JPS6150408A - Complementary mos transistor circuit - Google Patents
Complementary mos transistor circuitInfo
- Publication number
- JPS6150408A JPS6150408A JP59172909A JP17290984A JPS6150408A JP S6150408 A JPS6150408 A JP S6150408A JP 59172909 A JP59172909 A JP 59172909A JP 17290984 A JP17290984 A JP 17290984A JP S6150408 A JPS6150408 A JP S6150408A
- Authority
- JP
- Japan
- Prior art keywords
- point
- input
- inverter
- section
- feedback
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/34—Negative-feedback-circuit arrangements with or without positive feedback
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
Description
【発明の詳細な説明】 ピ)産業上の利用分野 本発明は相補型MOSトランジスタ回路tこ関する。[Detailed description of the invention] P) Industrial application fields The present invention relates to a complementary MOS transistor circuit.
(ロ)従来の技術
この種の相補形MO8)ランジスタ回路は発振アンプ等
の用途に多く使用されている。第3図に従来の発振アン
プを示す。第1図に於いて(1)は電源VD+)アース
間に接続された発振アンプ本体の1段のインバータ、K
は動作点を回路のしきい値付近に設定する為の帰還抵抗
。(2)は電源Vt+nt−nアース間された波形整形
用のインバータである。(b) Prior Art This type of complementary MO8) transistor circuit is often used in applications such as oscillation amplifiers. FIG. 3 shows a conventional oscillation amplifier. In Figure 1, (1) is the one-stage inverter of the oscillation amplifier body connected between the power supply VD + and ground, K
is a feedback resistor to set the operating point near the circuit threshold. (2) is an inverter for waveform shaping connected between power supply Vt+nt and ground.
この場合、入力はsin波のように矩形波に比較すると
非常になまった波形である場合が多く、インバータ(1
)での貫通電流が大きくなっていた。そこで、インバー
タ(1)の駆動能力を下げて貫通電流を減少させる方法
があるが、インバータ(2)の入力負荷容量や帰還抵抗
Rなどの負荷のために点(alは点(blに加えられた
入力信号波形を充分に増幅できない。この為にインバー
タ(2)での貫通電流が増加してしまい、アンプ本体で
の消費電流を減少させることができても、このアンプ本
体の出力を受けるインバータ(2)での消費電流が増加
し、全体での消費電流を減少させることはできない。又
、別の方法として特公昭57−54965号が提案され
ている。しかしながら、入力が微小振幅信号であるよう
な場合は貫通電流の問題の他に、入力部に帰還による出
力部の影響があられれ、発振が正常に行なわれないとい
う欠点があった。In this case, the input is often a waveform such as a sine wave that is very rounded compared to a rectangular wave.
), the through current was large. Therefore, there is a method to reduce the through current by lowering the drive capacity of the inverter (1), but due to loads such as the input load capacitance of the inverter (2) and the feedback resistor R, the point (al) is added to the point (bl). The input signal waveform cannot be sufficiently amplified.As a result, the through current in the inverter (2) increases, and even if the current consumption in the amplifier body can be reduced, the inverter that receives the output of this amplifier body The current consumption in (2) increases, and the overall current consumption cannot be reduced.In addition, as another method, Japanese Patent Publication No. 57-54965 has been proposed.However, the input is a minute amplitude signal. In such a case, in addition to the problem of through current, there is a problem that the input section is influenced by the output section due to feedback, and oscillation cannot be performed normally.
(ハ)発明が解決しようとする問題点
本発明は上述の点に鑑みてなされたものであり、貫通電
流の抑制を図りながら微小振巾信号入力舒こ対して正常
に発振増巾できる発振アンプを得る為の相補型MO8)
ランジスタ回路を提供するものである。(c) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned points, and provides an oscillation amplifier that can normally amplify the oscillation width for inputting a minute amplitude signal while suppressing the through current. Complementary type MO8) to obtain
The present invention provides a transistor circuit.
