[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6146675B2 - - Google Patents

Info

Publication number
JPS6146675B2
JPS6146675B2 JP8075176A JP8075176A JPS6146675B2 JP S6146675 B2 JPS6146675 B2 JP S6146675B2 JP 8075176 A JP8075176 A JP 8075176A JP 8075176 A JP8075176 A JP 8075176A JP S6146675 B2 JPS6146675 B2 JP S6146675B2
Authority
JP
Japan
Prior art keywords
pressure
pump
flow path
reflux
pump discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8075176A
Other languages
Japanese (ja)
Other versions
JPS536911A (en
Inventor
Ken Morinushi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8075176A priority Critical patent/JPS536911A/en
Publication of JPS536911A publication Critical patent/JPS536911A/en
Publication of JPS6146675B2 publication Critical patent/JPS6146675B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、少流量時にモートルが過負荷とな
るポンプ、例えばウエスコポンプにおいて、還流
流路を設けてポンプ吐出全流量の一部をポンプ吸
込口へ還流されることにより蛇口流量が少流量で
もポンプの連続運転を行うことができるように
し、圧力タンクを小形化もしくは全く廃止したポ
ンプ装置(以後、タンクレスポンプ装置と称す
る)の流量感知による自動制御を行う自動式ポン
プ装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a method for pumps whose motors are overloaded when the flow rate is small, such as Wesco pumps, by providing a return flow path to absorb a portion of the total pump discharge flow. The pump can be operated continuously even if the faucet flow rate is small by returning the flow to the spout, and the pressure tank is downsized or completely eliminated by sensing the flow rate of the pump device (hereinafter referred to as tankless pump device). This invention relates to an automatic pump device that performs automatic control.

〔従来技術〕[Prior art]

第1図は従来の自動式タンクレスポンプ装置の
一例を示す系統図であり、この図で、1は揚程の
増加と共に所要動力が増大するポンプ、例えばウ
エスコポンプである。2は吸込管であり、逆止弁
3を経由して水源に接続される。4は小形圧力タ
ンク、5は圧力スイツチで、いずれもポンプ吐出
流路6に接続される。7はある所定の圧力以下で
は閉じているリリーフ弁であり、還流流路8内に
接続されている。9は蛇口流路10内に接続され
蛇口11から流出する流量を圧力の形で検出する
ための抵抗弁である。還流路8内に接続された差
圧弁12は抵抗弁9の前圧と後圧とを検出するた
めの前圧測定孔13と後圧測定孔14とを介して
圧力差に変換した流量を感知し、この差圧がある
値以下になると弁を閉じて還流を停止するように
調整されている。この差圧弁12の一例を第2図
に示す。
FIG. 1 is a system diagram showing an example of a conventional automatic tankless pump device. In this diagram, 1 is a pump whose required power increases as the head increases, such as a Wesco pump. 2 is a suction pipe, which is connected to a water source via a check valve 3. 4 is a small pressure tank, and 5 is a pressure switch, both of which are connected to the pump discharge channel 6. Reference numeral 7 denotes a relief valve that closes below a certain predetermined pressure, and is connected to the reflux flow path 8 . Reference numeral 9 denotes a resistance valve connected within the faucet flow path 10 for detecting the flow rate flowing out from the faucet 11 in the form of pressure. A differential pressure valve 12 connected to the reflux path 8 senses the flow rate converted into a pressure difference through a front pressure measurement hole 13 and a back pressure measurement hole 14 for detecting the front pressure and back pressure of the resistance valve 9. However, when this differential pressure falls below a certain value, the valve is closed and the reflux is stopped. An example of this differential pressure valve 12 is shown in FIG.

