槽、2……真空室、4……細管ノズ
ル、5……ガス導入管、6……電子発生装置、7
……基材ホルダー、8……基材、9〜11……電
源、12〜14……ボンベ、15〜17……スロ
ーリークバルブ、18……ストツプバルブ。
FIG. 1 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention. 1... Vacuum chamber, 2... Vacuum chamber, 4... Capillary nozzle, 5... Gas introduction tube, 6... Electron generator, 7
...Base material holder, 8...Base material, 9-11...Power source, 12-14...Cylinder, 15-17...Slow leak valve, 18...Stop valve.
Claims (1)
空槽内に、一般式SiH4-oXn(但し、式中Xは弗
素原子又は塩素原子を示し、nは0乃至4の数値
を示す)で示されるケイ化水素化合物ガス、上記
ケイ化水素化合物とジポランとの混合ガス及び上
記ケイ化水素化合物とホスフインとの混合ガスか
らなる群より選ばれたガスを真空槽内の内圧が8
×10-4トール以下の高真空に保たれるように導入
し、該導入されたガスに加速電子を衝突させて電
離若しくは分解させ、かくして生成したシリコン
イオン等の分解生成イオンを負の高電圧電界によ
り加速して基材表面に衝突させて、該基材表面に
非晶質薄膜を形成することを特徴とする薄膜半導
体の製造方法。 2 ケイ化水素化合物がモノシラン,ジクロロシ
ラン,トリクロロシラン,テトラクロロシラン,
トリフルオロシラン又はテトラフルオロシランで
ある特許請求の範囲第1項記載の薄膜半導体の製
造方法。[Claims] In a vacuum chamber evacuated to a high vacuum of 18×10 -4 Torr or less, a compound of the general formula SiH 4-o A gas selected from the group consisting of a hydrogen silicide compound gas represented by a numerical value from 0 to 4), a mixed gas of the above hydrogen silicide compound and diporane, and a mixed gas of the above hydrogen silicide compound and phosphine is evacuated. The internal pressure in the tank is 8
The introduced gas is kept in a high vacuum of less than × 10 -4 Torr, and the introduced gas is ionized or decomposed by colliding with accelerated electrons. A method for producing a thin film semiconductor, comprising forming an amorphous thin film on the surface of a base material by accelerating the semiconductor material using an electric field and colliding with the surface of the base material. 2 The hydrogen silicide compound is monosilane, dichlorosilane, trichlorosilane, tetrachlorosilane,
The method for manufacturing a thin film semiconductor according to claim 1, wherein trifluorosilane or tetrafluorosilane is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55120360A JPS5745226A (en) | 1980-08-30 | 1980-08-30 | Manufacture of thin film semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55120360A JPS5745226A (en) | 1980-08-30 | 1980-08-30 | Manufacture of thin film semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5745226A JPS5745226A (en) | 1982-03-15 |
JPS6150372B2 true JPS6150372B2 (en) | 1986-11-04 |
Family
ID=14784267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55120360A Granted JPS5745226A (en) | 1980-08-30 | 1980-08-30 | Manufacture of thin film semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5745226A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61194717A (en) * | 1985-02-23 | 1986-08-29 | Nippon Telegr & Teleph Corp <Ntt> | Thin film formation |
JPH0713948B2 (en) * | 1986-02-03 | 1995-02-15 | 日本電信電話株式会社 | Method of forming thin film |
JPS6481314A (en) * | 1987-09-24 | 1989-03-27 | Nec Corp | Formation of doping silicon thin film |
JP2834475B2 (en) * | 1989-05-20 | 1998-12-09 | 三洋電機株式会社 | Semiconductor thin film forming equipment |
CN112382509B (en) * | 2020-09-28 | 2022-07-29 | 南京大学 | Low-cost two-port solar rechargeable device and preparation method thereof |
-
1980
- 1980-08-30 JP JP55120360A patent/JPS5745226A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5745226A (en) | 1982-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5178905A (en) | Process for the formation of a functional deposited film by hydrogen radical-assisted cvd method utilizing hydrogen gas plasma in sheet-like state | |
US4292343A (en) | Method of manufacturing semiconductor bodies composed of amorphous silicon | |
US20080090022A1 (en) | High rate, continuous deposition of high quality amorphous, nanocrystalline, microcrystalline or polycrystalline materials | |
JPS6240428B2 (en) | ||
US4742012A (en) | Method of making graded junction containing amorphous semiconductor device | |
EP0976846A1 (en) | Thin film forming device for forming silicon thin film having crystallinity | |
JPS6150372B2 (en) | ||
RU2258764C1 (en) | Method and a device for settling at least partially of a crystalline silicon layer on a subtrate | |
JP2626701B2 (en) | MIS type field effect semiconductor device | |
US20060219170A1 (en) | Pore cathode for the mass production of photovoltaic devices having increased conversion efficiency | |
CN100362128C (en) | Method of atmospheric pressure plane discharge chemical gaseous phase depositing nano-particular film and its device | |
US4761302A (en) | Fluorination of amorphous thin-film materials with xenon fluoride | |
JPS59213176A (en) | Manufacture of thin film solar battery | |
JP2001332497A (en) | Silicon film and method manufacturing the same | |
JPH0622203B2 (en) | Amorphous semiconductor thin film generator | |
JP2723548B2 (en) | Formation method of carbon-containing silicon microcrystalline thin film | |
JPH079059B2 (en) | Method for producing carbon thin film | |
JPH0649636A (en) | Production of amorphous semiconductor | |
JP2726676B2 (en) | Formation method of silicon carbide microcrystalline thin film | |
JP2659400B2 (en) | Formation method of carbon-containing silicon thin film | |
JPH0578933B2 (en) | ||
JPS63234513A (en) | Deposition film formation | |
JPH05109631A (en) | Method for manufacturing amorphous silicon alloy film | |
JPS62163314A (en) | Thin-film multilayer structure and forming method thereof | |
JP2000058460A (en) | Silicon thin-film manufacturing method |