[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6149539B2 - - Google Patents

Info

Publication number
JPS6149539B2
JPS6149539B2 JP14441181A JP14441181A JPS6149539B2 JP S6149539 B2 JPS6149539 B2 JP S6149539B2 JP 14441181 A JP14441181 A JP 14441181A JP 14441181 A JP14441181 A JP 14441181A JP S6149539 B2 JPS6149539 B2 JP S6149539B2
Authority
JP
Japan
Prior art keywords
flow
valve
throttle valve
flow path
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14441181A
Other languages
Japanese (ja)
Other versions
JPS5846277A (en
Inventor
Hidekuni Yokota
Shingo Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14441181A priority Critical patent/JPS5846277A/en
Publication of JPS5846277A publication Critical patent/JPS5846277A/en
Publication of JPS6149539B2 publication Critical patent/JPS6149539B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/04Means in valves for absorbing fluid energy for decreasing pressure or noise level, the throttle being incorporated in the closure member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Safety Valves (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は流体輸送管路に介装する弁装置に係
り、更に詳しく言えば該弁装置の上流側流体圧力
(以下これを1次圧力と称する)または下流側流
体圧力(以下これを2次圧力と称する)の変化に
関係なく、該流体の流量を所定定流量値に制御す
る弁装置に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a valve device installed in a fluid transport pipe, and more specifically, the upstream fluid pressure (hereinafter referred to as primary pressure) of the valve device. The present invention relates to a valve device that controls the flow rate of a fluid to a predetermined flow rate value regardless of changes in downstream fluid pressure (hereinafter referred to as secondary pressure) or downstream fluid pressure (hereinafter referred to as secondary pressure).

「従来の技術」 まず、このような弁装置で、従来最も普遍的と
されている構造例を、第1図に示し説明すると、
シリンダー状弁箱内に嵌装する中空ピストン状の
絞り弁操作部材3には、その中央部にオリフイス
またはノズル状にした基準流路5が設けられてい
て、この基準流路5前後の圧力差が変化すると、
該部材3が流れから受けている推力と、ばねの力
とのつり合いが変化するので、この絞り弁操作部
材は変位させられ、それにつれて絞り弁4が作動
して流量を調節し(基準流路5の流速の変動を阻
止する)、流量を一定値に保つものであり、この
ときの絞り弁操作部材3の作動力は、該部材3の
流体抵抗で生じる差圧力に外ならない。そしてそ
れは圧力損失を伴うものであり、しかもこの圧力
損失は実際上可なり大きく、送水設備によつては
決定的な欠点ともなる。
"Prior Art" First, an example of the structure of such a valve device, which is conventionally considered to be the most common, is shown in FIG. 1 and explained as follows.
A hollow piston-shaped throttle valve operating member 3 fitted in a cylindrical valve box is provided with an orifice- or nozzle-shaped reference flow path 5 at its center, and the pressure difference before and after the reference flow path 5 is When changes,
Since the balance between the thrust force that the member 3 receives from the flow and the force of the spring changes, this throttle valve operating member is displaced, and the throttle valve 4 is operated accordingly to adjust the flow rate (reference flow path 5) to keep the flow rate at a constant value, and the operating force of the throttle valve operating member 3 at this time is nothing but the differential pressure generated by the fluid resistance of the member 3. This is accompanied by a pressure loss, and this pressure loss is actually quite large, and can be a decisive drawback for some water supply equipment.

第2図は第1図に示した定流量弁において、そ
の1次圧力と2次圧力との差、すなわち差圧Pと
流量Qとの関係を(P−Q)特性曲線図として示
したものであつて、図中Q1は定流量値とし、そ
のときオリフイス5前後部での圧力差はP1、そし
て絞り通路9は全開状態であつて、該所での絞り
損失はないものと見なす。
Figure 2 shows the relationship between the difference between the primary pressure and the secondary pressure, that is, the differential pressure P and the flow rate Q, as a (P-Q) characteristic curve diagram for the constant flow valve shown in Figure 1. In the figure, Q 1 is a constant flow value, and at that time, the pressure difference between the front and rear of the orifice 5 is P 1 , and the throttle passage 9 is fully open, so it is assumed that there is no throttle loss at that point. .

そして(P−Q)曲線は原点(P=0、Q=
0)から右上方に向け立ち上がり、A(P1
Q1)点に達し、次いで横軸にほぼ平行する線にな
つてB(P2,Q2≒Q1)点に至る。なお(P2−P1
は絞り通路9での圧力降下と見ることができる。
And the (P-Q) curve is the origin (P=0, Q=
0) to the upper right, A(P 1 ,
It reaches point Q 1 ), then becomes a line almost parallel to the horizontal axis and reaches point B (P 2 , Q 2 ≈Q 1 ). Note that (P 2 − P 1 )
can be seen as a pressure drop in the throttle passage 9.

