[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6148916B2 - - Google Patents

Info

Publication number
JPS6148916B2
JPS6148916B2 JP58245398A JP24539883A JPS6148916B2 JP S6148916 B2 JPS6148916 B2 JP S6148916B2 JP 58245398 A JP58245398 A JP 58245398A JP 24539883 A JP24539883 A JP 24539883A JP S6148916 B2 JPS6148916 B2 JP S6148916B2
Authority
JP
Japan
Prior art keywords
bacterial cells
nozzle
granules
protective film
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58245398A
Other languages
Japanese (ja)
Other versions
JPS60141281A (en
Inventor
Tetsuhiko Maruyama
Michio Murakami
Yutaka Suginaka
Ryoichi Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP24539883A priority Critical patent/JPS60141281A/en
Publication of JPS60141281A publication Critical patent/JPS60141281A/en
Publication of JPS6148916B2 publication Critical patent/JPS6148916B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は長期保存に適した、経口摂取された後
も、胃液による死滅が少なくて腸内に達する顆粒
状の菌体の製造方法並にそれに適した装置を提供
するものである。 従来より細菌、酵母等多くの微生物を保存する
場合菌体を乾燥し保存する方法が講じられてい
る。乾燥は培養液より分離した菌体をそのまゝ、
或いはこれにでん粉、乳糖、蛋白質又は有機、無
機の塩類を加え、低温通風乾燥、真空乾燥或いは
凍結乾燥により水分10%以下となるようにするも
のである。例えば成人腸内に不足するとされてい
るビフイズス菌は生のまゝ飲料又はヨーグルトに
混合して径口摂取することも可能であるが、保存
に適しない所から乾燥し他の食品と混合する方法
が広く行なわれ、特公昭58―46293号公報には含
水率4%以下のでん粉、でん粉加水分解物又は蛋
白質の1種又は2種以上の打錠用基礎配合物と、
凍結乾燥したビフイズス菌を混合し打錠してビフ
イズス菌含有錠菓を製造する方法が開示され、特
開昭58―14967号公報にはビフイズス菌体と生で
ん粉を混合し凍結乾燥してビフイズス菌の生存率
を高める方法が開示されている。 上記方法により製造された乾燥ビフイズス菌
は、何れも相当の保存性を有するが基本的に粉状
であり空気との接触面積が大きいので保存には特
別の配慮を必要とするとか、体内に取入れられる
と均一に分散して胃液の影響を受けて相当数の菌
が死滅し腸内に達する割合は少ない等の欠点があ
る。又、乳酸菌、酵母菌等を造粒法、押し出し成
形法等で成形し、公知の方法で乾燥しても保存性
に多くの問題があることは周知の通りである。 本発明者等は上記乾燥方法の欠点を根本的に解
決し、取扱いが容易でしかも保存性がよく、径口
摂取された後も、胃液による死臓がなくて腸内に
達する乾燥菌体を得んと研究した結果、従来の乾
燥助剤の如く単に菌体表面に付着させるのでなく
保護膜形成容液中に菌体を懸濁させ、これを凝固
用塩類溶液と反応させて凝固させ菌体表面に均一
な保護膜を形成させるとよいことに着目し、先づ
生菌体と保護膜形成溶液を均一に混合し、混合液
を凝固用塩類溶液に注入して塊状に凝固させ、得
られた凝固物を分離して乾燥し、体温以上の融点
をもつ油脂でコーテイングする方法並びにそれに
適した装置を開発することに成功したのである。 本発明に使用する菌としては、乳酸菌、酵母菌
等食品、薬品製造又は加工用或いは一般工業用微
生物が使用でき、特にビフイズス菌の如く経口摂
取する微生物に応用して好適である。ビフイズス
菌としては例えばビフイドバクテリウム・インフ
アンテス(Bifidbacthrium infantis)、ビフイド
バクテリウム・ロンガム(Bifidbacterium
Iongum)、ビフイドバクテリウム・アドレツセン
チス(Bifidbacterium adlecsentis)を挙げるこ
とができる。 上記の微生物は糖類、塩類及び生長素を含む天
然又は合成の培養基で培養し、培養後は通常遠心
分離機で菌体分離を行ない濃縮し、濃縮物に水又
は生理的食塩水を加えて稀釈洗滌し、再度遠心分
離する。上記洗滌操作は菌体の濃縮度により差が
あるが通常2〜3回繰返すとよい。得られた洗滌
菌体は培地成分が十分除去され異臭の少ない菌体
となるのでそのまゝ使用してもよく、場合によつ
ては更に脱水して使用してもよいものである。 又、前記菌体と混合する保護膜形成溶液にはア
ルギン酸ソーダ、アルギン酸カリ、ペクチン、グ
ルコマンナンの如くカルシユームイオンの如き金
属イオンと結合して菌体表面に保護膜を形成する
物質を含んでおり、これにでん粉、デキストリ
ン、蔗糖、グルタミン酸ナトリウム、アスコルビ
ン酸ナトリウム等調湿機能を有し、乾燥に際して
急激な脱水のシヨツクを防止したり酸化を防止す
る物質を添加するとよい。そのような混合物の組
成例としては、例えば固形物としてビフイズス菌
体5〜10部、でん粉10〜50部、アルギン酸ナトリ
ウム0.1〜1.0部、及びグルタミン酸ナトリウム0.5
〜2.0部、アスコルビン酸ナトリウム0.5〜1.0部を
含む懸濁液を挙げることができる。 又前記凝固用塩類溶援としては前記保護膜形成
溶液の主成分と結合して菌体表面に被膜を形成さ
せる機能を有する物質が使用され、実用的には菌
体を死滅させず、人体に無害な乳酸カルシウム、
塩化カルシウム等の中性の5〜25℃で1%程度の
溶液が使用される。 以下ビフイドバクテリウム・ロンガム
(Bifidbacterium Iongum)を上記要領で分離
し、ビフイズス菌顆粒を製造する場合の例を添付
の図面により説明する。図中1は原料混合槽を示
し、その内部には撹拌機2を備えビフイズス菌体
とアルギン酸ナトリウム、でん粉、アスコルビン
酸ナトリウム、グルタミン酸ナトリウムを前記割
合で入れ均一に混合する。このとき混合物Aの粘
度は通常200cp程度である。得られた混合物Aは
次いでポンプ3を介して混合物貯槽4に移行させ
る。貯槽4は密閉型であり、上部には調圧装置と
してのエアーコンプレツサー5と連通する配管6
と調圧弁6′を設け、常時適当な圧力例えば1〜
3Kg/cm2の圧力で貯槽4よりの押出圧がかけられ
るようにしてある。又貯槽4の下部には撹拌機7
を備え菌体、でん粉等が沈澱するのを防止する。
更に貯層4の所望の位置に配管8を連通させ、配
管8の他端は多数の分配管9に開口させてある。
この分配管9には多数のノズル10を下方に向けて
取付けてあり、該ノズル10の内径は1mm以下、
特に0.2〜0.5mmの範囲がよい。更にそれぞれのノ
ズル10にはバルブ11を設け、流量を調節した
り噴射を停止できるようにしておくとよい。 上記構成により貯層4内はエヤーコンプレツサ
ー5により加圧されているので混合物Aはノズル
10の先端より射出することになるが射出量はエ
ヤーコンプレツサー5の圧力やバルブ11の調節
によつて調整可能であるがエヤーコンプレツサー
5の代りに配管8の途中にポンプその他の噴出量
を調節できる装置を設けてもよいものである。 ノズル10の下方には凝固液槽12を設け、そ
の中に乳酸カルシウム、あるいは塩化カルシウム
の溶液を入れ凝固援Bとする。又一側にオーバー
フロー用樋13を設け、他側には凝固液貯槽14
と定量ポンプ15を介して凝固液Bを供給できる
ようにし、液面が前記ノズル10の下端より約3
〜10cm下に位置するようにする。 このためノズル10よりの混合物Aは常に一定
条件で射出され凝固液槽12にて短秒時に凝固し
粒状となつて沈下する。このとき、混合物A中の
菌体はアルギン酸ソーダ溶液中に均一に懸濁して
いるので前記粒子の表面が先ずカルシウムイオン
と接し瞬間的に緋膜を形成し漸次カルシウムイオ
ンの浸入により内部の菌体も被膜を形成するので
全体は固化する。 ノズル10よりの押し出し圧はノズル10の口
径、混合物Aの組成及びノズル10と液面との間
隔により調節するのがよいが、前記条件を調節す
ることにより射出量を加減して微細な顆粒から大
きい顆粒まで所望の大きさの顆粒を製造できる。
若し、押し出し圧が強すぎたりノズルと液面との
距離が不足すると混合物Aは顆粒とすることはで
きず連続した棒状となるので注意を要する。この
ようにして混合物Aは互にくつつくことのない凝
固粒子Cとなつて下方に沈澱する。 上記凝固粒子Cを取出すため、凝固液Bの流れ
と直角方向に24〜32メツシユのスクリーン16を
走行させ、プリー17,17…により凝固槽12
を囲繞すると共にスクリーン16の排出側には樋
18を設け上方に設けたノズル19より水を噴射
して洗滌するようにしてある。このため凝固粒子
Cは洗滌され、更にスクリーン16が回動すると
下方に向きと変え容器20の中に落下するが、尚
付着する凝固粒子Cはスクリーン16の戻り側裏
側に設けた空気吹き出しノズル21よりの気流に
より除去し、全部容器20中に回収する。 回収された凝固粒子Cは多量の水分を含んでお
り、そのまゝでは保存力に乏しいので次いで乾燥
する。乾燥は真空乾燥法、凍結乾燥法或いは不活
性ガス等による通風乾燥法が採用でき、乾燥後の
水分は1〜5%程度の顆粒とするのがよい。 上記方法により得た顆粒は第3図で油脂層ニを
除いた構造を有し、菌体イ及びでん粉ロの表面が
アルギン酸カルシウムの被膜ハで被覆されてお
り、ノズル10の内径より2〜3倍の径に膨化し
た構造を有するが、図より判明する如く従来のよ
うに菌体と乾燥助剤を機械的に混合したものに比
べ被覆は完全でしかも均一であり被膜の層も極め
て薄ので保存力が著しく向上するほか顆粒状であ
るから取扱いも便利である。 次に実施例1により得た菌体顆粒をアルミ箔で
包み室温及び37℃で保存したときの生菌数の成積
を第1表に示す。
The present invention provides a method for producing granular microbial cells that are suitable for long-term storage and reach the intestines with less annihilation by gastric juices even after oral ingestion, as well as an apparatus suitable therefor. BACKGROUND ART Conventionally, when preserving many microorganisms such as bacteria and yeast, methods have been used to dry and preserve the microorganisms. For drying, the bacterial cells isolated from the culture solution are left as they are.