四 問題点を解決するための手段
本発明の相補型MO5)ランジスタはインバータを複数
段直列接続し、このインバータ接続に対する帰還抵抗の
中間点に大容量負荷を接続したものである。4. Means for Solving the Problems The complementary MO5) transistor of the present invention has a plurality of inverters connected in series, and a large capacitance load connected to the intermediate point of the feedback resistor for the inverter connection.
−)作用
本発明回路に依ればインバータの複数段接続に依って貫
通電流を抑制しながら増巾率を高め、帰還抵抗に接続さ
れた大容量負荷の帰還信号遅延作用に依って、誤動作な
く微小振巾信号入力に対しての発振増巾を可能としてい
る。-) Effect According to the circuit of the present invention, the amplification factor is increased while suppressing the through current by connecting the inverters in multiple stages, and the delay effect of the feedback signal of the large capacitance load connected to the feedback resistor prevents malfunction. This makes it possible to increase the oscillation width for small amplitude signal inputs.
(へ)実施例
本発明の相補型MO8)ランジスタ回路を採用OSトラ
ンジス゛り、Qめ々10はNチャネルMO8トラ′ンジ
スタであり、相補型MO3)ランジスタQ1とQ6.Q
2とQy、QsとQ8で電@ VDll 7− ス間に
接続された3段直列接続のインバータ圓、■、(131
を構成している。又、初段インバータ(111の入力部
の点(3)と3段目インバータαりの出力部の点Tbl
の間に帰還抵抗として働くトランスファーゲート型のト
ランジスタq4とQ9.Q5とQloが直列に配置され
ている。尚C1は入力部(1)のカップリング容量で普
通ICの外Iこ付けられる。R1は入力保護抵抗、C2
は遅延回路用容量である。(F) Embodiment Adopting the complementary MO8 transistor circuit of the present invention OS transistors Q10 are N-channel MO8 transistors, complementary MO3 transistors Q1 and Q6 . Q
2 and Qy, Qs and Q8 are connected between the voltage @ VDll 7- and the three-stage series connected inverter circle,
It consists of In addition, the point (3) at the input section of the first stage inverter (111) and the point Tbl at the output section of the third stage inverter α
Transfer gate type transistors q4 and Q9, which act as feedback resistors between Q4 and Q9. Q5 and Qlo are arranged in series. Incidentally, C1 is a coupling capacitor of the input section (1) and is usually connected outside the IC. R1 is input protection resistor, C2
is the delay circuit capacitance.
而してインバータ(11)の駆動能力はかなり小さく抑
え、インバータ(12)もインバータ(11)と同様の
サイズで駆動能力を抑えるべく設定されている。従って
インバータ(11)での貫通電流を抑制することができ
、しかも点(e)の波形は点(el容量を小さく設定し
ているのでかなり増幅された波形となり、この為インバ
ータ(121での貫通電流も抑えることができる。Therefore, the driving capacity of the inverter (11) is kept quite small, and the inverter (12) is also set to have the same size as the inverter (11) so as to suppress its driving capacity. Therefore, the through current at the inverter (11) can be suppressed, and the waveform at point (e) becomes a considerably amplified waveform because the capacitance at point (el) is set small. Current can also be suppressed.
インバータ0■の駆動能力は大きくしであるが、点(f
lはかなり大きい振幅をもった波形となっているのでイ
ンバータ(2)での貫通電流もかなり抑えることができ
る。こうして3段のインバータαtotaa3構電源電
圧いっばいの振幅をもった波形を得ることができる。Although the driving capacity of inverter 0■ is large, the point (f
Since l has a waveform with a considerably large amplitude, the through current in the inverter (2) can also be considerably suppressed. In this way, it is possible to obtain a waveform with the same amplitude as the power supply voltage of the three inverters αtotaa.
