JPS6146229B2 - - Google Patents
Info
- Publication number
- JPS6146229B2 JPS6146229B2 JP13003081A JP13003081A JPS6146229B2 JP S6146229 B2 JPS6146229 B2 JP S6146229B2 JP 13003081 A JP13003081 A JP 13003081A JP 13003081 A JP13003081 A JP 13003081A JP S6146229 B2 JPS6146229 B2 JP S6146229B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- silicon carbide
- copper plate
- thickness
- carbide ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000919 ceramic Substances 0.000 claims description 26
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 20
- 229910052802 copper Inorganic materials 0.000 claims description 20
- 239000010949 copper Substances 0.000 claims description 20
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 12
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 12
- 238000009749 continuous casting Methods 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
【発明の詳細な説明】
本発明は連続鋳造設備のモールド銅板に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molded copper plate for continuous casting equipment.
連続鋳造設備におけるモールド銅板の寿命は
種々の要因により左右されるが、特に銅板下部の
寿命は、主に鋳片凝固殻との接触により生じる摩
耗に支配される。第1図に示すように、この摩耗
1はモールド銅板2の溶鋼側表面成体に亘つて発
生するが、下部においては、その摩耗量が増大す
ると共に最下端に近づくと摩耗量は約3倍に急増
し、テーパ状に摩耗する。なお、図中、3は鋳
片、4は凝固殻を示す。ところで、本発明者等
は、銅板下部の摩耗に対処するために、銅板下部
にセラミツクス板を接合させたものを既に提案し
ているが、このものは上記したように、テーパ状
の摩耗には対処しがたい欠点を有していた。 The life of a molded copper plate in continuous casting equipment is influenced by various factors, but in particular the life of the lower part of the copper plate is mainly controlled by wear caused by contact with the solidified slab shell. As shown in Fig. 1, this wear 1 occurs over the surface of the molded copper plate 2 on the molten steel side, but the amount of wear increases at the bottom, and as it approaches the bottom, the amount of wear increases by about three times. It increases rapidly and wears out in a tapered shape. In addition, in the figure, 3 indicates a slab and 4 indicates a solidified shell. By the way, the present inventors have already proposed a method in which a ceramic plate is bonded to the lower part of the copper plate in order to cope with the wear at the lower part of the copper plate, but as mentioned above, this product is not effective against tapered wear. It had drawbacks that were difficult to deal with.
そこで、本発明は上記欠点を解消し得る連続鋳
造設備のモールド銅板を提供するものである。 Therefore, the present invention provides a molded copper plate for continuous casting equipment that can eliminate the above-mentioned drawbacks.
即ち、本発明はモールド銅板の溶鋼側下部表面
に端面を接して複数個の炭化硅素のセラミツクス
板をチタンを使つた活性金属法により縦方向に接
合すると共に、該炭化硅素セラミツクス板の上位
と下位の板厚の比を1:3〜5の範囲とし、かつ
その板厚を上位から下位に向かつて漸増させたも
のである。 That is, the present invention vertically joins a plurality of silicon carbide ceramic plates by an active metal method using titanium with their end surfaces in contact with the lower surface of the molten steel side of a molded copper plate, and also connects the upper and lower silicon carbide ceramic plates to each other by an active metal method using titanium. The plate thickness ratio is in the range of 1:3 to 5, and the plate thickness is gradually increased from the upper to the lower.