第2図において、本体15は孔16の縁に装着
されたパツキング17を有し、圧力室ケース18
とでダイヤフラム19を挾持しており、このダイ
ヤフラム19の中央部に作動軸20が保持されて
いる。21は押圧ばねであり、調整ねじ22によ
り適宜の荷重に調整されている。23,24はそ
れぞれ差圧弁圧力室であり、前圧測定孔13によ
る圧力が差圧弁圧力室23に、後圧測定孔14に
よる圧力が差圧弁圧力室24に導かれている。2
5はOリングであり、差圧弁圧力室23を還流流
路8と遮断するためのものである。
In FIG. 2, the main body 15 has a packing 17 attached to the edge of the hole 16, and a pressure chamber case 18.
A diaphragm 19 is held between the diaphragm 19 and an operating shaft 20 is held in the center of the diaphragm 19. Reference numeral 21 denotes a pressure spring, and the load is adjusted to an appropriate value by an adjustment screw 22. 23 and 24 are differential pressure valve pressure chambers, respectively, in which the pressure from the front pressure measurement hole 13 is guided to the differential pressure valve pressure chamber 23, and the pressure from the rear pressure measurement hole 14 is introduced to the differential pressure valve pressure chamber 24. 2
5 is an O-ring for isolating the differential pressure valve pressure chamber 23 from the reflux flow path 8.

従来の自動式タンクレスポンプ装置は上記のよ
うに構成され、例えばポンプ1の停止状態におい
て蛇口11より水の使用を開始するとポンプ吐出
流路6内の圧力が低下し、圧力スイツチ5のオン
圧力Ponまで達しポンプ1は起動する。蛇口全開
で蛇口流量Q1が大の時はポンプ1の吐出圧P0
低く、リリーフ弁7の開く圧力P1より低いため吸
込口への還流はない。ただし、差圧弁12は抵抗
弁9の前後の差圧ΔPが大きいため開いた状態で
ある。次に蛇口11を絞つていくとポンプ1の吐
出圧が上昇し、リリーフ弁7の開きはじめる圧力
P1より高くなるとリリーフ弁7は開きはじめ、差
圧弁12もまだ開いているためポンプ1の吐出流
量Q0の一部が吸込口へ還流をはじめるので、さ
らに蛇口11を絞つていつても還流流量Q0はそ
れほど減少せず、吐出圧もそれほど上昇しなくな
る。しかしさらに蛇口11を絞つていき蛇口流量
Q1が非常に少なくなると抵抗弁9の前後の差圧
ΔPが非常に小さくなるため、差圧弁12は閉じ
られていき、還流流量Q2が減少するためポンプ
1の吐出圧もまた上昇し、圧力スイツチ5のオフ
圧P0FFに達してポンプ1は停止する。
The conventional automatic tankless pump device is configured as described above. For example, when water is started from the faucet 11 while the pump 1 is stopped, the pressure in the pump discharge passage 6 decreases, and the on-pressure of the pressure switch 5 decreases. It reaches Pon and pump 1 starts. When the faucet is fully open and the faucet flow rate Q 1 is large, the discharge pressure P 0 of the pump 1 is low and lower than the pressure P 1 at which the relief valve 7 opens, so there is no flow back to the suction port. However, the differential pressure valve 12 is in an open state because the differential pressure ΔP before and after the resistance valve 9 is large. Next, as the faucet 11 is turned down, the discharge pressure of the pump 1 increases, and the pressure at which the relief valve 7 begins to open
When the pressure becomes higher than P 1 , the relief valve 7 begins to open, and since the differential pressure valve 12 is still open, part of the discharge flow rate Q 0 of the pump 1 begins to flow back to the suction port, so even if the faucet 11 is closed, the flow continues. The flow rate Q 0 does not decrease so much, and the discharge pressure also does not increase so much. However, as the faucet 11 is further tightened, the faucet flow rate increases.
When Q 1 becomes very small, the differential pressure ΔP across the resistance valve 9 becomes very small, so the differential pressure valve 12 is closed, and the reflux flow rate Q 2 decreases, so the discharge pressure of the pump 1 also increases. The pump 1 stops when the off-pressure P0FF of the pressure switch 5 is reached.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように従来の自動式タンクレスポンプ装
置では蛇口流量Q1を感知するために、わざわざ
抵抗弁9を設けて損失を生じさせているため、蛇
口流量Q1がある程度より大きい時のポンプ装置
の実揚程を低下させる原因となつてしまう。また
抵抗弁9により生じる前後の差圧ΔPは、抵抗弁
9を通過する流体の流速、すなわち蛇口流量Q1
の二乗に比例するため、肝心の微少流量の時に感
度が悪いという問題点があつた。
As mentioned above, in the conventional automatic tankless pump device, in order to sense the faucet flow rate Q 1 , a resistance valve 9 is purposely provided to cause a loss, so the pump device when the faucet flow rate Q 1 is larger than a certain level. This will cause the actual head to decrease. Further, the pressure difference ΔP before and after the resistance valve 9 is the flow rate of the fluid passing through the resistance valve 9, that is, the faucet flow rate Q 1
Since it is proportional to the square of , there was a problem that the sensitivity was poor at the critical minute flow rate.