ここで、差圧P1は流量Q1のときの絞り弁操作
部材3の流体抵抗に伴う圧力降下分を意味し、そ
れはすなわち、差圧がP1以下のとき、流量が定流
量Q1に達しないことを示すものである。即ち該
弁に定流量値Q1の定流量弁として機能させるに
は、少くともP1の損失圧力を必要とすることを示
すもので、この差圧P1は最低差圧と呼ばれ性能判
断上の一要件となる。
Here, the differential pressure P 1 means the pressure drop due to the fluid resistance of the throttle valve operating member 3 when the flow rate is Q 1. That is, when the differential pressure is less than P 1 , the flow rate becomes a constant flow rate Q 1 . This indicates that the target is not reached. In other words, this indicates that in order for the valve to function as a constant flow valve with a constant flow value Q 1 , a loss pressure of at least P 1 is required, and this differential pressure P 1 is called the minimum differential pressure and is used to judge performance. This is one of the requirements above.

しかしながら、従来この種定流量弁は概して1
次圧力の比較的高い噴射ノズルやスプリンクラー
などの多数設けた管路の分岐点などに装着利用せ
られ、普通その使用圧P2は大きく、この最低差圧
P1もP2に比べると小さく、さして問題とはならな
かつた。
However, conventionally, this type of constant flow valve generally has 1
It is installed and used at the branch point of a large number of pipelines, such as injection nozzles and sprinklers, which have relatively high secondary pressure, and the working pressure P 2 is usually large, and this minimum differential pressure
P 1 was also smaller than P 2 and did not pose much of a problem.

「本発明が解決しようとする問題点」 近時、水資源有効利用の課題が重要さを増すに
及んで、農業用水、工業用水などの分野では配水
の合理化のため、勢いその設備計画など大規模
化、集約化が進し、配水管路は低場程長大且つ複
雑となり、その各要所には数多くの可変定流量弁
介装の必要に迫まれるに至つている。そしてその
可変定流量弁はその重要性にかんがみ、それに課
せられる技術的要件は事実上可なり厳しいものと
ならざるを得ず、それらを列記すると、 1.設置する場所(狭い地下ビツトなど)、保守、
安全上などの見地から、構造単純でコンパクト
であること。従来の定流量弁と同等またはそれ
以上簡素な構造になし得る構成であること。
``Problems to be solved by the present invention'' In recent years, the issue of effective water resource utilization has become increasingly important, and in fields such as agricultural water and industrial water, there has been a great deal of momentum in streamlining water distribution and planning equipment. With the progress of scale and consolidation, water distribution pipes have become longer and more complex in lower areas, and it has become necessary to install a large number of variable constant flow valves at each important point. Considering the importance of variable constant flow valves, the technical requirements placed on them are actually quite strict, and these can be listed as follows: 1. Place of installation (e.g. narrow underground bit); Maintenance,
The structure must be simple and compact for safety and other reasons. The structure must be as simple or simpler than conventional constant flow valves.

2.定流量値を正確且つ簡便に変更設定できる構造
になし得る構成であること。
2.The structure must be such that the constant flow rate value can be changed and set accurately and easily.

3.前に詳説した最低差圧P1なるものはどこまでも
低くなし得る構成であること。
3. The minimum differential pressure P1 , which was explained in detail earlier, must be configured to be as low as possible.

そこで、第1図に示した従来の定流量弁を上記
の要項にてらしてみると、2項、3項の要件に対
して問題の存することが明らかである。即ち第1
図に示す定流量弁は、その基準流路5の断面積に
変化を加えて(棒状部材10の先端を流路5に出
入させる)、定流量値の変更はできるが、この基
準流路5が変動する絞り弁操作部材3に設けられ
ている関係上その機構が複雑となり、正確性、実
用性に問題のあることもよく知られるところであ
る。さらにまた、その作用原理から見て最低差圧
P1をあまり小さくできない(従つて上述の要件第
3項において問題がある)ことも己に詳説したと
おりとする。
Therefore, when the conventional constant flow valve shown in FIG. 1 is examined in terms of the above-mentioned requirements, it is clear that problems exist with respect to the requirements of items 2 and 3. That is, the first
In the constant flow valve shown in the figure, the constant flow value can be changed by changing the cross-sectional area of the reference flow path 5 (by moving the tip of the rod-shaped member 10 in and out of the flow path 5). It is also well known that the mechanism is complicated because the throttle valve operating member 3 is provided with variable pressure, and that there are problems with accuracy and practicality. Furthermore, considering the principle of operation, the lowest differential pressure
As I have explained in detail, P 1 cannot be made very small (therefore, there is a problem with requirement 3 above).

次に従来、定流量弁装置として、前述の定流量
弁(オリフイス型)と異り、最低差圧P1が本発明
のものと同様、低くなし得る構成のものもある。
Next, as a conventional constant flow valve device, unlike the above-mentioned constant flow valve (orifice type), there is also a structure in which the minimum differential pressure P1 can be made as low as the one of the present invention.

それは例えば、特公昭35−14986号公報、実公
昭39−29225号公報記載の「流量自動調節装置」
に見ることができる。
For example, the "automatic flow rate adjustment device" described in Japanese Patent Publication No. 35-14986 and Publication Utility Model Publication No. 39-29225
It can be seen in

この装置は、ベンチユリー管利用の流量調節手
段として、つとに周知の基本構成からなるもので
あつて、流液本管の一部をベンチユリー管状にな
し、該管での差圧をダイヤフラム箱の上下に作用
させて、絞り調節弁の開閉機構の力源としたもの
であるが、実際上本願で言う技術分野に実用し難
い大げさな構造となることが容易に判る。
This device has a well-known basic configuration as a flow rate adjustment means using a ventilate tube. A part of the main flow pipe is made into a ventilate tube shape, and the differential pressure in the tube is applied to the upper and lower sides of the diaphragm box. It is easy to see that it is an exaggerated structure that is difficult to put into practical use in the technical field referred to in this application.

