[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6149456A - Mos type semiconductor integrated circuit - Google Patents

Mos type semiconductor integrated circuit

Info

Publication number
JPS6149456A
JPS6149456A JP17200284A JP17200284A JPS6149456A JP S6149456 A JPS6149456 A JP S6149456A JP 17200284 A JP17200284 A JP 17200284A JP 17200284 A JP17200284 A JP 17200284A JP S6149456 A JPS6149456 A JP S6149456A
Authority
JP
Japan
Prior art keywords
substrate
substrate voltage
voltage
semiconductor integrated
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17200284A
Other languages
Japanese (ja)
Other versions
JPH0354866B2 (en
Inventor
Toshifumi Kobayashi
小林 稔史
Michihiro Yamada
山田 通裕
Koichiro Masuko
益子 耕一郎
Hiroshi Miyamoto
博司 宮本
Kazutami Arimoto
和民 有本
Kiichi Morooka
諸岡 毅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17200284A priority Critical patent/JPS6149456A/en
Publication of JPS6149456A publication Critical patent/JPS6149456A/en
Publication of JPH0354866B2 publication Critical patent/JPH0354866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • H01L27/0218

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a change into a positive value of substrate voltage by forming a MOSFET for clamping substrate voltage in which a drain and a gate are connected to a substrate and a source is connected to a ground. CONSTITUTION:A bonding pad 3 is connected to a die frame for a package with which a chip 1 for a MOS dynamic RAM is die-bonded, and substrate voltage is applied to a substrate for the chip 1. When a memory cell is formed generally by using a process of double layer poly Si, a memory cell plate is constituted by first poly Si, but a gate oxide film in first poly Si is thinned extremely. A grounding wiring 4 and an output 5 from a substrate-voltage generating circuit are wired so as to make a round on the outer circumference of the chip 1. Accordingly, when a first poly Si gate FET in which a drain and a gate are connected to the wiring 5 in a transistor region 8 for clamping substrate voltage and a source is connected to the wiring 4 is formed, a MOSFET for clamping substrate voltage having extremely low threshold voltage can be constituted.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、基板電圧クランプ回路を設はりMOS型半
導体集積回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a MOS type semiconductor integrated circuit provided with a substrate voltage clamp circuit.

〔従来技術〕[Prior art]

現在のMOS型半導体集積回路、特にMOSダイナミッ
クRAMにおいては、電源の単一化がはからn、基板電
圧はチップ上に設けた基板電圧発生回路によ−って発生
させる方式が一般化している。
In current MOS type semiconductor integrated circuits, especially MOS dynamic RAM, it is difficult to unify the power supply, and it has become common to generate the substrate voltage by a substrate voltage generation circuit provided on the chip. .

第1図に従来の基板電圧発生回路を内蔵しているMOS
型半導体集積回路における基板電圧と電源電圧の関係!
示す。
Figure 1 shows a MOS with a built-in conventional substrate voltage generation circuit.
Relationship between substrate voltage and power supply voltage in semiconductor integrated circuits!
show.

第1図において、基板電圧をVB、とし、電源電圧’1
Vccとすると、両者の関係は第1図から明らかなよ5
に電源電圧VCCが比較的低い場合、基板電圧vRBは
電源電圧vcc Ic比例して負に深くなるが、電源電
圧vccが高くなると浅くなり、非常に高くなったとき
Kは正の電圧になることもある。
In Fig. 1, the substrate voltage is VB, and the power supply voltage '1
Vcc, the relationship between the two is clear from Figure 15.
When the power supply voltage VCC is relatively low, the substrate voltage vRB becomes deeply negative in proportion to the power supply voltage VCC Ic, but as the power supply voltage VCC increases, it becomes shallower, and when it becomes very high, K becomes a positive voltage. There is also.

この原因は、電源電圧Vccが高くなり消費電流が増大
すると、衝突電離匠よる基板内の正孔電流が増大し、基
板電圧発生回路からの充電電流がこnを補償しきれなく
なるためである。半導体集積回路ン動作保証領域内の電
源電圧で使用していnばこのような状況は起らないが、
取扱いのミス等何らかの原因で高電圧が半導体集積回路
に印加さnた場合、pn接合が順方向にバイアスさnる
種基板電圧が浮上がり、半導体集積回路の永久破壊2招
く危険性がある。
The reason for this is that when the power supply voltage Vcc increases and the current consumption increases, the hole current in the substrate due to impact ionization increases, and the charging current from the substrate voltage generation circuit cannot compensate for this current. This situation will not occur if the semiconductor integrated circuit is used at a power supply voltage within the guaranteed operation range.
If a high voltage is applied to the semiconductor integrated circuit due to some reason such as handling error, the pn junction will be biased in the forward direction and the substrate voltage will rise, potentially causing permanent damage to the semiconductor integrated circuit.