この発明は、無駄な損失を生じさせる抵抗弁9
がなく、しかも蛇口流量Q1が微少流量である時
の感度がよく蛇口流量感知能力を有する自動式タ
ンクレスポンプ装置を得ることを目的とするもの
である。
This invention eliminates the resistance valve 9 that causes unnecessary loss.
It is an object of the present invention to provide an automatic tankless pump device which has a high sensitivity and ability to detect a faucet flow rate when the faucet flow rate Q1 is a minute flow rate.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る自動式ポンプ装置は所定圧力の
幅をもつてポンプを起動・停止する圧力スイツチ
を有するポンプ吐出流路を蛇口流路と還流流路と
に分岐し、この両流路の流量を圧力の形で感知し
両流量の差が所定の値以下になつたとき弁を閉じ
る差圧弁と所定ポンプ吐出圧以下では弁を閉じる
リリーフ弁との両弁を上記還流流路に介在させた
ものである。
The automatic pump device according to the present invention branches a pump discharge flow path having a pressure switch that starts and stops the pump with a predetermined pressure width into a faucet flow path and a return flow path, and controls the flow rate of both flow paths. A differential pressure valve that senses pressure in the form of pressure and closes the valve when the difference between both flow rates falls below a predetermined value, and a relief valve that closes the valve when the pump discharge pressure is below a predetermined pump discharge pressure are interposed in the above-mentioned reflux flow path. It is.

〔作用〕[Effect]

この発明においては蛇口流量が微少になつたと
き差圧弁により還流流路が閉鎖され圧力が急激に
上昇し、これによつて圧力スイツチは作動しポン
プを停止する。
In this invention, when the faucet flow rate becomes very small, the return flow path is closed by the differential pressure valve and the pressure rises rapidly, which causes the pressure switch to operate and stop the pump.

〔実施例〕〔Example〕

第3図はこの発明の一実施例を示す自動式タン
クレスポンプ装置の系統図である。この図で、符
号1〜8および10〜12は、上記第1図の従来
装置と同一部分である。抵抗弁9および抵抗弁の
前圧測定孔13、後圧測定孔14はなく、かわり
にポンプ吐出流路6、還流流路8に分岐による影
響がほゞ無い範囲でできるだけ近接させてそれぞ
れ壁面静圧孔26、壁面静圧孔27が設けられて
おり、壁面静圧孔26は第2図に示す差圧弁12
の差圧弁圧力室24に、壁面静圧孔27は差圧弁
圧力室23にそれぞれ接続されている。またポン
プ吐出流路6が還流流路8と蛇口流路10とに分
岐する部分の配管構造は、ポンプ吐出流路6と還
流流路8とが原則的には同断面積で直線的に接続
されている方がよい。
FIG. 3 is a system diagram of an automatic tankless pump device showing an embodiment of the present invention. In this figure, numerals 1 to 8 and 10 to 12 are the same parts as in the conventional device shown in FIG. 1 above. There is no resistance valve 9, front pressure measurement hole 13, and back pressure measurement hole 14 of the resistance valve, and instead they are placed as close as possible to the pump discharge flow path 6 and reflux flow path 8 to the extent that there is almost no influence from branching, and the wall surface static. A pressure hole 26 and a wall static pressure hole 27 are provided, and the wall static pressure hole 26 is connected to the differential pressure valve 12 shown in FIG.
The differential pressure valve pressure chamber 24 and the wall static pressure hole 27 are connected to the differential pressure valve pressure chamber 23, respectively. In addition, the piping structure of the part where the pump discharge flow path 6 branches into the reflux flow path 8 and the faucet flow path 10 is such that the pump discharge flow path 6 and the reflux flow path 8 are connected linearly with the same cross-sectional area in principle. It is better to have