これとは別は本発明では、その必須構成要素で
ある基準流路が可変的に構成させてあつて、その
点に、構造上、作用効果上の重要かつ独自の技術
的意味を持たせたものであるから、如上の「流量
自動調節装置」とはその技術思想を異にする。
Apart from this, in the present invention, the reference flow path, which is an essential component, is configured to be variable, and this point has an important and unique technical meaning in terms of structure and operation effect. Therefore, its technical philosophy is different from the above-mentioned "automatic flow rate adjustment device."

本発明は、依上述べたように、これからの用水
技術分野における新たな技術的要請に即応可能の
構造と性能を備え、普遍的用途にも一層好適な可
変定流量弁装置の創出を目的とし、次に述べる構
成となすことによつて、従来の可変定流量弁装置
における諸問題点をことごとく解決するものであ
る。
As stated above, the present invention aims to create a variable constant flow valve device that has a structure and performance that can readily meet new technical demands in the future water technology field, and is more suitable for universal use. By adopting the configuration described below, all the problems in conventional variable constant flow valve devices are solved.

ロ.発明の構成 「問題点を解決するための手段」 〔1〕流量も所定値に制御するための絞り弁部材
およびこれに連動する絞り弁操作機構を第1図
に例示の定流量弁と同様、小形簡素な構造にお
いて、弁箱内にコンパクトに収納可能な構成。
B. Structure of the Invention ``Means for Solving Problems'' [1] A throttle valve member for controlling the flow rate to a predetermined value and a throttle valve operating mechanism linked thereto are similar to the constant flow valve illustrated in FIG. Compact and simple structure that can be stored compactly within the valve box.

〔2〕従来の定流量弁においては、己に述べたと
おり、その絞り弁操作部材の作動力は主として
該部材に作用する流体抗力によるが、本発明
は、弁箱内に装置する絞り弁操作部材の対応す
る2面に、弁箱内において可変的に構成させた
流路の異なる位置での異なる静圧を作用させ、
その合力を作動力とする構成となす。
[2] As mentioned above, in the conventional constant flow valve, the operating force of the throttle valve operating member is mainly due to the fluid resistance acting on the member, but the present invention provides a throttle valve operating member installed in the valve box. Applying different static pressures to two corresponding surfaces of the member at different positions of a variably configured flow path within the valve box,
The configuration is such that the resultant force is used as the operating force.

以上本発明の基本的構成を原理に即して述べた
が、この構成が実際上どのように具体化されたか
につき、第3図に実施例を示し、以下その説明を
する。
The basic configuration of the present invention has been described above in accordance with the principle, and an embodiment of this configuration is shown in FIG. 3 and will be explained below.

第3図は本発明弁装置内に構成する流路を、リ
フト弁装置の弁部材と弁箱内壁面との間に構成さ
せたような構造の一実施例において、そのリフト
弁部材スピンドル中心線を含む平面における縦断
画面を示す。11はほぼ椀状の形をした弁箱であ
つて、12は弁箱入口bに至る流入開口流路aを
形成した導入管路である。13は変位可能とした
流路構成部材であつて弁箱11への入口部に設け
た弁座14にのぞみ、弁箱蓋15に設けたボス部
16中心に設けたネジ孔17に螺合するねじ部1
8を有するスピンドル19に保持固定させてあ
る。よつて外部からスピンドル19を回わすと該
部材13は弁座部14の上面すなわち閉鎖面に垂
直に上下しその下面が弁座部14の上面に対して
平行を保ちつつ変位し、その間隔を変化させ該両
面圧着に至れば基準流路cは閉鎖され締め切り状
態となる点は通常のリフト弁と同様である。
FIG. 3 shows the center line of the lift valve member spindle in an embodiment of the structure in which the flow passage constructed in the valve device of the present invention is constructed between the valve member of the lift valve device and the inner wall surface of the valve box. A vertical cross-section screen is shown in a plane containing . Reference numeral 11 is a valve box having a substantially bowl-like shape, and reference numeral 12 is an introduction pipe forming an inflow opening flow path a leading to the valve box inlet b. Reference numeral 13 denotes a displaceable flow path constituting member, which extends into the valve seat 14 provided at the entrance to the valve box 11 and is screwed into a screw hole 17 provided at the center of a boss portion 16 provided on the valve box lid 15. Threaded part 1
It is held and fixed on a spindle 19 having a diameter of 8. Therefore, when the spindle 19 is turned from the outside, the member 13 moves up and down perpendicularly to the upper surface, that is, the closing surface, of the valve seat 14, and its lower surface is displaced while maintaining parallel to the upper surface of the valve seat 14, thereby increasing the distance between them. This is similar to a normal lift valve in that when the pressure is changed and both sides are crimped, the reference flow path c is closed and the closed state is established.