ここで、セラミツクス板の板厚を上位から下位
に向つて1:3〜5の範囲で漸増させた理由を説
明する。モールド銅板自体の摩耗量は上述したよ
うに、1:3の比率で変化しているが、板厚一定
のセラミツクス板を接合すると、セラミツクス板
の熱伝導度が低いため、銅板温度が一様化する方
向で高くなることが判つた。この結果、モールド
銅板だけの場合の摩耗量比1:3に対し、セラミ
ツクス板の板厚を上位から下位に亘つて1:3〜
5倍が望ましいことが判つた。即ち、下位のセラ
ミツクス板の板厚を上位のセラミツクス板の板厚
の3倍以上にしないと、上位のセラミツクス板の
損傷が限界に達しない段階で下位のセラミツクス
板が使用不可能になる。また、上記の板厚比が5
倍を超えると、上位のセラミツクス板の損傷が下
位のセラミツクス板よりも先に使用限界に達する
ため、モールド銅板全体としての機能がなくな
る。 Here, the reason why the thickness of the ceramic plate is gradually increased in the range of 1:3 to 5 from the upper side to the lower side will be explained. As mentioned above, the amount of wear on the molded copper plate itself changes at a ratio of 1:3, but when ceramic plates of a constant thickness are joined, the temperature of the copper plate becomes uniform because the thermal conductivity of the ceramic plate is low. It was found that the value increases in the direction of As a result, compared to the wear ratio of 1:3 when only the molded copper plate is used, the thickness of the ceramic plate is 1:3 to 1:3 from the top to the bottom.
It was found that 5 times is desirable. That is, unless the thickness of the lower ceramic plate is at least three times the thickness of the upper ceramic plate, the lower ceramic plate will become unusable before the damage to the upper ceramic plate reaches its limit. In addition, the above plate thickness ratio is 5
If it exceeds twice that, the upper ceramic plate will be damaged before the lower ceramic plate will reach its usable limit, and the molded copper plate as a whole will no longer function.
次に、具体例について説明する。 Next, a specific example will be explained.
第2図の本発明の一実施例を示す側面図のごと
く、炭化硅素セラミツクス板11をモールド銅板
12の約下半分に例えば5枚の炭化硅素セラミツ
クス板11をその上下端面が接するようにチタン
を使用した活性金属法により接合し、その炭化硅
素セラミツクス板の板厚を最上位11aが0.07
mm、最下位11bが0.28mmの板厚とすると共に、
この間のセラミツクス板の板厚を約0.05mmの板厚
差をつけて、上位から下位にかけて漸増変化させ
た。このものを、実際の連続鋳造設備に使用した
結果、約670チヤージの鋳造に耐えると共に、セ
ラミツクス板の残厚がいずれも等しく、即ち一様
に使用限界に達したことが判つた。 As shown in the side view of FIG. 2, which shows an embodiment of the present invention, a silicon carbide ceramic plate 11 is placed on about the lower half of a molded copper plate 12, and titanium is placed on, for example, five silicon carbide ceramic plates 11 so that their upper and lower end surfaces are in contact with each other. The silicon carbide ceramic plate was bonded using the active metal method used, and the thickness of the silicon carbide ceramic plate was 0.07 mm.
mm, the lowest 11b has a plate thickness of 0.28 mm,
During this period, the thickness of the ceramic plate was gradually increased from the top to the bottom, with a thickness difference of about 0.05 mm. When this product was used in actual continuous casting equipment, it was found that it withstood approximately 670 charges of casting, and that the residual thickness of the ceramic plates was the same in all cases, that is, the limit of use was uniformly reached.
以上のように、本発明の連続鋳造設備のモール
ド銅板によれば、溶鋼側下部表面に端面を接して
複数個の炭化硅素セラミツクス板を縦方向に接合
すると共に、該炭化硅素セラミツクス板の上位と
下位の板厚の比を1:3〜5の範囲とし、かつそ
の板厚を上位から下位に向かつて漸増させたの
で、モールド銅板下部に接合された各セラミツク
ス板の寿命を全体的に一様にすることができ、従
つて経済的である。 As described above, according to the molded copper plate of the continuous casting equipment of the present invention, a plurality of silicon carbide ceramic plates are joined in the vertical direction with their end surfaces in contact with the lower surface on the molten steel side, and the silicon carbide ceramic plates are connected to the upper side of the silicon carbide ceramic plate. The ratio of the lower plate thickness is in the range of 1:3 to 5, and the plate thickness is gradually increased from the upper to the lower part, so the life of each ceramic plate bonded to the lower part of the molded copper plate is uniform throughout. Therefore, it is economical.
