JPS6145177B2 - - Google Patents
Info
- Publication number
- JPS6145177B2 JPS6145177B2 JP49062445A JP6244574A JPS6145177B2 JP S6145177 B2 JPS6145177 B2 JP S6145177B2 JP 49062445 A JP49062445 A JP 49062445A JP 6244574 A JP6244574 A JP 6244574A JP S6145177 B2 JPS6145177 B2 JP S6145177B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- cooled
- cooling source
- heat exchanger
- transfer medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 claims abstract description 133
- 239000012530 fluid Substances 0.000 claims abstract description 42
- 238000012546 transfer Methods 0.000 claims abstract description 29
- 230000005540 biological transmission Effects 0.000 claims description 18
- 230000003287 optical effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 7
- 238000004813 Moessbauer spectroscopy Methods 0.000 abstract description 5
- 238000005057 refrigeration Methods 0.000 abstract 2
- 239000001307 helium Substances 0.000 description 16
- 229910052734 helium Inorganic materials 0.000 description 16
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 16
- 239000007788 liquid Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000002955 isolation Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010437 gem Substances 0.000 description 1
- 229910001751 gemstone Inorganic materials 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/825—Apparatus per se, device per se, or process of making or operating same
- Y10S505/888—Refrigeration
- Y10S505/892—Magnetic device cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/825—Apparatus per se, device per se, or process of making or operating same
- Y10S505/888—Refrigeration
- Y10S505/897—Cryogenic media transfer
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、冷却装置に関するものであり、更に
詳しくは、冷却する物体(以下被冷却物という)
に、低温を作り出す動力源(以下冷却源という)
の振動を伝えずに、冷却源の低温のみを伝達する
振動は伝えない冷却伝達装置に係るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device, and more specifically to an object to be cooled (hereinafter referred to as an object to be cooled).
A power source that generates low temperature (hereinafter referred to as a cooling source)
This relates to a cooling transmission device that transmits only the low temperature of the cooling source without transmitting the vibrations of the cooling source.
冷却源の振動を被冷却物に伝えないで、低温の
みを伝達する冷却伝達装置は、特に発光分光とか
吸収分光により分析する標本(以下被冷却物と言
う)の冷却に必要である。この分光学の一領域と
して、メスバウアー分光学が知られている。 A cooling transfer device that transmits only the low temperature without transmitting the vibrations of the cooling source to the object to be cooled is especially necessary for cooling a specimen (hereinafter referred to as the object to be cooled) to be analyzed by emission spectroscopy or absorption spectroscopy. Mössbauer spectroscopy is known as one area of spectroscopy.
1950年代の後期には、ルドルフ メスバウアー
は固体中に埋設した原子核が、固有幅で完全な遷
移エネルギーを保有する低エネルギーのガンマー
線を発光・吸収し、また、反跳エネルギーは、格
子振動に伝達されないことを発見した。この発見
はメスバウアー効果として知られている。 In the late 1950s, Rudolf Mössbauer discovered that atomic nuclei embedded in solids emit and absorb low-energy gamma rays that possess a complete transition energy over their characteristic width, and that the recoil energy is due to lattice vibrations. I discovered that it was not transmitted. This discovery is known as the Mössbauer effect.
低いデバイ温度におかれた原子核においては、
ガンマー線発光器および吸収器を10〓(ケルビ
ン)台の低温に冷却する必要がある。この温度を
維持するためには、液体ヘリユウムや液体窒素を
使う必要がある。しかし、クーロン励起または核
反応の研究においては、一作業に数日もの時間を
要し、一作業を行なうためには、液体ヘリユウム
等を一定水準に維持するために要する労働力のコ
ストが莫大なものになつていた。 In an atomic nucleus placed at a low Debye temperature,
The gamma ray emitter and absorber need to be cooled to temperatures on the order of 10 degrees Kelvin. To maintain this temperature, it is necessary to use liquid helium or liquid nitrogen. However, in researching Coulomb excitation or nuclear reactions, each task takes several days, and the labor costs required to maintain liquid helium at a constant level are enormous. It had become a thing.