Alternatively, starch, lactose, protein, or organic or inorganic salts are added to this, and the moisture content is reduced to 10% or less by low-temperature ventilation drying, vacuum drying, or freeze drying. For example, Bifidobacterium, which is said to be lacking in the adult intestines, can be ingested raw by mixing it with drinks or yogurt, but it is also possible to dry it from a place that is not suitable for storage and mix it with other foods. This is widely practiced, and Japanese Patent Publication No. 58-46293 describes a base tableting formulation containing one or more of starch, starch hydrolyzate, or protein with a moisture content of 4% or less;
A method for producing a tablet confectionery containing Bifidobacterium by mixing freeze-dried Bifidobacterium and compressing the mixture into tablets is disclosed, and Japanese Patent Application Laid-Open No. 14967/1983 discloses a method for producing Bifidobacterium-containing tablets by mixing Bifidobacterium cells and raw starch and freeze-drying the mixture. A method is disclosed for increasing the survival rate of. Dried Bifidobacterium produced by the above method has a considerable shelf life, but since it is basically in powder form and has a large contact area with air, special consideration is required for preservation, and it is difficult to take it into the body. If the bacteria are dispersed uniformly, a considerable number of bacteria will die under the influence of gastric juices, and a small percentage of them will reach the intestines. Furthermore, it is well known that even if lactic acid bacteria, yeast, etc. are molded by granulation, extrusion, etc. and dried by known methods, there are many problems with storage stability. The present inventors have fundamentally solved the drawbacks of the above drying method, and have created dried bacterial cells that are easy to handle, have good storage stability, and can reach the intestines without being killed by gastric juices even after being ingested. As a result of extensive research, we found that instead of simply adhering to the bacterial surface as with conventional drying aids, we suspended the bacterial cells in a protective film-forming solution and reacted with a coagulating salt solution to solidify the bacteria. Focusing on the fact that it is good to form a uniform protective film on the body surface, we first uniformly mix live bacterial cells and a protective film-forming solution, then pour the mixed solution into a coagulating salt solution to coagulate it into a lump. They succeeded in developing a method for separating and drying the coagulated material and coating it with an oil or fat having a melting point above body temperature, as well as an apparatus suitable for this process. As the bacteria used in the present invention, microorganisms for food, drug manufacturing or processing, or general industrial use such as lactic acid bacteria and yeast bacteria can be used, and microorganisms that are ingested orally such as Bifidobacterium are particularly suitable. Examples of bifidobacteria include Bifidbacterium infantis, Bifidbacterium longum, and Bifidbacterium infantis.
Iongum) and Bifidbacterium adlecsentis. The above microorganisms are cultured in a natural or synthetic culture medium containing sugars, salts, and growth factors, and after culture, the cells are usually separated using a centrifuge and concentrated, and the concentrate is diluted with water or physiological saline. Wash and centrifuge again. The above-mentioned washing operation may be repeated 2 to 3 times depending on the degree of concentration of the bacterial cells. The obtained washed bacterial cells can be used as they are, since the culture medium components have been sufficiently removed, resulting in bacterial cells with little off-flavor, or if necessary, they can be further dehydrated before use. The protective film forming solution to be mixed with the bacterial cells contains a substance such as sodium alginate, potassium alginate, pectin, or glucomannan that binds to metal ions such as calcium ions to form a protective film on the surface of the bacterial cells. To this, it is preferable to add substances such as starch, dextrin, sucrose, sodium glutamate, and sodium ascorbate, which have a humidity control function and prevent rapid dehydration during drying and prevent oxidation. Examples of the composition of such a mixture include, for example, 5 to 10 parts of Bifidobacteria cells, 10 to 50 parts of starch, 0.1 to 1.0 parts of sodium alginate, and 0.5 parts of sodium glutamate as solids.
2.0 parts, and 0.5 to 1.0 parts of sodium ascorbate. In addition, as the coagulating salt solution, a substance that has the function of binding with the main component of the protective film forming solution to form a film on the surface of the bacterial cells is used, and in practical terms, it does not kill the bacterial cells and does not harm the human body. Calcium lactate, harmless