次に動作について説明する。壁面静圧孔26の
設けられた位置のポンプ吐出流路6の断面Aと壁
面静圧孔27の設けられた位置の還流流路8の断
面Bとにおける全圧をそれぞれPtA,PtBとする
と、両断面間の距離があまりなく、しかも直線的
に接続されているのでほゞPtA=PtBとなる。ま
た断面Aと断面Bとにおける動圧をそれぞれPD
,PDB、静圧をPSA,PSBとすると、二つの流
路の断面積が等しいので二つの流路の流量の二乗
の差(Q −Q )は(PDA−PDB)に比例する。
上記二つの事実より(Q −Q )はほゞ(PSB
SA)に比例することがわかる。。口流量Q1に対
する差圧弁12の差圧弁圧力室23と差圧弁圧力
室24との差圧ΔPの大きさの関係は、従来の抵
抗弁9による揚合では前述のように蛇口流量Q1
の二乗の関数ΔP=aQ であり、この発明の場合
にはポンプ吐出流量Q0の二乗と還流流量Q2の二
乗との差の関数、すなわちΔP=b(Q −Q
であるので、第4図にそれぞれ示すような曲線
,となる(a,bは定数)。この図から判る
ように、この発明による蛇口流量感知装置の方
が、従来の抵抗弁9によるものより蛇口流量Q1
が微少であるときの感度がよく、また差圧弁12
の作動軸20の変位も蛇口流量Q1が微少の時
に、より急激に起るので、還流流路8の閉鎖によ
る圧力上昇もより急激に起り、より良い精度での
蛇口流量Q1の感知によるポンプの停止が可能と
なるのである。この発明によるポンプ装置の特性
を、従来のものと比較して第5図に示す。
Next, the operation will be explained. The total pressures at the cross section A of the pump discharge passage 6 at the position where the wall static pressure hole 26 is provided and the cross section B of the return flow passage 8 at the position where the wall static pressure hole 27 is provided are expressed as P tA and P tB , respectively. Then, since there is not much distance between the two cross sections and they are connected linearly, it becomes approximately P tA =P tB . In addition, the dynamic pressure at cross section A and cross section B is P D
Assuming that A , P DB and the static pressure are P SA and P SB , the cross-sectional area of the two channels is equal, so the difference (Q 2 0 - Q 2 2 ) in the square of the flow rate of the two channels is (P DA - P DB ).
From the above two facts, (Q 2 0 −Q 2 2 ) is almost (P SB
It can be seen that it is proportional to P SA ). . The relationship between the magnitude of the differential pressure ΔP between the differential pressure valve pressure chamber 23 and the differential pressure valve pressure chamber 24 of the differential pressure valve 12 with respect to the faucet flow rate Q 1 is as described above in the case of pumping using the conventional resistance valve 9.
In the case of the present invention, it is a function of the difference between the square of the pump discharge flow rate Q 0 and the square of the reflux flow rate Q 2 , that is, ΔP = b (Q 2 0 - Q 2 2 )
Therefore, the curves shown in FIG. 4 are obtained (a and b are constants). As can be seen from this figure, the faucet flow rate sensing device according to the present invention has a higher faucet flow rate Q 1 than the conventional resistance valve 9.
It has good sensitivity when the pressure is small, and the differential pressure valve 12
The displacement of the operating shaft 20 also occurs more rapidly when the faucet flow rate Q 1 is small, so the pressure increase due to the closure of the return flow path 8 also occurs more rapidly, and the displacement of the actuating shaft 20 occurs more rapidly when the faucet flow rate Q 1 is detected with better accuracy. This makes it possible to stop the pump. The characteristics of the pump device according to the present invention are shown in FIG. 5 in comparison with the conventional pump device.