近年、メスバウアー研究用の標本を冷却するの
に密閉循環式ヘリユウム冷却器の使用が提案され
た。これは、「メスバウアー研究のためのヘリユ
ウム冷却器の使用(The Use of a Helium
Refrigerator for Mossbauer Studies)」なる標
題の論文で発表され、その著者はワイ.ダブリ
ユ.チヨウ(Y.W.Chow)、イー.エス.グリン
バウム(E.S.Greenbaun)、アール.エツチ.ホ
ウス(R.H.Howes)、エフ.エツチ.エツチスウ
(F.H.H.Hsu)、ピー.エツチ.スワドロウ(P.
H.Swerdlow)、及び、シー.エス.ウ(C.S.
Wu)であり、ザ ノースー オランダ パブリ
ツシユ カンパニイ(The North Holland
Publishing Company)の出版になる「核器具と
方法(Nuclear Instruments and Methods)」の
66(1968)の177−180頁に記載されている。 Recently, the use of closed-circulation helium coolers to cool specimens for Mössbauer research has been proposed. This is called ``The Use of a Helium Cooler for Mössbauer Research.''
It was published in a paper titled ``Refrigerator for Mossbauer Studies'', written by Y. Double. Chiyo (YWChow), E. S. ES Greenbaun, R. Etsuchi. RHHowes, F. Etsuchi. Etsuchisu (FHHHsu), P. Etsuchi. Swadlow (P.
H. Swerdlow) and C. S. C (CS
Wu) and The North Holland Publishing Company (The North Holland Publishing Company).
Nuclear Instruments and Methods, published by Publishing Company.
66 (1968), pp. 177-180.
この論文において、著者は、標本ホルダーに機
械的に連結した密閉循環式ヘリユウム冷却器の使
用を発表し、また、冷却源により発生する振動
が、標本ホルダーに伝わるのを抑えるためにベロ
ーズ構成の使用を記載している。 In this paper, the authors present the use of a closed circulation helium cooler mechanically coupled to the specimen holder, and the use of a bellows configuration to reduce the transmission of vibrations generated by the cooling source to the specimen holder. is listed.
しかしながら、商業的に使用されている前述の
論文、及び、その他の殆んどの先公知例の装置に
は、被冷却物を取付ける標本ホルダーと冷却源と
の間に、機械的な接続があり、この接続部分に、
通常、可撓性の編成銅ひもを使用して冷却源の振
動が被冷却物へ伝わるのを抑えるている。 However, in the aforementioned article and most other prior art devices in commercial use, there is a mechanical connection between the specimen holder and the cooling source, on which the object to be cooled is mounted; In this connection part,
Typically, flexible knitted copper strings are used to reduce the transmission of vibrations from the cooling source to the object being cooled.
この機械的な接続部分を、仮に、高い熱伝導体
にするには、充分に大きな断面を有することが必
要であるが、明らかに振動も良好に伝達すること
になり、そこには、効率のよい熱伝達のために大
きな断面を持たせるということと、伝達される振
動を少なくするために、小さな断面にするという
こととの間には、常に妥協が必要となつていた。 In order to make this mechanical connection a high thermal conductor, it is necessary to have a sufficiently large cross section, but it also clearly transmits vibrations well, which is a factor in efficiency. There has always been a compromise between having a large cross section for good heat transfer and having a small cross section to reduce transmitted vibrations.
上述の問題を解決し、冷却源の機械的振動を冷
却源から被冷却物に伝えることなく、冷却のみを
被冷却物に伝えるために、本発明はなされたもの
であり、前記冷却源に接触させた密閉循環路に一
定量の流体伝達媒体を注入し、この流体伝達媒体
に被冷却物を接触させて、被冷却物を効果的に冷
却できるようにした。該装置においては、被冷却
物を取付ける標本ホルダーは冷却源と独立して懸
架支持できるものであり、このことによつて、冷
却源と冷却中の被冷却物との間に機械的な接触を
皆無とすることができる。 The present invention has been made in order to solve the above-mentioned problems and to transmit only cooling to the object to be cooled without transmitting the mechanical vibration of the cooling source from the cooling source to the object to be cooled. A certain amount of fluid transfer medium is injected into the closed circulation path, and the object to be cooled is brought into contact with this fluid transfer medium, so that the object to be cooled can be effectively cooled. In this device, the specimen holder for mounting the object to be cooled can be suspended and supported independently of the cooling source, thereby preventing mechanical contact between the cooling source and the object being cooled. It is possible to have none at all.