A neutral solution of about 1% at 5 to 25°C, such as calcium chloride, is used. An example in which Bifidobacterium Iongum is separated in the manner described above to produce Bifidobacterium granules will be described below with reference to the accompanying drawings. In the figure, 1 indicates a raw material mixing tank, which is equipped with a stirrer 2 to uniformly mix bifidus cells, sodium alginate, starch, sodium ascorbate, and sodium glutamate in the above ratio. At this time, the viscosity of mixture A is usually about 200 cp. The resulting mixture A is then transferred via pump 3 to mixture storage tank 4 . The storage tank 4 is a closed type, and the upper part has a pipe 6 communicating with an air compressor 5 as a pressure regulating device.
and a pressure regulating valve 6' are provided to keep the appropriate pressure at all times, e.g.
Extrusion pressure from the storage tank 4 is applied at a pressure of 3 kg/cm 2 . Also, a stirrer 7 is installed at the bottom of the storage tank 4.
This prevents bacterial cells, starch, etc. from settling.
Further, a pipe 8 is connected to a desired position in the storage layer 4, and the other end of the pipe 8 is opened to a large number of distribution pipes 9.
A large number of nozzles 10 are attached to this distribution pipe 9 facing downward, and the inner diameter of the nozzles 10 is 1 mm or less.
In particular, the range of 0.2 to 0.5 mm is good. Furthermore, each nozzle 10 is preferably provided with a valve 11 so that the flow rate can be adjusted or the injection can be stopped. With the above configuration, the inside of the reservoir 4 is pressurized by the air compressor 5, so the mixture A is injected from the tip of the nozzle 10, but the injection amount depends on the pressure of the air compressor 5 and the adjustment of the valve 11. Therefore, it is possible to adjust the amount of ejection, but instead of the air compressor 5, a pump or other device that can adjust the amount of ejection may be provided in the middle of the pipe 8. A coagulation liquid tank 12 is provided below the nozzle 10, and a solution of calcium lactate or calcium chloride is put therein to serve as a coagulation aid B. Also, an overflow gutter 13 is provided on one side, and a coagulation liquid storage tank 14 is provided on the other side.
The coagulating liquid B can be supplied through the metering pump 15 and the liquid level is approximately 3.
Position it ~10cm below. Therefore, the mixture A from the nozzle 10 is always injected under constant conditions, solidifies in a short period of time in the coagulation liquid tank 12, becomes granular, and sinks. At this time, since the bacterial cells in mixture A are uniformly suspended in the sodium alginate solution, the surfaces of the particles first come into contact with calcium ions and instantly form a scarlet film, and the calcium ions gradually penetrate inside the bacterial cells. Also forms a film, so the whole solidifies. The extrusion pressure from the nozzle 10 is preferably adjusted by the diameter of the nozzle 10, the composition of the mixture A, and the distance between the nozzle 10 and the liquid surface. Granules of desired size up to large granules can be produced.
If the extrusion pressure is too strong or the distance between the nozzle and the liquid surface is insufficient, the mixture A cannot be made into granules but becomes continuous rod-shaped, so care must be taken. In this way, the mixture A becomes coagulated particles C that do not stick to each other and settles downward. In order to take out the coagulated particles C, a screen 16 of 24 to 32 meshes is run in a direction perpendicular to the flow of the coagulated liquid B, and pulleys 17, 17...
A gutter 18 is provided on the discharge side of the screen 16, and water is sprayed from a nozzle 19 provided above for cleaning. Therefore, the coagulated particles C are washed, and when the screen 16 further rotates, the direction changes downward and falls into the container 20. However, the coagulated particles C that still adhere to the air blowing nozzle 21 provided on the back side of the return side of the screen 16 It is removed by a further air flow and collected in the container 20 in its entirety. The recovered coagulated particles C contain a large amount of water and have poor preservability if left as is, so they are then dried. For drying, a vacuum drying method, a freeze drying method, or a ventilation drying method using an inert gas or the like can be employed, and the moisture content after drying is preferably about 1 to 5% in the form of granules. The granules obtained by the above method have the structure shown in FIG. 3 with the oil and fat layer D removed, and the surfaces of the bacterial cells A and starch B are coated with a calcium alginate film C, and the inner diameter of the nozzle 10 is 2 to 3 mm thick. Although it has a structure that has expanded to twice the diameter, as can be seen from the figure, the coating is complete and uniform, and the coating layer is extremely thin compared to the conventional mechanical mixture of bacterial cells and drying aid. Not only does it have significantly improved preservative power, but it is also convenient to handle because it is in granular form. Next, Table 1 shows the number of viable bacteria when the bacterial granules obtained in Example 1 were wrapped in aluminum foil and stored at room temperature and 37°C.