第1図はモールド銅板の摩耗を示す図、第2図
は本発明の一実施例を示すモールド銅板の側面図
である。
2……モールド銅板、3……鋳片、11……炭
化硅素セラミツクス板、12……モールド銅板。
FIG. 1 is a diagram showing wear of a molded copper plate, and FIG. 2 is a side view of a molded copper plate showing an embodiment of the present invention. 2... Molded copper plate, 3... Cast piece, 11... Silicon carbide ceramic plate, 12... Molded copper plate.
Claims (1)
硅素セラミツクス板を縦方向に接合すると共に、
該炭化硅素セラミツクス板の上位と下位の板厚の
比を1:3〜5の範囲とし、かつその板厚を上位
から下位に向かつて漸増させたことを特徴とする
連続鋳造設備のモールド銅板。1. Joining a plurality of silicon carbide ceramic plates in the vertical direction with their end surfaces in contact with the lower surface of the molten steel side,
A molded copper plate for continuous casting equipment, characterized in that the ratio of the upper and lower plate thicknesses of the silicon carbide ceramic plate is in the range of 1:3 to 5, and the plate thickness is gradually increased from the upper side to the lower side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13003081A JPS5833984A (en) | 1981-08-18 | 1981-08-18 | Molding copper plate for continuous casting facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13003081A JPS5833984A (en) | 1981-08-18 | 1981-08-18 | Molding copper plate for continuous casting facility |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5833984A JPS5833984A (en) | 1983-02-28 |
JPS6146229B2 true JPS6146229B2 (en) | 1986-10-13 |
Family
ID=15024409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13003081A Granted JPS5833984A (en) | 1981-08-18 | 1981-08-18 | Molding copper plate for continuous casting facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5833984A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6344849U (en) * | 1986-09-11 | 1988-03-25 | ||
JPH0413226Y2 (en) * | 1985-11-30 | 1992-03-27 |
-
1981
- 1981-08-18 JP JP13003081A patent/JPS5833984A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413226Y2 (en) * | 1985-11-30 | 1992-03-27 | ||
JPS6344849U (en) * | 1986-09-11 | 1988-03-25 |
Also Published As
Publication number | Publication date |
---|---|
JPS5833984A (en) | 1983-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5650119A (en) | Cooling plate for a blast furnance | |
JPS6146229B2 (en) | ||
JPS5695461A (en) | Continuous casting method by mold provided with mold temperature measuring element | |
US2433803A (en) | Sectional hot top | |
US2093024A (en) | Ingot mold stool | |
US2341589A (en) | Hot top | |
US3007217A (en) | Mold for aluminothermic welding of rails and the like | |
US3026585A (en) | Sectional hot top | |
US2867871A (en) | Hot-top for ingot mold | |
JPS6146226B2 (en) | ||
US2235199A (en) | Method of cladding steel | |
US3783933A (en) | Method of making an ingot mold stool | |
US4077600A (en) | Ingot mold base member | |
JPS583754A (en) | Preventing method for thermal fatigue in meniscus part of mold for continuous casting | |
CA1154229A (en) | Hot top for ingot mold | |
JPS6146227B2 (en) | ||
US3508600A (en) | Process of casting with mold stool protection plate | |
JPS57190749A (en) | Solid exothermic and heat insulating material for riser | |
JPH0367466B2 (en) | ||
JPH0252580B2 (en) | ||
JP2000015399A (en) | Refractory ring for mold and mold for vertical continuous casting using the ring | |
JP2942397B2 (en) | Nozzle brick manufacturing method | |
JPS6313240Y2 (en) | ||
JPS57190765A (en) | Ladle for charging of molten metal | |
JPS5832134Y2 (en) | smelting furnace |