従つて、本発明の第一の目的は、冷却源から被
冷却物に冷却を伝達するための改良型冷却装置を
提供するものである。 Accordingly, a primary object of the present invention is to provide an improved cooling system for transferring cooling from a cooling source to an object to be cooled.
また、本発明の他の目的は、冷却源と被冷却物
との間に機械的な接触を設けずに、冷却源から被
冷却物に冷却を伝達する冷却装置を提供するもの
である。 Another object of the present invention is to provide a cooling device that transmits cooling from a cooling source to an object to be cooled without providing mechanical contact between the cooling source and the object to be cooled.
また、本発明の他の目的は、密閉循環式ヘリユ
ウム冷却器により被冷却物を冷却する冷却装置を
提供するものである。 Another object of the present invention is to provide a cooling device that cools objects to be cooled using a closed circulation helium cooler.
また、本発明の他の目的は、メスバウアー分光
学において使用する、冷却源から被冷却物に振動
が伝わらないように構成した冷却装置を提供する
ものである。 Another object of the present invention is to provide a cooling device for use in Mössbauer spectroscopy, which is configured so that vibrations are not transmitted from a cooling source to an object to be cooled.
本発明の実施例として、本発明をメスバウアー
分光学に応用して記述する。 As an example of the present invention, the present invention will be described as applied to Mössbauer spectroscopy.
メスバウアー分光技術の標本ホルダー部分を第
1図及び第2図に示す。10は密閉循環式ヘリユ
ウム冷却源である。該冷却源10は二段式であ
り、第一冷却部12および第二冷却部14を設け
る。該冷却源10は、第二冷却部14の下方端
(冷却源の冷却端)である延長スタツド16の部
分で10〓の温度を維持することができ、該延長ス
タツド16は、銅等の高伝導性材料で形成され
る。 The specimen holder part of the Mössbauer spectroscopy technique is shown in Figures 1 and 2. 10 is a closed circulation type helium cooling source. The cooling source 10 is of a two-stage type and includes a first cooling section 12 and a second cooling section 14. The cooling source 10 can maintain a temperature of 10° at the extension stud 16, which is the lower end of the second cooling section 14 (the cooling end of the cooling source), and the extension stud 16 is made of high-quality material such as copper. Made of conductive material.
前記冷却源10は、アメリカ合衆国特許第
3620029号に詳細に述べられており、この特許明
細書を本明細書中に参考として使用する。 The cooling source 10 is disclosed in U.S. Pat.
3620029, which patent specification is incorporated herein by reference.
該冷却源10は支持リング18によつて装架さ
れ、該支持リング18は研究所の床等の固い第1
の堅牢支持体に支持部材20を介して固定され
る。22は標本ホルダーであり、該標本ホルダー
22は支持体24により支持される。該支持体2
4は、第2の堅牢支持体のオプチカルベンチに支
持部材26を介して固定する。前記冷却源10に
接続した第1冷却部12及び第二冷却部14は前
記標本ホルダー22内に挿入され、前記冷却源1
0と標本ホルダー22との間に、極く薄い波形ゴ
ムスリーブ等の可撓性振動隔離スリーブ28が設
けられる。即ち、該スリーブ28により、前記冷
却源10と標本ホルダー22との間に密閉路を形
成する。 The cooling source 10 is mounted by a support ring 18, which is mounted on a hard primary surface such as a laboratory floor.
is fixed to a sturdy support body through a support member 20. 22 is a specimen holder, and the specimen holder 22 is supported by a support 24. The support 2
4 is fixed to the optical bench of the second solid support via a support member 26. A first cooling unit 12 and a second cooling unit 14 connected to the cooling source 10 are inserted into the specimen holder 22, and are connected to the cooling source 10.
0 and specimen holder 22 is a flexible vibration isolation sleeve 28, such as a very thin corrugated rubber sleeve. That is, the sleeve 28 forms a sealed path between the cooling source 10 and the specimen holder 22.