【表】 本発明の方法により得た顆粒はそのまゝ径口摂
取することができるし、他の食品と混合して摂取
してもよく、更には他の食品の加工や工業的目的
に使用できるものである。経口摂取後菌体はアル
ギン酸カルシウムで被覆されているので胃液によ
り死滅することは少ないが、更に死滅を少なくす
るには菌体顆粒を油脂でコーテイングする。 使用する油脂は従来微生物のコーテイングに使
用されている低融点の油脂は使用できず、人間の
体温で融解しない高融点の油脂で、例えば37℃〜
43℃の融点をもつ硬化油である。 油脂のコーテイングは常法により行うことがで
きるが流動層造粒コーテイング装置を使用すると
便利である。該装置は下方より気体を送り顆粒を
流動させながら油脂を噴霧しコーテイングする方
法であるが、コーテイングにより胃液に対する抵
抗が著しく向上し、殆んどの菌体は腸内に達す
る。今その例を実験例で示す。 実験は実施例1の方法で製造したビフイズス菌
顆粒を流動層造粒コーテイング装置フローコータ
ーFLO―5型(商品名)を用い、ビフイズス菌
顆粒2Kgに対し融点40℃の硬化油800gを45℃で
融解し50℃の気流中に噴霧して行なつた。その結
果得られたコーテイング物は第3図に示すように
菌体イとでん粉ロの顆粒表面に油脂層ニが成層し
た状態になり、このコーテイング物を人工的に調
製した胃液(食塩0.2%、ペプシン0.32%を含み
塩酸でPH1.5にしたもの)に加え、37℃の恆温槽
中で1〜5時間撹拌しながら反応させた。反応後
PH7.0となし常法によりビフイズス生菌数を測定
した。その結果を第2表に示す。
[Table] The granules obtained by the method of the present invention can be ingested as is, mixed with other foods, or used for processing other foods or for industrial purposes. It is possible. After oral ingestion, the bacterial cells are coated with calcium alginate, so they are unlikely to be killed by gastric juice, but to further reduce the chance of death, the bacterial granules can be coated with oil or fat. The oils and fats used cannot be the low melting point oils conventionally used for coating microorganisms, but rather high melting point oils that do not melt at human body temperature, for example 37℃~
It is a hydrogenated oil with a melting point of 43℃. Coating with fats and oils can be done by conventional methods, but it is convenient to use a fluidized bed granulation coating device. This device sends gas from below to make the granules flow while spraying and coating them with oil and fat.The coating significantly improves the resistance to gastric juices, and most of the bacteria reach the intestines. An example of this will now be shown with an experimental example. The experiment was carried out using a fluidized bed granulation coating device Flow Coater FLO-5 model (trade name) for bifidobacteria granules produced by the method of Example 1, and 800g of hydrogenated oil with a melting point of 40℃ was added to 2Kg of bifidobacteria granules at 45℃. This was done by melting and spraying into an air stream at 50°C. As shown in Figure 3, the resulting coating has a layer of oil and fat on the surface of the granules of bacterial cells A and starch B, and this coating is coated with artificially prepared gastric juice (salt 0.2%, (containing 0.32% pepsin and adjusted to pH 1.5 with hydrochloric acid) and reacted with stirring in a constant temperature bath at 37° C. for 1 to 5 hours. After reaction
The number of viable Bifidus bacteria was determined using a standard method at pH 7.0. The results are shown in Table 2.