第2図(a)、(b)は電源ラインと基板間に比較的大
きな容量が形成さnている場合の基板電圧発生回路ン内
蔵した半導体集積回路の電源投入時における電源電圧V
ccの波形と基板電圧vBBの波形を示したもので、第
2図(a)は電源電圧Vccと時間の関係を表わし、同
図(b)t’!基板電圧v!lIlと時間の関係ン表わ
しも・る。基板電圧発生回路が電源投入後充分な電圧を
発生するまでにある程度の時間を必要とする。従って、
電源電圧VCCが急峻に立上つ夕場合、第2図(a)、
 (b) tie示すように、電源ラインと基板間の容
量結合によって、基板電圧■IIBが正になる期間が存
在する。この基板電圧vIIBの浮上がりが大きい場合
K kl半導体集積回路の永久破壊を招(可能性があり
、また、破壊VCは致らない場合でも、きわめて大きな
突入電源電流が流nてしまう欠点がある。
Figures 2 (a) and (b) show the power supply voltage V at the time of power-on of a semiconductor integrated circuit with a built-in substrate voltage generation circuit when a relatively large capacitance is formed between the power supply line and the substrate.
The waveforms of cc and substrate voltage vBB are shown. FIG. 2(a) shows the relationship between power supply voltage Vcc and time, and FIG. 2(b) shows the relationship between t'! Substrate voltage v! It also shows the relationship between lIl and time. It takes a certain amount of time for the substrate voltage generation circuit to generate a sufficient voltage after power is turned on. Therefore,
If the power supply voltage VCC rises sharply in the evening, Fig. 2(a),
(b) As shown in the diagram, there is a period in which the substrate voltage IIB becomes positive due to capacitive coupling between the power supply line and the substrate. If this substrate voltage vIIB rises significantly, it may cause permanent destruction of the Kkl semiconductor integrated circuit, and even if destruction VC does not occur, there is a drawback that an extremely large inrush power supply current will flow. .

〔発明の概要〕[Summary of the invention]

この発明は、上記のような欠点を改善するためになさn
 几もので、基板電圧発生回路内蔵のMOS型半導体集
積回路に、トンインとゲートが基板に接続され、ソース
がグランドに接続さn fC基板電圧クランプ用MOS
)ランジスタを設けることにより、基板電圧が正になる
の乞防ぐことのできる信頼性の高いMOS型半導体集積
回路ン提供するものである。以下、図面を用いてこの発
明乞説明する。
This invention was made to improve the above-mentioned drawbacks.
It is a MOS type semiconductor integrated circuit with a built-in substrate voltage generation circuit, the input and gate are connected to the substrate, and the source is connected to the ground.
) By providing a transistor, a highly reliable MOS type semiconductor integrated circuit is provided which can prevent the substrate voltage from becoming positive. This invention will be explained below with reference to the drawings.

〔発明の実施例〕[Embodiments of the invention]

第4図はこの発明の一実施例を示すものであり、第3図
はこの発明の等価回路Z示すものである。
FIG. 4 shows an embodiment of the invention, and FIG. 3 shows an equivalent circuit Z of the invention.

第3図において、半導体基板の電圧が正となり、基板電
圧クランプ用MOS)ランジスタTのしきい値電圧(こ
のしきい値電圧YVraとする)を越えると、基板電圧
クランプ用MOS)ランジスタTが導通状態となって基
板を放電させて基板電圧の上昇乞おさえる。従って、こ
の発明乞より効果的KjるKi2、基板電圧クランプ用
MOS)ランジスタTのしきい値電圧VT11Y Oボ
ルト以上、pn接合のビルトインポテンシャル以下の範
囲で可能な限り低い値にすること、および基板を速かに
放電させる定めに基板電圧クランプ用MOS)ランジス
タTのチャネル幅を太き(することである。
In FIG. 3, when the voltage of the semiconductor substrate becomes positive and exceeds the threshold voltage of the substrate voltage clamping MOS transistor T (this threshold voltage is referred to as YVra), the substrate voltage clamping MOS transistor T becomes conductive. state, the board is discharged and the rise in board voltage is suppressed. Therefore, it is more effective for this invention to set the threshold voltage VT11YO of the transistor T (MOS for substrate voltage clamping) to as low a value as possible within the range of 0 volts or more and less than the built-in potential of the pn junction. The channel width of the substrate voltage clamping MOS transistor T is made thicker in order to quickly discharge the voltage.