第3図ではこの基準流路cの断面積を最大にし
た状態を示すものとする。そして部材13の下面
側には中央部にノーズコーン20を形成させ流入
口bからの流れを無理なく側方(軸心線に垂直方
向)に転向させるよう配慮してある。流路構成部
材13(以下説明上、部材13と略称する)はそ
の外周部において、スピンドル19の中心線と同
心のほぼ円筒状部21を構成させ、そして該円筒
状部21外側面と弁箱11内壁面との間に滑らか
に断面積を拡大する流路c,d,eを構成させて
ある。弁箱11の上部22の内側において流路c
の端末部にあたり中心方向に突出し、スピンドル
19と同心の円形孔を設けて流路fを構成させた
隔壁部23が形成されている。そして該隔壁部2
3の上方において、該弁箱11の全周にわたつて
部材13の最大リフトにほぼ等しくした巾の絞り
弁通路gを設け、流路fを通つて上方に向う流れ
を側方に流出させる通路となす。なお、該絞り弁
通路gからの流出流れはその外周に構成する集合
流路hに集められ、吐出開口36に向けて管路2
4に形成される吐出開口流路iから流出する。2
4は絞り通路g上方から弁箱11上端面迄該弁箱
内側に形成されたスピンドル19と同心の円筒状
孔であつて、その長さは絞り通路gの幅より大き
く、直径が隔壁部23中央に設ける孔のそれとほ
ぼ等しい。そして該孔24に対して緊密且つ滑動
可能に、該孔24の軸方向長さとほぼ同じ長さの
円筒状の絞り弁部材25が嵌装されている。従つ
てこの絞り弁部材25を孔24内で軸心方向に滑
動させると、絞り通路qの通路面積が変化し流れ
に絞り効果を与える。28は外形をほぼ台形回転
体にした伏せた植木鉢状の絞り弁操作部材であつ
て、その底辺部26は、部材13の円筒状部21
に、スピンドル19と同心に形成された孔27
に、緊密且つ滑動可能に嵌装保持され、その上部
29はその中央に設けた孔30をスピンドル19
に緊密且つ滑動可能に嵌装保持せられている。か
くして絞り弁操作部材28は、その内外両面を隔
離せられ、それぞれの面に異る圧力が作用するこ
とによりその作動力を得る。なお31は絞り弁操
作部材28と絞り弁部材25との連結部材とす
る。32は部材13と絞り弁操作部材28とによ
り構成された袋室であり、本実施例では該室32
は弁箱内流路において通路断面積を最も狭く形成
する部分となつている基準流路cに通じさせるも
のとし、その連通路33を設けた。34はコイル
ばねであつて、絞り弁操作部材28下面側にその
一端を支持し、他端を弁箱に固定する部材すなわ
ちリフト弁部材13の上面に支持介装し、その強
さは最大定流量状態のとき絞り弁操作部材28に
作用する下向き力とつり合う弾力を持たせるもの
とする。
FIG. 3 shows a state in which the cross-sectional area of this reference flow path c is maximized. A nose cone 20 is formed in the center of the lower surface of the member 13 so that the flow from the inlet b can be easily diverted to the side (perpendicular to the axis). The flow path forming member 13 (hereinafter abbreviated as member 13 for the sake of explanation) has a substantially cylindrical portion 21 concentric with the center line of the spindle 19 at its outer peripheral portion, and the outer surface of the cylindrical portion 21 and the valve box Flow paths c, d, and e whose cross-sectional area smoothly expands between the inner wall surface of 11 and the inner wall surface are formed. A flow path c is formed inside the upper part 22 of the valve box 11.
A partition wall portion 23 is formed at the end portion of the wall portion 23, protruding toward the center, and having a circular hole concentric with the spindle 19 to form a flow path f. And the partition wall part 2
A throttle valve passage g having a width approximately equal to the maximum lift of the member 13 is provided above the valve box 11 over the entire circumference of the valve box 11, and a passageway for allowing the flow flowing upward through the flow passage f to flow out to the side. Nasu. Note that the outflow flow from the throttle valve passage g is collected in a collecting passage h formed on the outer periphery of the throttle valve passage g, and is directed toward the discharge opening 36 in the pipe line 2.
It flows out from the discharge opening channel i formed in 4. 2
Reference numeral 4 denotes a cylindrical hole concentric with the spindle 19 formed inside the valve box from above the throttle passage g to the upper end surface of the valve body 11, the length of which is greater than the width of the throttle passage g, and the diameter of which is larger than the partition wall portion 23. Almost equal to that of the hole provided in the center. A cylindrical throttle valve member 25 having approximately the same length as the axial length of the hole 24 is fitted tightly and slidably into the hole 24 . Therefore, when the throttle valve member 25 is slid in the axial direction within the hole 24, the passage area of the throttle passage q changes, giving a throttling effect to the flow. Reference numeral 28 is a flower pot-shaped throttle valve operating member whose outer shape is approximately a trapezoidal rotating body, and its bottom portion 26 is connected to the cylindrical portion 21 of the member 13.
A hole 27 is formed concentrically with the spindle 19.
The upper part 29 has a hole 30 in the center of the spindle 19.
It is tightly and slidably fitted and held in the holder. Thus, the throttle valve operating member 28 has its inner and outer surfaces separated, and obtains its operating force by applying different pressures to each surface. Note that 31 is a connecting member between the throttle valve operating member 28 and the throttle valve member 25. Reference numeral 32 denotes a bag chamber composed of the member 13 and the throttle valve operating member 28, and in this embodiment, the chamber 32
A communicating passage 33 is provided to communicate with the reference passage c, which is the part of the passage within the valve box that has the narrowest passage cross-sectional area. Reference numeral 34 denotes a coil spring, one end of which is supported on the lower surface side of the throttle valve operating member 28, and the other end is supported and interposed on the upper surface of the lift valve member 13, which is a member that fixes it to the valve box. It is provided with elasticity that balances the downward force acting on the throttle valve operating member 28 in the flow state.