【表】 値である。
上表の如く得られた生菌数は実験誤差内の変動
で実質的に死滅菌数は全くないといつて差支えな
い。又、小腸内に達すると消化液により油脂膜ニ
に消化され、顆粒も崩壊するので消化液の影響に
より多少の菌の死滅はある。本発明者らが人工腸
液で行なつた試験では約20%の死滅であるので大
部分のビフイズスは生きた状態で大腸に達するこ
とができる。 上記の実験はビフイズス菌についてであるが、
本発明の方法は乳酸菌、酵母菌をはじめ多くの微
生物の乾燥に応用することができ、得られた菌体
はアルギン酸カルシウムの如き保護膜で薄く且つ
均一に被覆されているので、そのまゝ保存しても
中性、酸性の高水分の食品中へ添加しても形崩れ
はなく、食品中の水分の影響を受けることも少な
く、従来の菌体乾燥物にくらべ長期にわたり活性
を維持されることができるのである。 以下実施例により説明する。 実施例 1 ビフイド・バクテリウム・ロンガム
(Bifidbacterium Iongum)をタナシナーゼ(商
標名)で分解した脱脂乳培地で18時間37℃で嫌気
培養し、培養後遠心分離機により菌体を濃縮し
た。濃縮液はほゞもとの量になるよう生理食塩水
を加え再度遠心分離を行なつて洗滌し、2回洗滌
を繰返して培地10当り約700gの生菌体(固形
物として約140g)を得た。 上記生菌体700gに対し馬鈴薯でん粉200g、グ
ルタミン酸モノナトリウム20g、L―アスコルビ
ン酸ナトリウム10gを加え、更に予め溶解してお
いたアルギン酸ナトリウム2.5%溶液2.00mlを加
え全体を均一に混合した。 上記混合液状物を第1図に示す装置で内径0.3
mmのノズルから約5cmの距離で1%の乳酸カルシ
ウムを含む凝固液槽の液面に向け1.3Kg/cm2の圧
力で連続的に押し出し顆粒状に凝固させた。これ
を32メツシユの金網のスクリーンで掬い取り、水
を噴霧して洗滌後充分脱水し、金属トレー上に5
〜10mmの厚さに広げて凍結乾燥した。得られた顆
粒の平均粒径は約0.9mmであり、比容積2.75ml/
g、水分2.0%の白色の顆粒で収量は340gであつ
た。 上記ビフイズス菌顆粒中にはビフイズス菌5.8
×108個/g含んでおり、密封貯蔵すると長期に
わたり活性を維持し、ヨーグルト等の食品への添
加物として好適であつた。 実施例 2 牛乳ホエーのプロテアーゼ分解物10%を含むPH
6.2の培地を使用し、ストレプトコツカス・サー
モフイラス(St.thermophilus)を40℃で4時間
培養し、実施例1と同様に遠心分離、洗滌を行な
つて培地10当たり菌体約700g(固形物として
約150g)を得た。 上記菌体を実施例1と同様な方法で保護膜形成
溶液と混合し、造粒後凍結乾燥し、平均粒形約
1.0mm比容積2.75ml/g、水分2.0%の白色の顆粒
350gを得た。 上記顆粒は1.2×1010個/gの菌数を含み通気
性、透湿性のないアルミ箔で包装後保存試験をし
た結果、第3表に示す結果を得た。
[Table] Values.
The number of viable bacteria obtained as shown in the above table fluctuates within experimental error, and it can be said that there is virtually no dead or sterilized number. Furthermore, when it reaches the small intestine, it is digested into a fat film by digestive juices, and the granules also disintegrate, so some of the bacteria may die due to the influence of the digestive juices. In tests conducted by the present inventors using artificial intestinal fluid, the mortality rate was about 20%, so most of the bifidus can reach the large intestine alive. The above experiment is about Bifidobacterium,
The method of the present invention can be applied to the drying of many microorganisms including lactic acid bacteria and yeast, and since the obtained bacterial cells are thinly and uniformly coated with a protective film such as calcium alginate, they can be stored as is. Even when added to neutral or acidic high-moisture foods, it does not lose its shape, is less affected by the moisture in the food, and maintains its activity for a longer period of time than conventional dried bacterial cells. It is possible. This will be explained below using examples. Example 1 Bifidbacterium Iongum was cultured anaerobically at 37°C for 18 hours in a skim milk medium digested with thanasinase (trade name), and after culture, the bacterial cells were concentrated using a centrifuge. Add physiological saline to the concentrated solution to almost the original volume, perform centrifugation again, and wash. Repeat the washing twice to obtain about 700 g of viable bacterial cells (about 140 g as solid matter) per 10 medium. Obtained. To 700 g of the above-mentioned viable cells were added 200 g of potato starch, 20 g of monosodium glutamate, and 10 g of sodium L-ascorbate, and then 2.00 ml of a 2.5% sodium alginate solution dissolved in advance was added and the whole was mixed uniformly. The above-mentioned liquid mixture was heated using the device shown in Figure 1 with an inner diameter of 0.3 mm.
The mixture was continuously extruded at a pressure of 1.3 kg/cm 2 at a distance of about 5 cm from a 1.0 mm nozzle toward the surface of a coagulation liquid tank containing 1% calcium lactate, and coagulated into granules. Scoop this up with a 32-mesh wire mesh screen, spray it with water, thoroughly dehydrate it, and place it on a metal tray for 5 minutes.
It was spread to a thickness of ~10 mm and freeze-dried. The average particle size of the obtained granules was approximately 0.9 mm, and the specific volume was 2.75 ml/
The yield was 340 g, white granules with a moisture content of 2.0%. The above Bifidobacterium granules contain 5.8 Bifidobacterium
It contained 10 8 pieces/g, maintained its activity for a long time when stored in a sealed container, and was suitable as an additive to foods such as yogurt. Example 2 PH containing 10% milk whey protease decomposition product
Using the medium of 6.2, Streptococcus thermophilus was cultured at 40°C for 4 hours, and centrifuged and washed in the same manner as in Example 1 to yield approximately 700 g of bacterial cells (solid matter) per 10 medium. About 150g) was obtained. The above bacterial cells were mixed with a protective film forming solution in the same manner as in Example 1, granulated and freeze-dried, with an average particle size of approximately
1.0mm white granules with a specific volume of 2.75ml/g and a moisture content of 2.0%
Obtained 350g. The above granules contained 1.2×10 10 cells/g, and after being packaged in aluminum foil with no air permeability or moisture permeability, a storage test was performed, and the results shown in Table 3 were obtained.