さて次に帰還部の説明をする。通常は第3図で示したよ
うに帰還抵抗を入力部と出力部の間に入れる。しかしな
がら3段構成でかつ入力が微小振幅信号である場合、出
力部の大振幅信号が入力側の微小振幅信号に影響を及ぼ
して、発振状態を不安定にしたり、誤動作の原因となっ
たりする。そこで、本発明では、第1図に示すように帰
還抵抗を2分割し、その中間点(glに大容量負荷C2
を接続して遅延回路を作っている。このようにすれば点
(blの大振幅波形は点(alの入力部に影響を及ぼし
はじめるまでに適正なる遅延時間がかかる。ここで帰還
抵抗の中間点(g)に注目してみると、点(b)が電源
電圧いっばいの■DDに近いレベルになったとしても点
(g)がvDDレベルに到達するまでにある程度の時間
を要する事となり、入力点(1)は点(glが回路のし
きい値から充分にVbb側に上昇する以前に反転して、
出力点1blも反転する。同様にして点(glは回路の
しきい値からあまり高くないレベルから点(blの影響
を受けてGNDレベルに下がろうとするが、充分にGN
D側に下がる前に入力が又反転して結局出力点(blの
影響は入力点(λ1には現れないのである。従って入力
信号の周波数に対しである程度大きな時定数をもった遅
延手段を帰還部に設ける事に依って入力に出力部の影響
がでるのを防止することができる。Next, I will explain the return section. Usually, a feedback resistor is inserted between the input section and the output section as shown in FIG. However, in the case of a three-stage configuration and the input is a minute amplitude signal, the large amplitude signal at the output section affects the minute amplitude signal at the input side, making the oscillation state unstable or causing malfunction. Therefore, in the present invention, the feedback resistor is divided into two as shown in FIG.
are connected to create a delay circuit. In this way, the large amplitude waveform at point (bl) will take an appropriate delay time before it starts to affect the input section at point (al).Now, if we pay attention to the midpoint (g) of the feedback resistor, we will get the following: Even if point (b) reaches a level close to ■DD, which is the highest power supply voltage, it will take some time for point (g) to reach the vDD level, and input point Before it rises sufficiently to the Vbb side from the circuit threshold, it is reversed,
The output point 1bl is also inverted. In the same way, the point (gl) attempts to drop from a level that is not very high above the circuit threshold to the GND level under the influence of the point (bl, but
Before going down to the D side, the input is inverted again and the influence of the output point (bl does not appear at the input point (λ1). Therefore, a delay means with a somewhat large time constant relative to the frequency of the input signal is used as feedback. By providing it in the section, it is possible to prevent the input from being influenced by the output section.
更1こインバータ+411 、 <12r 、 03の
3段構成に依れば、裳
信号の入力部にす〜りが発生すると、中心レベルが回路
のしきい値からはずれ、発振を不安定にするばかりか、
このリーク量が多くなると発振停止の事態さえ起こり得
る。しかしながら本発明の上述の如き回路構成によれば
js1図の点(glは常に回路のしきい値近傍(こある
ため入力部のリークによるレベル変動を抑えて回路のし
きい値に戻す方向tと働く。従っである程度のリーク電
流に対しては充分強い特性を示す。Furthermore, according to the three-stage configuration of the inverter +411, <12r, and 03, if a drop occurs at the input section of the signal, the center level will deviate from the threshold of the circuit, which will only make the oscillation unstable. mosquito,
If this amount of leakage increases, oscillation may even stop. However, according to the above-described circuit configuration of the present invention, the point (gl) in the diagram js1 is always near the threshold value of the circuit. Therefore, it exhibits sufficiently strong characteristics against a certain degree of leakage current.