「作用」 さて第3図に示す構造図は1次2次圧力差がほ
ぼ最低圧力差で、最大定流量状態にある場合の通
路状態を示すものである。そしてこのときは絞り
弁通路gは全開となつており、その最低差圧は全
流路の圧力損失に相当する。このとき、1次圧力
を増加させるとそれだけ流路内流速が増加し、従
つて断面積の異る流路間の静圧の差は変化(増
加)するから、絞り弁操作部材に作用する力も変
化(増加)し絞り弁部材25は押し下げられ絞り
果効を与えて流速の増加を抑制し、ほぼ所定定流
量値を保つものである。
"Operation" Now, the structural diagram shown in FIG. 3 shows the passage state when the primary and secondary pressure difference is approximately the minimum pressure difference and the flow rate is at the maximum constant flow state. At this time, the throttle valve passage g is fully open, and the lowest differential pressure therebetween corresponds to the pressure loss of the entire flow passage. At this time, as the primary pressure increases, the flow velocity in the flow path increases accordingly, and the difference in static pressure between flow paths with different cross-sectional areas changes (increases), so the force acting on the throttle valve operating member also increases. When the flow rate changes (increases), the throttle valve member 25 is pushed down and provides a throttle effect to suppress an increase in flow velocity and maintain approximately a predetermined flow rate value.

第4図は第1図に示す従来の定流量弁の特性曲
線と、この特性曲線に見る定流量値Q1に等しい
定流量値にした本発明定流量弁装置の特性曲線
(P′−Q′)との比較説明図であつて、その差圧P
軸のスケールを拡大し、最低差圧点A(P1
Q1)付近における状態を示すものとする。従来の
定流量弁における最低差圧P1は圧力損失であると
同時に作動圧力であることは己に述べた。然し本
発明のものは、最低差圧P′1は作動圧力とは直接
関係なく単に流路の流動損失を表わすに過ぎない
から、充分低く出来るものであることを明示す
る。
Figure 4 shows the characteristic curve of the conventional constant flow valve shown in Figure 1 , and the characteristic curve (P'-Q '), and the differential pressure P
Expand the axis scale and find the lowest differential pressure point A (P 1 ,
Q1 ) Indicates the situation in the vicinity. I have already stated that the lowest differential pressure P 1 in a conventional constant flow valve is both a pressure loss and an operating pressure. However, in the present invention, the lowest differential pressure P'1 is not directly related to the operating pressure and simply represents the flow loss in the flow path, and therefore it is clearly demonstrated that it can be made sufficiently low.

次に本発明の目的の項に述べたとおり、本発明
の今一つの重要な目的は、本定流量弁装置に、構
成それ自体においてその定流量値を広範囲にのた
つて随意に然も簡単、確実に変化させ得る満足す
べき構造を具備させることにある。
Next, as stated in the Objects of the Invention section, another important object of the present invention is to provide the present constant flow valve device with a wide range of constant flow values in the construction itself, which is optionally and easily. The purpose is to provide a satisfactory structure that can be reliably changed.

すなわち、本発明の基本的構成は、弁箱内に構
成する流路において静圧の異なる流路を固定節に
属する部材によつて構成するものであるから、そ
の構成上の特徴は該流路の適所に選定可能の部分
(基準流路)において、絞り弁操作部材などの動
作部に関係なく外部から容易に該流路の構成部材
を変化させ基準流路を変化させる簡便な手段が講
じ得る点にある。
That is, the basic structure of the present invention is that the flow paths having different static pressures in the flow path configured in the valve box are configured by members belonging to the fixed joint, so the structural feature is that the flow paths have different static pressures. In a portion (reference flow path) that can be selected at an appropriate location, a simple means can be taken to change the reference flow path by easily changing the constituent members of the flow path from the outside, regardless of the operating parts such as the throttle valve operating member. At the point.

第3図に示す実施例に基きこれを具体的に説明
すると、弁箱に固定せられ人為的操作による変位
手段即ちスピンドル19を回わして、基準流路c
の流路構成部材13を押し下げると、該流路cは
せばめられ、このとき絞り弁操作部材28が動か
なければ、絞り通路面積に変化がなくなつて流速
は増加し、絞り弁操作部材28に作用する差圧力
も変化するので、絞り弁部材25は作動させられ
基準流路cの流速が所定流速に復元させられる。
従つて定流量値は減少させられたことになる。そ
してまたこの状態で差圧力P′を変化させても、前
に最大定流状態の場合について説明したと同様の
動作をして、流量をこの所定値に制御する。同様
にして部材13を更に押し下げることによつて、
定流量値はゼロ即ち締切りに至るまで無段階に変
化させることが可能である。
To explain this in detail based on the embodiment shown in FIG.
When the flow path constituting member 13 is pushed down, the flow path c is narrowed, and if the throttle valve operating member 28 does not move at this time, there will be no change in the throttle passage area and the flow velocity will increase. Since the applied differential pressure also changes, the throttle valve member 25 is operated and the flow velocity in the reference flow path c is restored to the predetermined flow velocity.
The constant flow value has therefore been reduced. Even if the differential pressure P' is changed in this state, the flow rate is controlled to this predetermined value by performing the same operation as previously explained for the maximum constant flow state. By further pushing down the member 13 in the same way,
The constant flow value can be varied steplessly up to zero or cut-off.