【表】 実施例 3 実施例1の方法により得たビフイドバクテリウ
ム・ロンガム(Bifidbacterium Iongum)の菌体
700dlに対し、馬鈴薯でん粉400g、グルタミン酸
ナトリウム20g、L―アスコルビン酸ナトリウム
10g、5%のロ−トメキシル・ペクチン100mlを
加え均一に混合した。 上記混合液を実施例1と同様にして内径0.4mm
のノズルから1%の乳酸カルシウム溶液に5cmの
高さから射出して造粒させ32メツシユのスクリユ
ーで掬い取り、流水で洗滌後充分脱水し、凍結乾
燥し、平均粒径1mm比容積3.0ml/g、水分2.0%
の白色の顆粒530gを得た。この顆粒中のビフイ
ズ菌数は2.0×108個/gであり、長期保存に適し
た。 実施例 4 サツカロミセス・セレビツシエ(Sac.
Cellevicae)を甘蔗糖蜜培地で30℃で通気培養
し、遠心分離・洗滌して糖蜜1Kg当たり約700dl
の生菌体を得た。 上記菌体をコーンスターチ200g、5%ローメ
トキシルペクチン1000mlと混合し、実施例1と同
様にして内径0.5mmのノズルから7cmの高さから
押し出し、造粒し、32メツシユのスクリーンで掬
い出した後充分水洗し、真空乾燥して平均粒径
1.2mm、水分5.0%の顆粒約450gを得た。この顆
粒は長期保存しても発酵力を失うことはなかつ
た。
[Table] Example 3 Cells of Bifidbacterium Iongum obtained by the method of Example 1
For 700dl, 400g potato starch, 20g monosodium glutamate, sodium L-ascorbate
10 g of 5% rhotomexyl pectin (100 ml) was added and mixed uniformly. The above mixed solution was prepared in the same manner as in Example 1, and the inner diameter was 0.4 mm.
A 1% calcium lactate solution is injected from a height of 5 cm from a nozzle, granulated, scooped out with a 32-mesh screw, washed with running water, thoroughly dehydrated, and freeze-dried. Average particle size: 1 mm, specific volume: 3.0 ml/ g, moisture 2.0%
530 g of white granules were obtained. The number of Bifid bacteria in these granules was 2.0×10 8 cells/g, making them suitable for long-term storage. Example 4 Saccharomyces cerevisiae (Sac.
Cellevicae) was cultured in cane molasses medium at 30℃ with aeration, centrifuged and washed to produce approximately 700 dl per 1 kg of molasses.
Live bacterial cells were obtained. The above bacterial cells were mixed with 200 g of cornstarch and 1000 ml of 5% rhomethoxyl pectin, extruded from a height of 7 cm from a nozzle with an inner diameter of 0.5 mm in the same manner as in Example 1, granulated, and scooped out with a 32-mesh screen. Wash thoroughly with water and dry in vacuum to determine the average particle size.
Approximately 450 g of granules of 1.2 mm and 5.0% moisture were obtained. These granules did not lose their fermentation power even after long-term storage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は装置の説明図、第2図は第1図の凝固
液槽の断面図、第3図はコーテイングした顆粒の
断面拡大図である。 1……混合槽、4……貯槽、6,8……配管、
10……ノズル、12……凝固液槽、14……凝
固液貯槽、16……スクリーン、20……容器、
A……混合物、B……凝固液、C……凝固粒子。
FIG. 1 is an explanatory diagram of the apparatus, FIG. 2 is a cross-sectional view of the coagulation liquid tank of FIG. 1, and FIG. 3 is an enlarged cross-sectional view of coated granules. 1... Mixing tank, 4... Storage tank, 6, 8... Piping,
10...Nozzle, 12...Coagulation liquid tank, 14...Coagulation liquid storage tank, 16...Screen, 20...Container,
A...Mixture, B...Coagulation liquid, C...Coagulation particles.