第5図において、横軸はポンプ吐出流量Q0
よび蛇口流量Q1を、縦軸は全揚程H0および実揚
程Hをとつてあり、曲線は従来のH−Q1
性、曲線はこの発明のH−Q1特性を示す。直
線はポンプ単体のH0−Q0特性である。H1は圧
力スイツチ5がオンとなる揚程、H2は圧力スイ
ツチ5がオフとなる揚程、H3はモータが過負荷
となる揚程である。
In Fig. 5, the horizontal axis represents the pump discharge flow rate Q 0 and the faucet flow rate Q 1 , and the vertical axis represents the total head H 0 and the actual head H. The curve is the conventional H-Q 1 characteristic, and the curve is the curve of the invention. shows the H-Q 1 characteristics of The straight line is the H 0 −Q 0 characteristic of the pump alone. H1 is the lift at which the pressure switch 5 is turned on, H2 is the lift at which the pressure switch 5 is turned off, and H3 is the lift at which the motor is overloaded.

なお、上述した実施例はいずれもポンプ吐出流
路6と還流流路8とが同じ断面積で直線的に接続
されている場合に限つて説明したが、判面積が異
なつた場合や、あまり直線的に接続されていない
場合でも、差圧弁12や差圧弁12の押圧ばね2
1や調整ねじ22で校正することにより、上記の
動作を行わせることは可能である。
Note that the above-mentioned embodiments have been explained only when the pump discharge passage 6 and the reflux passage 8 are linearly connected with the same cross-sectional area, but when the cross-sectional areas are different or the reflux passage is connected in a straight line, Even if the differential pressure valve 12 and the pressure spring 2 of the differential pressure valve 12 are not connected,
The above operation can be performed by calibrating with the adjustment screw 1 and the adjustment screw 22.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、ポンプ吐出全
流量と還流流量との2つの流量を圧力の形で感知
し、この2つの流量の差が所定の値以下になつた
とき作動する差圧弁により還流流路を閉鎖して圧
力を上昇させることにより圧力スイツチを作動さ
せポンプを制御しているので、従来のように蛇口
流路に抵抗弁を要せず抵抗弁による無駄な損失が
ないばかりか、蛇口流路が微少であるときの感度
が良くポンプの制御精度が向上される等効果があ
る。
As explained above, this invention senses two flow rates in the form of pressure, the pump discharge total flow rate and the reflux flow rate, and uses a differential pressure valve that operates when the difference between these two flow rates becomes less than a predetermined value to recirculate the flow. Since the pressure switch is activated and the pump is controlled by closing the flow path and increasing the pressure, there is no need for a resistance valve in the faucet flow path as in conventional systems, and there is no unnecessary loss due to the resistance valve. There are effects such as good sensitivity when the faucet flow path is minute and improved control accuracy of the pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自動式タンクレスポンプ装置の
一例の系統図、第2図は第1図の装置に使用され
る差圧弁の構造の一例を示す一部を断面で表わし
た図、第3図はこの発明の一実施例を示す系統
図、第4図、第5図は第3図の実施例の蛇口流量
の感知特性とH−Q1特性をそれぞれ従来の装置
の場合と対比させて示す図である。 図中、1はポンプ、4は小形圧力タンク、5は
圧力スイツチ、6はポンプ吐出流路、7はリリー
フ弁、8は還流流路、10は蛇口流路、12は差
圧弁、26,27は壁面静圧孔である。なお、図
中の同一符号は同一または相当部分を示す。
Fig. 1 is a system diagram of an example of a conventional automatic tankless pump device, Fig. 2 is a partial cross-sectional view showing an example of the structure of a differential pressure valve used in the device of Fig. 1, and Fig. 3 is a system diagram of an example of a conventional automatic tankless pump device. The figure is a system diagram showing one embodiment of the present invention, and Figures 4 and 5 compare the faucet flow rate sensing characteristics and H-Q 1 characteristics of the embodiment of Figure 3 with those of a conventional device. FIG. In the figure, 1 is a pump, 4 is a small pressure tank, 5 is a pressure switch, 6 is a pump discharge channel, 7 is a relief valve, 8 is a reflux channel, 10 is a faucet channel, 12 is a differential pressure valve, 26, 27 is a wall static pressure hole. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 ポンプの吐出側に結合されたポンプ吐出流路
と、このポンプ吐出流路を分岐し形成されたポン
プ吐出水を蛇口に流出させる蛇口流路および上記
ポンプ吐出水の一部をポンプ吸込側に還流させる
ための還流流路と、この還流流路に介在し上記ポ
ンプの所定ポンプ吐出圧以下では上記還流流路を
閉鎖し還流を阻止するリリーフ弁と、上記ポンプ
吐出流路のポンプ吐出全流量と上記還流流量の2
つの流量を圧力の形で感知しこの2つの流量の差
が所定の値以下になつたとき上記還流流路を閉鎖
し還流を阻止する差圧弁および上記ポンプ吐出流
路に介在し所定圧力の幅をもつて上記ポンプの起
動・停止を行う圧力スイツチとを備えていること
を特徴とする自動式ポンプ装置。 2 ポンプ吐出流路と還流流路とが同断面積で、
かつ直線的に接続されていることを特徴とする特
許請求の範囲第1項に記載の自動式ポンプ装置。
[Scope of Claims] 1. A pump discharge flow path connected to the discharge side of the pump, a faucet flow path formed by branching this pump discharge flow path and allowing the pump discharge water to flow out to a faucet, and one part of the pump discharge water. a reflux passage for refluxing the part to the pump suction side; a relief valve interposed in the reflux passage for closing the reflux passage and preventing reflux when the pump discharge pressure is below a predetermined pump discharge pressure; 2 of the total pump discharge flow rate and the above recirculation flow rate
A differential pressure valve that senses two flow rates in the form of pressure and closes the reflux flow path to prevent reflux when the difference between the two flow rates becomes less than a predetermined value; and a pressure switch for starting and stopping the pump. 2 The pump discharge flow path and the reflux flow path have the same cross-sectional area,
The automatic pump device according to claim 1, wherein the pump device is connected in a straight line.
JP8075176A 1976-07-06 1976-07-06 Automatic pump apparatus Granted JPS536911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8075176A JPS536911A (en) 1976-07-06 1976-07-06 Automatic pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8075176A JPS536911A (en) 1976-07-06 1976-07-06 Automatic pump apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10605186A Division JPS6267296A (en) 1986-05-07 1986-05-07 Automatic pump device