「実施例」 本発明実施に当つては本発明の要旨にそい、
種々構造的変化を加えることができるものである
が、その一実施態様を示すものとして、絞り弁操
作部材を貫流する姿に流路を構成させた構造の実
施例を第5図に示した。ちなみにこの第2実施例
では、1次圧力が甚だ低く、絞り弁操作部材に作
用させる圧力差を得るために、管内流速を増加さ
せることさえ不利とするような場合、弁箱内流路
において一旦減速させ、ついで基準流路では再び
配管内流速に復帰させる流路構成となすことさえ
可能である点をもかねて説明するものとする。
"Example" In carrying out the present invention, in accordance with the gist of the present invention,
Although various structural changes can be made, FIG. 5 shows an embodiment of the structure in which a flow path is configured to flow through a throttle valve operating member. Incidentally, in this second embodiment, if the primary pressure is so low that it would be disadvantageous to increase the flow velocity in the pipe in order to obtain a pressure difference that acts on the throttle valve operating member, the flow path in the valve box is temporarily It will also be explained that it is even possible to construct a flow path in which the flow velocity is decelerated and then returned to the in-pipe flow velocity in the reference flow path.

第5図はこの第2実施例の縦断面図であつて、
51は弁箱、52は入口導入管を示す。弁箱51
内には、下方から入口開口流路k、ふくらみ流路
部53の中央にリブ54によつて固定した分流部
材55の外側に流路が構成されている。分流部
材55の上端部は軸心に垂直な平面をなし、その
形状は流路kの口径とほぼ等しくなしてある。分
流部材55上端縁と、その下流側弁箱51内に形
成する流路kの口径とほぼ等しくする円筒状孔5
8下端縁との間に絞り通路mを構成し、円筒状孔
58に緊密且つ滑動可能に円筒状にした絞り弁部
材59を嵌装している。そして該絞り弁部材59
の上端部60に該部材59の中心線に垂直につば
状の絞り弁操作部材61を一体に構成し、そして
該部材61の外周部62を弁箱上部において外周
方向に張り出した部分64に設けた円筒状孔72
に緊密且つ滑動可能に嵌装してある。65は圧縮
コイルばねであつて、その下端は弁箱51内の段
部63で支持しその上端は絞り弁操作部材61の
下面に当てられている。弁箱上端面は中央部がボ
ウル鉢を伏せたような形状とした弁箱蓋66で密
閉せられ、そして該蓋66の中央部ボスに設ける
ねじ孔67には、ねじ70によつて螺合保持した
スピンドル69を貫通し、該スピンドル69には
流路構成部材68が取り付けられている。そして
該流路構成部材68は下向き凹状に形成せられ、
その外周部下面は軸心線に垂直な平面における円
環状面71を形成し、円筒状孔72の上端面に対
向し、その間に基準流路sを構成する。従つてス
ピンドル69を回わすと、軸方向に変位し基準流
路sを変化させ得る。なおtは流路sからの吐出
流集合流路でありuは出口流路とする。73は流
路構成部材61,65によつて形成した袋室であ
つて、該室73すなわち絞り弁操作部材下面側は
連通路74によつて基準流路sに通じさせてあ
る。
FIG. 5 is a longitudinal sectional view of this second embodiment,
Reference numeral 51 indicates a valve box, and reference numeral 52 indicates an inlet introduction pipe. Bento box 51
Inside, an inlet opening flow path k is formed from below, and a flow path is formed on the outside of a flow dividing member 55 fixed to the center of the bulging flow path portion 53 by a rib 54. The upper end of the flow dividing member 55 forms a plane perpendicular to the axis, and its shape is approximately equal to the diameter of the flow path k. A cylindrical hole 5 whose diameter is approximately equal to the diameter of the flow path k formed in the upper edge of the flow dividing member 55 and the valve box 51 on the downstream side thereof.
8, and a cylindrical throttle valve member 59 is tightly and slidably fitted into the cylindrical hole 58. and the throttle valve member 59
A flange-shaped throttle valve operating member 61 is integrally formed on the upper end portion 60 perpendicular to the center line of the member 59, and an outer circumferential portion 62 of the member 61 is provided on a portion 64 extending in the outer circumferential direction at the upper part of the valve box. cylindrical hole 72
It is tightly and slidably fitted to the Reference numeral 65 denotes a compression coil spring, whose lower end is supported by a step 63 within the valve box 51, and whose upper end is placed against the lower surface of the throttle valve operating member 61. The upper end surface of the valve box is sealed with a valve box lid 66 whose center part is shaped like an upside-down bowl, and a screw hole 67 provided in the center boss of the lid 66 is screwed into a screw hole 67. A flow path forming member 68 is attached to the spindle 69 that is passed through the held spindle 69 . The flow path forming member 68 is formed in a downward concave shape,
The lower surface of the outer periphery forms an annular surface 71 in a plane perpendicular to the axis, and faces the upper end surface of the cylindrical hole 72, forming a reference flow path s therebetween. Therefore, when the spindle 69 is rotated, it can be displaced in the axial direction and the reference flow path s can be changed. Note that t is a collection flow path for discharge flows from the flow path s, and u is an outlet flow path. Reference numeral 73 denotes a bag chamber formed by the flow path forming members 61 and 65, and the chamber 73, ie, the lower surface side of the throttle valve operating member, is communicated with the reference flow path s through a communication path 74.