前記標本ホルダー22は、外側真空遮蔽板30
と、後述する内部系統をなす構成部により構成さ
れる。外側真空遮蔽板30には、該真空遮蔽板3
0で形成する空間部を真空にする好適な空気取出
口32を設ける。34はステンレス鋼製の内方真
空ジヤケツトスリーブであり、前記外側真空遮蔽
板30に囲まれ、且つ、前記第一冷却部12を囲
むように設ける。該真空ジヤケツトスリーブ34
の下方端には、輻射熱遮断用支持アダプター36
が取付けられ、該支持アダプター36の下方には
輻射熱遮断体38が螺着される。該輻射熱遮断体
38は、銅製のシリンダー又は低温装置に通常使
用されるアルミ加工したプラスチツクで形成す
る。輻射熱遮断体38内には、前記真空ジヤケツ
トスリーブ34に対して水密に延長部40が取付
けられ、該延長部40は第二冷却部14を囲んで
いる。延長部40の下端には被冷却物アダプター
42が取付けられ、該被冷却物アダプター42に
は被冷却物44を取付ける。前記被冷却物アダプ
ター42内には、後述する一連の垂直通路43が
形成される。 The specimen holder 22 has an outer vacuum shielding plate 30
It is composed of components forming an internal system, which will be described later. The outer vacuum shielding plate 30 includes the vacuum shielding plate 3
A suitable air outlet 32 is provided to evacuate the space formed by the air. Reference numeral 34 denotes an inner vacuum jacket sleeve made of stainless steel, which is provided so as to be surrounded by the outer vacuum shielding plate 30 and to surround the first cooling section 12 . The vacuum jacket sleeve 34
A support adapter 36 for blocking radiant heat is provided at the lower end of the
is attached, and a radiant heat shield 38 is screwed below the support adapter 36. The radiant heat shield 38 is formed from a copper cylinder or an aluminized plastic commonly used in cryogenic equipment. An extension 40 is mounted within the radiant heat shield 38 in a watertight manner relative to the vacuum jacket sleeve 34 and surrounds the second cooling section 14. A cooled object adapter 42 is attached to the lower end of the extension part 40, and a cooled object 44 is attached to the cooled object adapter 42. A series of vertical passages 43, which will be described later, are formed within the cooled object adapter 42.
46は第一段熱交換器であり、前記冷却源10
に取付けた第一冷却部12の周囲に固定される。
また、同一構造の第二段熱交換器48は、第二冷
却部14の下端に設けた延長スタツド16の周囲
に固定する。該熱交換器46,48のうち、熱交
換器48の断面を第2図に示す。熱交換器46,
48は、複数の薄銅板製の異径円筒を垂直の間隔
保持片49により保持して複数の垂直流路を設け
て構成する。 46 is a first stage heat exchanger, and the cooling source 10
It is fixed around the first cooling section 12 attached to the.
Further, a second stage heat exchanger 48 of the same structure is fixed around the extension stud 16 provided at the lower end of the second cooling section 14. Of the heat exchangers 46 and 48, a cross section of heat exchanger 48 is shown in FIG. heat exchanger 46,
48 is constructed by holding a plurality of thin copper plate cylinders with different diameters by vertical spacing pieces 49 to provide a plurality of vertical flow paths.
52は注入口であり、流体伝達媒体を冷却源1
0側の第一冷却部12および第二冷却部14と標
本ホルダー22側の真空ジヤケツトスリーブ34
および延長部40との間に形成したの空間部に充
填する。該注入口52には圧力開放バルブが設け
られ、流体伝達媒体を大気圧に保つ。前記冷却源
10には取入口管54、出口管56を設け、該取
入口管54、出口管56によりコンプレツサー
(図示なし)からの圧縮したヘリユウムを可撓性
導管を介して冷却源10に循環させる。 Reference numeral 52 denotes an inlet for supplying the fluid transfer medium to the cooling source 1.