Publications (2)

Publication Number Publication Date
JPS536911A JPS536911A (en) 1978-01-21
JPS6146675B2 true JPS6146675B2 (en) 1986-10-15

Family

ID=13727100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8075176A Granted JPS536911A (en) 1976-07-06 1976-07-06 Automatic pump apparatus

Country Status (1)

Country Link
JP (1) JPS536911A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065205U (en) * 1983-10-14 1985-05-09 大森機械工業株式会社 Preliminary vacuum device with cutting device inside for deep drawing automatic vacuum packaging machine

Also Published As

Publication number Publication date
JPS536911A (en) 1978-01-21

Similar Documents

Publication Publication Date Title
US5642752A (en) Controllable constant flow regulating lift valve
US5114280A (en) Vacuum type sewage collecting system and vacuum valve controller for the same
US4124332A (en) Automatically operative pumping equipment
US6792799B2 (en) Positive flow meter
KR101033847B1 (en) Expention tank system used proportional control type automatic valve
US3973877A (en) Automatic pumping device
US3871792A (en) Pump system and valve assembly therefor
JPS6146675B2 (en)
WO1992013198A1 (en) Hydraulic circuit having pressure compensation valve
US5169291A (en) Water heater with shut-off valve
JPH0129998B2 (en)
JPH0121047B2 (en)
US20080295897A1 (en) Dual range flow sensor
JP3827597B2 (en) Decompression backflow prevention device
US4521156A (en) Self-priming pump system having diaphragm-type flow sensor
JP3388049B2 (en) Gas meter
US4625748A (en) Safety arrangement for power assisted steerings
JP2819185B2 (en) Water supply control device
JPS6016677Y2 (en) automatic water supply device
JP2553964Y2 (en) Water supply pressurization device
JPS6119838B2 (en)
JPS6314074Y2 (en)
JPH0740178Y2 (en) Flow rate abnormality detector
JPH0219601Y2 (en)
KR820002435Y1 (en) Pump device for electric well pump