第4図はlトランジスタ・lキャパシタ型メモリ構造の
MOSダイナミックRAMK、この発明乞実施し友もの
である。第4図において、1はMOSダイナミックRA
Mのチップ、2はグランド端子のボンディングバンド、
3は基板電圧発生回路の出力端子のポンディングパッド
で、このポンディングパッド3t、チップ1がタイポン
ド3Hるパッケージのダイフレーム(図示しない)と接
続して、チップ1の基板に基板電圧を印加する。
FIG. 4 shows a MOS dynamic RAMK having a one-transistor/one-capacitor type memory structure, which is a practical example of this invention. In Fig. 4, 1 is a MOS dynamic RA
M chip, 2 is the bonding band of the ground terminal,
3 is a bonding pad of the output terminal of the substrate voltage generation circuit, and this bonding pad 3t is connected to the die frame (not shown) of the package in which the chip 1 is attached to the tie pad 3H, and a substrate voltage is applied to the substrate of the chip 1. .

4は前記チップ1の外周を一周するグランド配線、5は
同じくチップ1の外周を一周する基板電圧発生回路の出
力の配線である。6はメモリセル7レイ領域、Tはメモ
リの周辺回路領域、8は基板電圧クランプ用トランジス
タを形成する基板電圧クランプ用トランジスタ領域であ
る。
Reference numeral 4 designates a ground wire that goes around the outer periphery of the chip 1, and 5 designates an output wire that goes around the outer periphery of the chip 1 for the output of the substrate voltage generation circuit. 6 is a memory cell 7 lay region, T is a memory peripheral circuit region, and 8 is a substrate voltage clamping transistor region forming a substrate voltage clamping transistor.

lトランジスタ・lキャパシタ型メモリセルは、通常多
層ポリシリコンのプロセス2用いて製造さnるのが一般
化している。疋とえば2層ポリシリコンのプロセスを用
いるAJj合、i 1 ホリシリコンでメモリセルプレ
ートが構#:さハ、第2ポリシリコンでメモリセルのト
ランスファゲートおよび周辺回路トランジスタのゲート
が構成さnるが、第1ポリシリコンのゲート酸化膜はメ
モリセルの蓄積容量2大きくする定めにきわめて薄くな
っている。従って、第1ポリシリコンをゲートに用いて
トランジスタン構成丁nば、特別なイオン注入など乞す
ることなく、基板電圧クランプ用MOSトランジスタT
のしきい値電圧VTIIの低いトランジスタを得ること
ができる。たとえば、第1ポリシリコンのゲート酸化膜
が160〜200A、第2ポリシリコンのゲート酸化膜
が350〜400Aのとき、チャネル長約2μmの第2
ポリシリコンゲートトランジスタのしきい値電圧VTH
IJ″−O,S V程度であnば、チャネル長約3μm
の第1ポリシリコンゲートトランジスタのしきい値電圧
vTHは0、1〜0.2 V程度になる。また、種々の
理由により、グランド配線4と基板電圧発生回路9出力
の配線5はチップ1の外周を一周するよ5に配線するの
で、グランド配線4、基板電圧発生回路の出力の配線5
で挾まn 7CM 4図の斜線部の基板電圧クランプ用
トランジスタ領域8で、ドレインとゲートが基板電圧発
生回路の出力の配置fj5Vc接続され、ソースがグラ
ンド配線4に接続さnる第1ポリシリフンゲートトラン
ジスタZ設ければ、きわめて低いしきい値電圧vTHと
、きわめて大きいチご     ヤネル幅を持つ基板電
圧クランプ用MOS)ランジスタを特殊なプロセスを追
加することなく、しかもチップ面積ン増大することもな
く林成することが可能である。
1 transistor/1 capacitor type memory cells are generally manufactured using a multilayer polysilicon process 2. For example, in the case of AJJ using a two-layer polysilicon process, the memory cell plate is made of polysilicon, and the transfer gate of the memory cell and the gate of the peripheral circuit transistor are made of the second polysilicon. However, the gate oxide film of the first polysilicon is extremely thin in order to increase the storage capacity 2 of the memory cell. Therefore, if the first polysilicon is used as the gate to form a transistor, the substrate voltage clamping MOS transistor T can be formed without requiring any special ion implantation.
A transistor with a low threshold voltage VTII can be obtained. For example, when the gate oxide film of the first polysilicon is 160 to 200A and the gate oxide film of the second polysilicon is 350 to 400A, the second
Threshold voltage VTH of polysilicon gate transistor
If IJ″-O, SV is about the same, the channel length is about 3 μm.
The threshold voltage vTH of the first polysilicon gate transistor is approximately 0.1 to 0.2V. Furthermore, for various reasons, the ground wiring 4 and the wiring 5 for the output of the substrate voltage generation circuit 9 are wired so as to go around the outer periphery of the chip 1.
In the substrate voltage clamping transistor region 8 shown in the shaded area in the figure, the drain and gate are connected to the output arrangement fj5Vc of the substrate voltage generation circuit, and the source is connected to the ground wiring 4. By providing a gate transistor Z, it is possible to create a substrate voltage clamping MOS (MOS) transistor with an extremely low threshold voltage vTH and an extremely large channel width without adding a special process and also increasing the chip area. It is possible to form a forest without any problems.