The first cooling section 12 and the second cooling section 14 on the zero side and the vacuum jacket sleeve 34 on the specimen holder 22 side
The space formed between the extended portion 40 and the extended portion 40 is filled. The inlet 52 is provided with a pressure relief valve to maintain the fluid transfer medium at atmospheric pressure. The cooling source 10 is provided with an inlet pipe 54 and an outlet pipe 56, which circulate compressed helium from a compressor (not shown) to the cooling source 10 through a flexible conduit. let
図示した本装置には、冷却源10と標本ホルダ
ー22との間に水密に取付けられた振動隔離スリ
ーブ28が組込まれている。流体伝達媒体、好適
にはヘリユウムは、注入口52より、第一冷却部
12及び第二冷却部14と真空ジヤケツトスリー
ブ34、延長部40、被冷却物アダプター42と
の間に形成した空間部に注入される。流体伝達媒
体は大気圧に維持されている流体伝達媒体に接続
される。しかして、冷却源10が作用すると、冷
却作用は第一冷却部12と第二冷却部14とに伝
わり、第一冷却部12と第二冷却部14の周囲に
形成した空間部に注入された流体伝達媒体に対流
現象を起し、上下方向に循環せしめる。また、こ
の対流現象は第一段熱交換器46と第二段熱交換
器48とによりより効果的に行なわれ、また、前
記第二冷却部14の下方端の被冷却物アダプター
42中の垂直通路43により、流体伝達媒体の循
環路を長くし、冷却源の第二冷却部14と被冷却
物44との間の冷却熱交換を良好にする。 The illustrated apparatus incorporates a vibration isolation sleeve 28 mounted in a watertight manner between the cooling source 10 and the specimen holder 22. The fluid transfer medium, preferably helium, is introduced from the inlet 52 into the space formed between the first cooling section 12 and the second cooling section 14, the vacuum jacket sleeve 34, the extension section 40, and the object adapter 42. is injected into. The fluid transmission medium is connected to a fluid transmission medium maintained at atmospheric pressure. Therefore, when the cooling source 10 acts, the cooling effect is transmitted to the first cooling section 12 and the second cooling section 14, and the cooling effect is injected into the space formed around the first cooling section 12 and the second cooling section 14. A convection phenomenon is caused in the fluid transmission medium, causing it to circulate in the vertical direction. In addition, this convection phenomenon is more effectively carried out by the first stage heat exchanger 46 and the second stage heat exchanger 48, and the vertical The passage 43 lengthens the circulation path of the fluid transfer medium and improves the cooling heat exchange between the second cooling section 14 of the cooling source and the object 44 to be cooled.
以上のように、前記熱交換器46,48と被冷
却物44の間には機械的な連結が全くないので、
冷却源10と標本ホルダー22の間には直接的な
振動の伝達がない。すなわち、前記熱交換器4
6,48と被冷却物44の間には、流体伝達媒体
が充填されているのみであり、前記冷却源10と
標本ホルダー22との接触は前記流体伝達媒体の
他は前記振動隔離スリーブ28だけである。この
ため、前記冷却源10の振動或いはその運転によ
つて生じるその他の力は、被冷却物44を取付け
た標本ホルダー22側に伝達されずに、冷却のみ
が伝達される。また、前記振動隔離スリーブ28
は、前記流体伝達媒体が大気圧で作業される限り
は、圧力差がないので、極く薄い可撓性材料でよ
い。 As mentioned above, since there is no mechanical connection between the heat exchangers 46, 48 and the object to be cooled 44,
There is no direct vibration transmission between the cooling source 10 and the specimen holder 22. That is, the heat exchanger 4
6, 48 and the object to be cooled 44, only a fluid transmission medium is filled, and the only contact between the cooling source 10 and the specimen holder 22 is the vibration isolation sleeve 28 other than the fluid transmission medium. It is. Therefore, vibrations of the cooling source 10 or other forces generated by its operation are not transmitted to the specimen holder 22 to which the object to be cooled 44 is attached, and only cooling is transmitted. Additionally, the vibration isolation sleeve 28
As long as the fluid transfer medium is operated at atmospheric pressure, there is no pressure difference, and therefore only a very thin flexible material is required.
第1図で図示される本装置は、対流によつて最
少の流体伝達媒体で、最大の冷却伝達ができるよ
うに設計されている。循環のための駆動力は、暖
と冷とのガス間の密度差、および冷却源の冷却最
先端との関係であるところの、第二段熱交換器4
8の長さによつて決定される密閉循環路の長さに
よる。この循環は、被冷却物アダプター42の垂
直通路43によつても多少は高められるが、第3
図に循環を高めるための、別の手段を示す。 The apparatus illustrated in FIG. 1 is designed to provide maximum cooling transfer with a minimum of fluid transfer medium by convection. The driving force for circulation is the density difference between the warm and cold gases and the relationship between the cooling front edge of the cooling source and the second stage heat exchanger 4.