次に第1図の実施例回路を特公昭59−25381号公
報に開示の半導体集積回路、即ちゲートアレイで実現さ
せる場合について、第2図に基づいて説明する。R1は
入力保護抵抗であるので除外して、インバータQl)
、 02 、α3はゲートアレイのI10インターフェ
ース用のセル(社)内に用意された通常の入力バッファ
や出力バッファを構成するときに用いるトランジスタ群
で容易に構成する事ができる。又、帰還抵抗部分につい
ては通常数100にΩ程度の抵抗値が必要であるが、こ
れについては110インターフエース用のセル(21J
内で実現させることは困難だが、別に抵抗を配置する領
域を確保すれば良い。即ち、斯るケ゛−ドアレイの場合
、その形状からチップの四隅部@には素子が配置されず
、又配線領域にもならないのが一般的であるので、この
四隅部■に導通時の抵抗値が大きいトランジスタを配置
することによって第1図図示の如き帰還抵抗が得られる
。持論、拡散層やボy5に等の抵抗材料で帰還抵抗を作
ることが可能なのはいうまでもない。尚、磯は基本ユニ
ット?’Jである9このようにゲートアレイであれば現
状のマスターチップに対して面積増加させることなく本
発明を実現させることができる。Next, a case where the embodiment circuit of FIG. 1 is realized by a semiconductor integrated circuit disclosed in Japanese Patent Publication No. 59-25381, that is, a gate array, will be explained based on FIG. 2. Since R1 is an input protection resistor, it is excluded and the inverter Ql)
, 02 and α3 can be easily constituted by a group of transistors used to constitute a normal input buffer and output buffer prepared in the I10 interface cell of the gate array. In addition, the feedback resistance part normally requires a resistance value of several hundred ohms, but this can be achieved by using a 110 interface cell (21J).
Although it is difficult to realize this within the area, it is sufficient to secure a separate area for arranging the resistor. In other words, in the case of such a cable array, because of its shape, no elements are placed at the four corners @ of the chip, nor do they serve as wiring areas. By arranging a transistor with a large value, a feedback resistor as shown in FIG. 1 can be obtained. It goes without saying that it is possible to create a feedback resistor using a resistive material such as a diffusion layer or boy 5. Also, is Iso the basic unit? 'J is 9 As described above, with a gate array, the present invention can be realized without increasing the area of the current master chip.
以上の説明においては第1図にて帰還部が2ケの抵抗と
1ケの容量で構成された例を示しているが、共に複数に
しても実現できることはいうまでもない。In the above description, FIG. 1 shows an example in which the feedback section is composed of two resistors and one capacitor, but it goes without saying that the feedback section can also be implemented using a plurality of both resistors and one capacitor.
(ト)効果
本発明の相補型MOSトランスジスタ回路は、上述の如
き構成であるので、わずか数1gmVの微小振幅信号が
入力であっても直流貫通電流を低く抑えて誤動作のない
高速の発振アンプを得ることができる。又、この発振ア
ンプをゲートアレイにて実現することが可能である。(g) Effects Since the complementary MOS transistor circuit of the present invention has the above-described configuration, even if a minute amplitude signal of only a few gmV is input, the DC through current can be kept low and the high-speed oscillation amplifier can be operated without malfunction. can be obtained. Further, this oscillation amplifier can be realized with a gate array.
第1図は本発明の相補型MO8)ランジスタ回路として
の発振アンプの一実施例の回路図、第2図は本発明に係
る発振アンプを構成するゲートアレイのマスタチップの
平面図、第3図は従来の発振アンプの回路図である。
+I11 、(2)、031・・・インバータ、q・・
・トランジスタ、C・・・容量、λ・・・抵抗。FIG. 1 is a circuit diagram of an embodiment of an oscillation amplifier as a complementary MO8) transistor circuit of the present invention, FIG. 2 is a plan view of a master chip of a gate array constituting the oscillation amplifier according to the present invention, and FIG. is a circuit diagram of a conventional oscillation amplifier. +I11, (2), 031...Inverter, q...
・Transistor, C...capacitance, λ...resistance.