〔発明の効果〕〔Effect of the invention〕

以上説明しにようK、この発明は、MOSO8型体導体
集積回路板に基板電圧発生回路ヶ内蔵し、ドレインとゲ
ートが前記基板電圧発生回路の出力に接続され、ソース
がグランドに接続さnrs基板電圧クラりプ用MOS)
ランジスタを備え74 M O8型型半体集槓回路であ
るから、基板電圧が正になることZ防ぎ、信頼性の高い
MOS型半導体集積回路が得らrる利点がある。
To explain the above, this invention has a MOSO8 type conductor integrated circuit board with a built-in substrate voltage generation circuit, the drain and gate are connected to the output of the substrate voltage generation circuit, and the source is connected to the ground. MOS for voltage clap)
Since it is a 74M O8 type half integrated circuit equipped with a transistor, it has the advantage of preventing the substrate voltage from becoming positive and providing a highly reliable MOS type semiconductor integrated circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の基板電圧発生回路を内蔵しrsMOS型
半導体集積回路における基板電圧と電源電圧の関係を示
す図、第2図は第1図の型半体集積回路の電源投入時の
電源電圧波形と基板電圧波形2示す図で、第2図(a)
は電源電圧と時間との関係を表わ丁電圧波形図、同図(
b)は基板電圧と時間との関係2表わす電圧波形図、第
3図はこの発明を説明するための等価回路図、第4図は
この発明の一実施例2示す構成図である。 図中、1はチップ、2はグランド端子のボンディングバ
ンド、3は基板電圧発生回路の出力端子のボンディング
バンド、4はグランド配線、5は基板電圧発生回路の出
力の配線、6はメモリセルアレイ領域、7は周辺回路領
域、8は基板電圧クランプ用トランジスタ領域、■は基
板電圧クランプ用MOS)ランジスクである。 なお、図中の同一符号は同一まLは相当部分を示す。 代理人 大岩 増雄   (外2名) 第1図 第2図 第3図 第4図 1    l   j
Figure 1 is a diagram showing the relationship between the substrate voltage and power supply voltage in an rsMOS type semiconductor integrated circuit with a built-in conventional substrate voltage generation circuit, and Figure 2 is a diagram showing the power supply voltage when the power is turned on for the type half-integrated circuit shown in Figure 1. Figure 2 (a) is a diagram showing the waveform and substrate voltage waveform 2.
is a voltage waveform diagram that represents the relationship between power supply voltage and time, and the same figure (
FIG. 3 is an equivalent circuit diagram for explaining the present invention, and FIG. 4 is a configuration diagram showing a second embodiment of the present invention. In the figure, 1 is a chip, 2 is a bonding band of a ground terminal, 3 is a bonding band of an output terminal of a substrate voltage generation circuit, 4 is a ground wiring, 5 is an output wiring of the substrate voltage generation circuit, 6 is a memory cell array area, 7 is a peripheral circuit area, 8 is a transistor area for clamping the substrate voltage, and 2 is a MOS transistor area for clamping the substrate voltage. Note that the same reference numerals in the drawings indicate the same parts, and L indicates corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 Figure 2 Figure 3 Figure 4 1 l j

Claims (3)