Claims (1)

【特許請求の範囲】 1 生菌体と保護膜形成溶液とを混合し、混合液
を凝固用塩類溶液に注入して凝固させ、得られた
凝固物を取り出して乾燥し、体温以上の融点をも
つ油脂でコーテイングすることを特徴とする菌体
顆粒の製造方法。 2 生菌体がビフイズス菌であることを特徴とす
る特許請求の範囲第1項の菌体顆粒の製造方法。 3 生菌体と保護膜形成溶液の混合物が乾物重量
比で、菌体5〜10部、でん粉10〜50部、アルギン
酸ナトリウム0.1〜1.0部を含むことを特徴とする
特許請求の範囲第1項の菌体顆粒製造方法。 4 生菌体と保護膜形成溶液を収納する貯槽と、
該貯槽と連通し下方に向けて垂下するノズルと、
該ノズルの下方に液面が位置するよう設けた凝固
槽と、前記ノズルの噴出量を調節する装置よりな
り、前記ノズルは内径1mm以下好ましくは0.2〜
0.5mmであり、前記ノズルの先端と前記凝固槽の
液面間隔が約3〜10cmであることを特徴とする菌
体顆粒の製造装置。
[Claims] 1. Mix viable bacterial cells and a protective film-forming solution, inject the mixed solution into a coagulating salt solution to coagulate it, take out the resulting coagulated product, dry it, and bring it to a melting point above body temperature. A method for producing bacterial cell granules, characterized by coating them with oil and fat. 2. The method for producing bacterial cell granules according to claim 1, wherein the viable bacterial cells are Bifidobacterium. 3. Claim 1, characterized in that the mixture of viable bacterial cells and a protective film forming solution contains 5 to 10 parts of bacterial cells, 10 to 50 parts of starch, and 0.1 to 1.0 parts of sodium alginate in terms of dry weight ratio. A method for producing bacterial cell granules. 4. A storage tank for storing viable bacterial cells and a protective film forming solution;
a nozzle communicating with the storage tank and hanging downward;
It consists of a coagulation tank provided so that the liquid level is located below the nozzle, and a device for adjusting the ejection amount of the nozzle, and the nozzle has an inner diameter of 1 mm or less, preferably 0.2 to 1 mm.
0.5 mm, and a distance between the tip of the nozzle and the liquid level of the coagulation tank is about 3 to 10 cm.
JP24539883A 1983-12-28 1983-12-28 Method and apparatus for producing granule of microorganism Granted JPS60141281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24539883A JPS60141281A (en) 1983-12-28 1983-12-28 Method and apparatus for producing granule of microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24539883A JPS60141281A (en) 1983-12-28 1983-12-28 Method and apparatus for producing granule of microorganism