以上の構成において、入口流路kから導入した
流体は流路断面積を等しくした,m,nの各流
路を流過し、広い流路qで側方に向きを変え減速
流となり静圧を増加し、次いで縮少流路rに入り
該所で流速を増し、始めの管内流速に復元して基
準流路sから流出する。この弁装置は以上の構成
をなし、その作動の態様については己に詳説した
ところによつて、容易に理解出来るものであり
一々の解説は省略する。なお、75は可変的に弁
箱に固定した流路構成部材68の下部内面に設け
る偏流防止部材を示すもので、適当な案内翼、金
あみ、またはしなやかな突出片の慣用的手段を示
すものとする。
In the above configuration, the fluid introduced from the inlet channel k flows through the channels m and n, which have the same cross-sectional area, and turns laterally in the wide channel q, becoming a decelerated flow and static pressure. , then enters the reduced flow path r, increases the flow velocity there, restores to the initial flow velocity in the pipe, and flows out from the reference flow path s. This valve device has the above-mentioned structure, and the mode of its operation can be easily understood from the detailed explanation given above, so a detailed explanation will be omitted. Note that 75 indicates a drift prevention member provided on the lower inner surface of the flow path forming member 68 variably fixed to the valve box, and indicates a conventional means such as a suitable guide vane, metal thread, or a flexible protruding piece. shall be.

ニ.発明の効果 本発明は以上その構成およびその作用効果につ
いて詳説したとおり、最低差圧を理論的にどこま
でも低くなし得る構成において、従つて簡素小形
な絞り弁操作機構を小じんまりと弁箱内に収納構
成し、その作動は確実であつて信頼度も高いこと
が容易に判る。しかも広い1次2次圧力差の範囲
に適応するので利用面から見ても、生産面から見
ても極めて普偏性に富む可変定流量弁装置であ
り、発明の目的の項に述べた諸事項を充分満足
し、従来の定流弁が利用された分野はもとより、
それが有する欠点によつて利用出来ない分野およ
び厳しい性能の要求せられる前述用水技術分野で
も進んで利用可能であつて、その特有の効果は顕
著である。
D. Effects of the Invention As described above in detail with respect to its configuration and its effects, the present invention has a configuration that can theoretically reduce the minimum differential pressure to an infinitely low level, and therefore a simple and compact throttle valve operating mechanism is compactly housed inside the valve box. It is easy to see that the storage structure is reliable and its operation is highly reliable. Moreover, since it is applicable to a wide range of primary and secondary pressure differences, it is a variable constant flow valve device that is extremely versatile both from the perspective of use and from the perspective of production. It fully satisfies the requirements and is suitable not only for fields where conventional constant flow valves are used, but also for fields where conventional constant flow valves are used.
It can also be used in fields where it cannot be used due to its drawbacks and in the above-mentioned water technology fields where strict performance is required, and its unique effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の定流量弁装置の縦断面図、第2
図は従来の定流量弁装置における1次2次圧力差
と流量との関係を示す特性線図、第3図は本発明
になる可変定流量弁装置の一実施例の縦断面図、
第4図は従来の定流量弁装置と本発明になる定流
量弁装置との特性線図上での比較図、第5図は本
発明になる可変定流量弁装置の他の実施例の縦断
面図である。 11,51……弁箱、15,66……弁箱蓋、
a,k……入口開口流路、i,u……出口開口流
路、13,68……流路構成部材(変位手段を備
えた)、c,s……基準流路、19,69……ス
ピンドル、27,72……可変軸と同心的にした
孔、28,61……絞り弁操作部材、d,e,
q,r……流路断面積を滑らかに変化させた流
路、g,m……絞り通路、25,59……絞り弁
部材、33,74……連通路、34,65……ば
ね、32,73……袋室。
Figure 1 is a vertical cross-sectional view of a conventional constant flow valve device, Figure 2 is a vertical sectional view of a conventional constant flow valve device;
The figure is a characteristic diagram showing the relationship between the primary and secondary pressure difference and the flow rate in a conventional constant flow valve device, and FIG. 3 is a longitudinal sectional view of an embodiment of the variable constant flow valve device according to the present invention.
Fig. 4 is a comparison diagram on a characteristic diagram between a conventional constant flow valve device and a constant flow valve device according to the present invention, and Fig. 5 is a vertical cross section of another embodiment of the variable constant flow valve device according to the present invention. It is a front view. 11, 51... Valve box, 15, 66... Valve box lid,
a, k...Inlet opening channel, i, u... Outlet opening channel, 13, 68... Channel forming member (equipped with displacement means), c, s... Reference channel, 19, 69... ... Spindle, 27, 72 ... Hole made concentric with the variable shaft, 28, 61 ... Throttle valve operating member, d, e,
q, r...Flow path whose cross-sectional area is smoothly changed, g, m... Throttle passage, 25, 59... Throttle valve member, 33, 74... Communication path, 34, 65... Spring, 32,73...bag room.