【特許請求の範囲】[Claims] (1)MOS型半導体集積回路の基板に基板電圧発生回
路を内蔵し、ドレインとゲートが前記基板電圧発生回路
の出力に接続され、ソースがグランドに接続された基板
電圧クランプ用MOSトランジスタを備えたことを特徴
とするMOS型半導体集積回路。
(1) A substrate voltage generation circuit is built into the substrate of a MOS semiconductor integrated circuit, and a substrate voltage clamping MOS transistor is provided, the drain and gate of which are connected to the output of the substrate voltage generation circuit, and the source of which is connected to ground. A MOS type semiconductor integrated circuit characterized by the following.
(2)基板電圧クランプ用MOSトランジスタのしきい
値電圧が0ボルト以上で、pn接合のビルトインポテン
シャル以下であることを特徴とする特許請求の範囲第(
1)項記載のMOS型半導体集積回路。
(2) The threshold voltage of the substrate voltage clamping MOS transistor is 0 volts or more and less than or equal to the built-in potential of the pn junction.
1) MOS type semiconductor integrated circuit as described in item 1).
(3)MOS型半導体集積回路は、多層ポリシリコンプ
ロセスを用いた1トランジスタ・1キャパシタ型メモリ
セル構造のMOSダイナミックRAMであり、そのメモ
リセルプレートと、基板電圧クランプ用MOSトランジ
スタのゲートが同じ層のポリシリコンで構成されている
ことを特徴とする特許請求の範囲第(1)項記載のMO
S型半導体集積回路。
(3) A MOS type semiconductor integrated circuit is a MOS dynamic RAM with a one-transistor/one-capacitor type memory cell structure using a multilayer polysilicon process, and the memory cell plate and the gate of the MOS transistor for substrate voltage clamping are in the same layer. MO according to claim 1, characterized in that the MO is made of polysilicon of
S-type semiconductor integrated circuit.
JP17200284A 1984-08-17 1984-08-17 Mos type semiconductor integrated circuit Granted JPS6149456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17200284A JPS6149456A (en) 1984-08-17 1984-08-17 Mos type semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17200284A JPS6149456A (en) 1984-08-17 1984-08-17 Mos type semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS6149456A true JPS6149456A (en) 1986-03-11
JPH0354866B2 JPH0354866B2 (en) 1991-08-21

Family

ID=15933696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17200284A Granted JPS6149456A (en) 1984-08-17 1984-08-17 Mos type semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6149456A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896690A (en) * 1981-12-03 1983-06-08 Electric Power Dev Co Ltd Preparation of concentrated coal slurry
JPS63165366U (en) * 1987-04-17 1988-10-27
US6923425B2 (en) 2001-02-28 2005-08-02 Zurn Industries, Inc. Flush valve diaphragm

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382252A (en) * 1976-12-27 1978-07-20 Texas Instruments Inc Pumping circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382252A (en) * 1976-12-27 1978-07-20 Texas Instruments Inc Pumping circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896690A (en) * 1981-12-03 1983-06-08 Electric Power Dev Co Ltd Preparation of concentrated coal slurry
JPS6149356B2 (en) * 1981-12-03 1986-10-29 Dengen Kaihatsu Kk
JPS63165366U (en) * 1987-04-17 1988-10-27
US6923425B2 (en) 2001-02-28 2005-08-02 Zurn Industries, Inc. Flush valve diaphragm
US7516754B2 (en) 2001-02-28 2009-04-14 Zurn Industries, Llc Flush valve diaphragm
US8210202B2 (en) 2001-02-28 2012-07-03 Zurn Industries, Llc Flush valve diaphragm

Also Published As

Publication number Publication date
JPH0354866B2 (en) 1991-08-21

Similar Documents

Publication Publication Date Title
US5760446A (en) Electrostatic discharge structure of semiconductor device
JPS641067B2 (en)
JPS6038028B2 (en) Substrate potential generator
JPH0249513B2 (en)
US4539490A (en) Charge pump substrate bias with antiparasitic guard ring
US4879679A (en) Dynamic random access memory having storage gate electrode grounding means
JPS6149456A (en) Mos type semiconductor integrated circuit
JPH03232269A (en) Input circuit of semiconductor device
US5641986A (en) Semiconductor device
JP2829034B2 (en) Semiconductor circuit
US5436487A (en) Output circuit having three power supply lines
JPS61251064A (en) Semiconductor integrated circuit
JPH04335570A (en) Semiconductor device
JPH10290519A (en) Semiconductor integrated circuit device
JPH1168058A (en) Semiconductor memory device
JPH0440867B2 (en)
JPH0337240Y2 (en)
JPS6221072Y2 (en)
JPS58116762A (en) Complementary mis semiconductor integrated circuit device
JPH11340339A (en) Semiconductor device
JPS63152165A (en) Semiconductor integrated circuit device
JPS6337892A (en) Substrate potential generating circuit for dynamic random access memory
JPH04275455A (en) Semiconductor memory device
JPS61218163A (en) Semiconductor integrated circuit device
JPH03290967A (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term