Publications (2)

Publication Number Publication Date
JPS60141281A JPS60141281A (en) 1985-07-26
JPS6148916B2 true JPS6148916B2 (en) 1986-10-27

Family

ID=17133056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24539883A Granted JPS60141281A (en) 1983-12-28 1983-12-28 Method and apparatus for producing granule of microorganism

Country Status (1)

Country Link
JP (1) JPS60141281A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149152A (en) * 1984-12-24 1986-07-07 大正製薬株式会社 Apparatus for producing seamless capsule
JP2000300211A (en) * 1999-04-21 2000-10-31 Risoo Erudesu:Kk Health food composition formulated with metabolic product of lactobacillus
FR2863828B1 (en) * 2003-12-23 2007-02-02 Gervais Danone Sa LIQUID FOOD PRODUCT COMPRISING PELLETS OF LACTIC ACID BACTERIA
EP2223600A1 (en) * 2009-02-19 2010-09-01 Urea Casale S.A. Granules containing filamentary fungi and method of preparation thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157502A (en) * 1979-03-28 1980-12-08 Damon Corp Live tissue encapsulation and tissue transplantation
JPS5816693A (en) * 1981-03-13 1983-01-31 デイモン・バイオテック・インコ−ポレ−テッド Production of substance produced by bacteria

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157502A (en) * 1979-03-28 1980-12-08 Damon Corp Live tissue encapsulation and tissue transplantation
JPS5816693A (en) * 1981-03-13 1983-01-31 デイモン・バイオテック・インコ−ポレ−テッド Production of substance produced by bacteria

Also Published As

Publication number Publication date
JPS60141281A (en) 1985-07-26

Similar Documents

Publication Publication Date Title
US4888171A (en) Granular product of dried microorganism cells and manufacturing method therefor
JP6820340B2 (en) Coating method of lactic acid bacteria with enhanced intestinal survival rate
JP5285617B2 (en) Dry food products containing live probiotics
JP5826107B2 (en) Composition for enteral administration of microorganisms
CN102482635B (en) Coated dehydrated microorganism with enhancing stability and viability
CN104543611A (en) Application of whey protein and reducing oligosaccharide Maillard product to microcapsule wall materials and embedded probiotics
DE60319375T2 (en) Double-coated lactic acid bacteria powder with protein and polysaccharide and the process for their preparation and their dosage form
JP2002320473A (en) Method for producing doubly coated lactobacillus bulk powder utilizing protein and polysaccharide
Harel et al. Protection and delivery of probiotics for use in foods
JPS6148916B2 (en)
CN105725127B (en) Water chestnut dietary fiber powder with prebiotics function and preparation method thereof
JP2968089B2 (en) Coating material and enteric-coated granules using the same
CN109864137A (en) A kind of quick-fried pearl Yoghourt and preparation method thereof
JP4152591B2 (en) Dragees
JP3668397B2 (en) Method for producing jelly confectionery
JP3187502B2 (en) Enteric granules
JP3202053B2 (en) Enteric granules
JPH05186337A (en) Enteric granule composed of multiple granules
JP2578460B2 (en) Multifunctional food and its manufacturing method
JP4849384B2 (en) Thermoplastic trehalose molding, its production method and use
WO2001007016A1 (en) Process for the production of soft capsules and coating materials and lubricants to be used therefor
KR100493354B1 (en) Powder of lactic acid bacteria coated with levan and alginate bead having improved survival ability and method of preparing the same
KR20240001347A (en) Vegetable marshmallow containing lactic acid bacteria and manufacturing method
JPS62138425A (en) Dehydrated medicine and production thereof
RU2142504C1 (en) Method of preparing biologically active addition as dried form containing bacteria-eubiotics and filling for bread and confectionery articles based on said