Claims (1)

【特許請求の範囲】[Claims] 1 弁箱に設けた2つの開口流路のうち、その一
方の開口流路に近く、弁箱部に固定せられ、かつ
適時変位可能となした流路構成部材13,68
と、該流路構成部材13,68に対応し、弁箱部
に固定した弁座状部材14,64とによつて可変
基準流路C,Sを構成し、該基準流路C,Sから
他の開口i,uに向つて流路断面積を滑らかに変
化させた流路d,e,q,rを構成させ、そして
該流路の端末部f,nにあたり絞り弁部材25,
59を設けてなる絞り通路g,mを構成させ、そ
して流路構成部材に形成した袋室32,73には
絞り弁部材25,59に連結した絞り弁操作部材
28,61を嵌装し、該絞り弁操作部材28,6
1の隔離された2受圧面には、それぞれ異る流路
断面積の流路の静圧を作用させる手段、すなわち
連通路33,74を備え、さらにその絞り弁操作
部材28,61が所定定流量状態で流体から受け
る力につり合う弾力のばねを該絞り弁操作部材2
8,61と、弁箱に固定する部材の間に介装した
可変定流量弁装置。
1 A flow path forming member 13, 68 that is close to one of the two open flow paths provided in the valve box, is fixed to the valve box portion, and is movable at any time.
, and valve seat-like members 14 and 64 fixed to the valve box portion, which correspond to the flow path forming members 13 and 68, constitute variable reference flow paths C and S, and from the reference flow paths C and S, Channels d, e, q, and r whose cross-sectional areas smoothly change toward the other openings i and u are formed, and throttle valve members 25,
59 are provided, and throttle valve operating members 28, 61 connected to the throttle valve members 25, 59 are fitted into the bag chambers 32, 73 formed in the flow path constituent members, The throttle valve operating member 28, 6
The two isolated pressure-receiving surfaces of 1 are provided with means for applying static pressure of flow channels having different cross-sectional areas, that is, communication passages 33 and 74, and furthermore, the throttle valve operating members 28 and 61 are arranged in a predetermined manner. The throttle valve operating member 2 has an elastic spring that balances the force received from the fluid in the flow state.
8, 61 and a variable constant flow valve device interposed between the member fixed to the valve box.
JP14441181A 1981-09-12 1981-09-12 Variable constant-flow valve apparatus Granted JPS5846277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14441181A JPS5846277A (en) 1981-09-12 1981-09-12 Variable constant-flow valve apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14441181A JPS5846277A (en) 1981-09-12 1981-09-12 Variable constant-flow valve apparatus

Publications (2)

Publication Number Publication Date
JPS5846277A JPS5846277A (en) 1983-03-17
JPS6149539B2 true JPS6149539B2 (en) 1986-10-30

Family

ID=15361542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14441181A Granted JPS5846277A (en) 1981-09-12 1981-09-12 Variable constant-flow valve apparatus

Country Status (1)

Country Link
JP (1) JPS5846277A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155368U (en) * 1983-04-06 1984-10-18 太陽鉄工株式会社 Speed adjustment valve used in hydro checkers, etc.
US7781539B2 (en) 2003-02-21 2010-08-24 Metabolix Inc. PHA blends
ATE377060T1 (en) 2003-02-21 2007-11-15 Metabolix Inc PHA ADHESIVES
DE502006001866D1 (en) * 2005-05-12 2008-12-04 Behr Gmbh & Co Kg Differential pressure valve
CN104755538B (en) 2012-08-17 2018-08-31 Cj 第一制糖株式会社 Bio-rubber modifying agent for blend polymer
CN105531308B (en) 2013-05-30 2021-08-10 Cj 第一制糖株式会社 Recycle blends
EP3122817B1 (en) 2014-03-27 2020-07-29 CJ CheilJedang Corporation Highly filled polymer systems

Also Published As

Publication number Publication date
JPS5846277A (en) 1983-03-17

Similar Documents

Publication Publication Date Title
US4210171A (en) Automatic controlling valve for maintaining the rate of fluid flow at a constant value
EP1342141B1 (en) Combined pressure regulator and shut-off valve
US3381708A (en) Fluid flow regulator
US3693659A (en) Silent operating valve
US9645583B2 (en) Balanced fluid valve
US4791956A (en) Constant flow valve
US7128086B2 (en) Flow control valves
US20110297252A1 (en) Pressure reducing valve control
US2587375A (en) Atmospheric pressure regulator
US3435843A (en) Valves
JPS6149539B2 (en)
JPH07501602A (en) Pressure regulator to maintain stable flow of fluid
US3561483A (en) Dual fluid mixing valve with servomotor
US5105847A (en) Gas pressure control valve cartridge
US2803264A (en) Rate of flow control means
US3120854A (en) Automatic fluid pressure equalizing assembly
EP3082007A1 (en) Pressure regulator
JPH0339644Y2 (en)
JPS647370Y2 (en)
SU1718192A1 (en) Flow regulator
US2832371A (en) Flow control valve
US1013213A (en) Fluid-pressure valve.
SU1661724A1 (en) Liquid flow rate regulator
JP2542768B2 (en) Water pressure control valve
SU918624A1 (en) Disconnecting device