Depending on the length of the closed circuit determined by the length of 8. Although this circulation is somewhat enhanced by the vertical passage 43 of the object adapter 42,
The figure shows another means of increasing circulation.
第3図に示される如く略円筒の煙突100が第
二段熱交換器48と被冷却物アダプター42との
間に設けられ、該煙突100により熱交換器群を
通り被冷却物44に至る長い通路を形成する。こ
の通路により、前記流体伝達媒体は煙突100の
周囲を冷却されながら下方に流下し、被冷却物4
4に至り、被冷却物44を冷却後垂直通路43を
通過して上方に戻るようにする。前記煙突100
は例えばベークライト、その他のプラスチツク材
料の如き非導体で形成するのがよい。この煙突1
00は冷却源を被冷却物44に機械的に結び付け
るものではないので、振動負荷を被冷却物44に
伝達することなく、従つて、本装置をメスバウア
ー効果の研究に合つた理想的なものにする。 As shown in FIG. 3, a substantially cylindrical chimney 100 is provided between the second stage heat exchanger 48 and the cooled object adapter 42, and the chimney 100 has a long length that passes through the heat exchanger group and reaches the cooled object 44. form a passage. Through this passage, the fluid transmission medium flows downward while being cooled around the chimney 100, and the object to be cooled 4
4, the object to be cooled 44 is allowed to pass through the vertical passage 43 and return upward after being cooled. The chimney 100
is preferably made of a non-conducting material such as Bakelite or other plastic material. This chimney 1
Since the 00 does not mechanically connect the cooling source to the object 44 to be cooled, it does not transmit vibration loads to the object 44 to be cooled, thus making this device ideal for studying the Mössbauer effect. Make it.
第一冷却部12及び図示される如き標本ホルダ
ー22との関連で、異なる流体伝達媒体を使うこ
とによつて、種々の温度水準と温度制御をなすこ
とが可能になる。例えば、高い温度水準例えば20
〓では、流体伝達媒体に水素を用いて液体に凝縮
し、また、気化することによつて、より効果的な
冷却作用を達成し得る。また、異なる流体伝達媒
体を混合することによつて異なる範囲の温度が得
られて、この凝縮モードを適当に変えることがで
きる。 By using different fluid transfer media in conjunction with the first cooling section 12 and the specimen holder 22 as shown, it is possible to achieve various temperature levels and temperature controls. For example, high temperature level e.g. 20
In this case, a more effective cooling effect can be achieved by using hydrogen as a fluid transfer medium and condensing it into a liquid and also vaporizing it. Also, by mixing different fluid transfer media different temperature ranges can be obtained to suitably change the condensation mode.
第4図には、別の実施例が示されており、冷却
系の全長が短縮されている。これは、簡単にいえ
ば、循環流体伝達系統の二つを重ねたものであ
る。 An alternative embodiment is shown in FIG. 4, in which the overall length of the cooling system is reduced. Simply put, this is a combination of two circulating fluid transmission systems.
第4図の実施例においては、第1図の設計変更
とそれぞれ第一冷却部12′および第二冷却部1
4′を有する冷却源10′が示されている。 In the embodiment of FIG. 4, the design of FIG. 1 is changed and the first cooling section 12' and the second cooling section 1 are
Cooling source 10' is shown having 4'.
第4図の実施例において、冷却源10′は流体
ハウジング70の内部に設けられ、該流体ハウジ
ング70は第1図と同様に薄い振動隔離スリーブ
28′によつて冷却源10′から隔離されている。
第一冷却部12′には2個の熱交換器58と熱交
換器60が上下に間隔を置いて設けられ、その間
隔内に煙突62を設ける。この煙突62は上部の
熱交換器58に固定され、下部の熱交換器60に
は接触させない。第二冷却部14′は熱交換器6
4,66および煙突62と同様に形成された煙突
68を有する。第二冷却部14′の熱交換器6
4,66はスリーブ72内に設けられ、該スリー
ブ72は図示する如く流体ハウジング70の内部
に嵌合する。 In the embodiment of FIG. 4, the cooling source 10' is located within a fluid housing 70, which is isolated from the cooling source 10' by a thin vibration isolating sleeve 28' as in FIG. There is.