Claims (1)
直列接続し、初段入力部と最終段出力部との間に複数の
直列抵抗体からなる帰還抵抗を接続し、該帰還抵抗の中
間点に大容量負荷を接続してなる事を特徴とする相補型
MOSトランジスタ回路。Multiple stages of inverters made of complementary MOS transistors are connected in series, a feedback resistor made of a plurality of series resistors is connected between the first stage input section and the final stage output section, and a large capacitance load is placed at the midpoint of the feedback resistors. A complementary MOS transistor circuit characterized by being connected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59172909A JPS6150408A (en) | 1984-08-20 | 1984-08-20 | Complementary mos transistor circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59172909A JPS6150408A (en) | 1984-08-20 | 1984-08-20 | Complementary mos transistor circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6150408A true JPS6150408A (en) | 1986-03-12 |
Family
ID=15950589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59172909A Pending JPS6150408A (en) | 1984-08-20 | 1984-08-20 | Complementary mos transistor circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6150408A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0584827A1 (en) * | 1992-08-27 | 1994-03-02 | Yozan Inc. | Absolute value circuit |
WO2005006540A1 (en) * | 2003-06-27 | 2005-01-20 | Intel Corporation | Apparatus, amplifier, system and method for receiver equalization |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5461447A (en) * | 1977-10-26 | 1979-05-17 | Toshiba Corp | Crystal oscillation circuit |
JPS5754965A (en) * | 1980-09-18 | 1982-04-01 | Canon Inc | Fixing device |
-
1984
- 1984-08-20 JP JP59172909A patent/JPS6150408A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5461447A (en) * | 1977-10-26 | 1979-05-17 | Toshiba Corp | Crystal oscillation circuit |
JPS5754965A (en) * | 1980-09-18 | 1982-04-01 | Canon Inc | Fixing device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0584827A1 (en) * | 1992-08-27 | 1994-03-02 | Yozan Inc. | Absolute value circuit |
WO2005006540A1 (en) * | 2003-06-27 | 2005-01-20 | Intel Corporation | Apparatus, amplifier, system and method for receiver equalization |
US7227414B2 (en) | 2003-06-27 | 2007-06-05 | Intel Corporation | Apparatus for receiver equalization |
US7230489B2 (en) | 2003-06-27 | 2007-06-12 | Intel Corporation | System and apparatus for receiver equalization |
US7459980B2 (en) | 2003-06-27 | 2008-12-02 | Intel Corporation | Apparatus for receiver equalization |
US7548113B2 (en) | 2003-06-27 | 2009-06-16 | Intel Corporation | Apparatus, amplifier, system and method for receiver equalization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61224192A (en) | Reading amplifier | |
JPH03296118A (en) | Reference voltage generating circuit | |
KR19990044906A (en) | 3-output circuit | |
JPS6150408A (en) | Complementary mos transistor circuit | |
JPH044768B2 (en) | ||
JPH07112133B2 (en) | Linear amplifier | |
US5293515A (en) | Amplifier circuit having two inverters | |
US5475327A (en) | Variable impedance circuit | |
JPS6334793A (en) | Semiconductor storage device | |
US6411132B2 (en) | Matched current differential amplifier | |
US4716380A (en) | FET differential amplifier | |
JP2001274640A (en) | Amplifier circuit | |
JP3284926B2 (en) | Voltage controlled oscillator | |
JP2812939B2 (en) | Output circuit in charge transfer device | |
JP2020194850A (en) | Transistor with multipurpose resistor | |
JPH0461524B2 (en) | ||
Cave et al. | A quad JFET wide-band operational-amplifier integrated circuit featuring temperature-compensated bandwidth | |
JPS598912B2 (en) | logic signal amplification circuit | |
JPS635551A (en) | Semiconductor integrated circuit device | |
US7571415B2 (en) | Layout of power device | |
JPH03227568A (en) | Semiconductor integrated circuit device | |
JPH03129909A (en) | Output buffer amplifier | |
JPS61152125A (en) | Semiconductor integrated circuit device | |
JPH05283992A (en) | Delay circuit | |
JPS58209211A (en) | Capacitive coupling circuit |