The first cooling section 12' is provided with two heat exchangers 58 and 60 vertically spaced apart from each other, and a chimney 62 is provided within the space. This chimney 62 is fixed to the upper heat exchanger 58 and is not brought into contact with the lower heat exchanger 60. The second cooling section 14' is a heat exchanger 6
4, 66 and a chimney 68 formed similarly to chimney 62. Heat exchanger 6 of second cooling section 14'
4 and 66 are provided within a sleeve 72 that fits within the fluid housing 70 as shown.
スリーブ72の下端部にはキヤツプ74が設け
られ、冷却源10′の第二冷却部14′の冷却端で
冷却される。第1図の実施例と同様に、流体伝達
媒体、即ち、ヘリユウムは適当な注入口52から
導入されて、第一冷却部12′と第二冷却部1
4′とに対応する流体ハウジング70とスリーブ
72の間の空間に充填する。熱交換器と煙突の組
合せは、冷却源の冷却効果と協同して流体伝達媒
体が各段で対流環流するようにし、冷却源をキヤ
ツプ74に機械的に連結しないで冷却を行なう。 A cap 74 is provided at the lower end of the sleeve 72 and is cooled at the cooling end of the second cooling section 14' of the cooling source 10'. Similar to the embodiment of FIG. 1, the fluid transfer medium, namely helium, is introduced through suitable inlets 52 to form the first cooling section 12' and the second cooling section 1.
4' between the fluid housing 70 and the sleeve 72. The heat exchanger and chimney combination cooperates with the cooling effect of the cooling source to provide convective circulation of the fluid transfer medium at each stage, providing cooling without mechanically coupling the cooling source to the cap 74.
第5図には本発明の更に他の実施例が示されて
いる。この実施例は超伝導マグネツトを冷却する
ためのものであり、このマグネツト構造には、外
方真空胴板80、75〓遮蔽板(75〓に遮蔽する
板)と呼ばれる第一遮蔽板82、20〓遮蔽板と呼
ばれる第二遮蔽板84、液体ヘリユウムを入れた
ジユワー瓶86、マグネツトキヤビテイ88、マ
グネツト90、チユーブ92及び電気供給体94
が含まれる。冷却源は第4図の実施例と同様で、
第一冷却部12′、第二冷却部14′があり、熱交
換器は図示のとおりである。第一冷却部12′は
第一遮蔽板82を約75〓の温度に保持し、第二冷
却部14′は第二遮蔽板84を約20〓の温度に保
持する役割りをなして、熱がジユワー瓶86中の
液体ヘリユウムに洩れるのを最小にする。以上の
ような構成で、液体レベル以上に空間中の気体ヘ
リユウムを取り、且つ、それを液体に凝縮してジ
ユワー瓶86中の液体ヘリユウムの水準を維持す
るように冷却源をしてジユールトムソン形の低温
保持が可能になる。このような低温保持は本技術
に精通した人には知られるところであり、これら
の人によつて容易に採用しうるものである。 FIG. 5 shows yet another embodiment of the invention. This embodiment is for cooling a superconducting magnet, and this magnet structure includes first shielding plates 82, 20, called outer vacuum shell plates 80, 75 and 75〓 shielding plates (plates that shield 75〓). A second shielding plate 84 called a shielding plate, a brewer bottle 86 containing liquid helium, a magnetic cavity 88, a magnet 90, a tube 92, and an electricity supply body 94
is included. The cooling source is similar to the embodiment shown in FIG.
There are a first cooling section 12' and a second cooling section 14', and the heat exchanger is as shown. The first cooling part 12' serves to maintain the first shielding plate 82 at a temperature of approximately 75°, and the second cooling part 14' serves to maintain the second shielding plate 84 at a temperature of approximately 20°. leakage into the liquid helium in the brewer bottle 86 is minimized. With the above configuration, a cooling source is used to take gaseous helium in the space above the liquid level and condense it into liquid to maintain the level of liquid helium in the brewer bottle 86. It becomes possible to maintain the shape at low temperatures. Such low temperature maintenance is known to those skilled in the art and can be readily adopted by those skilled in the art.
熱交換器は好適には銅板に間隔をおいて蝋付し
て形成するものと述べたが、銅板を何層かに巻い
て、あるいは複数の管状のものを使つて冷却源の
各段において流体伝達媒体が長い密閉循環流路を
なすようにすれば種々の形の熱交換器が用いられ
ることは勿論である。 As mentioned above, the heat exchanger is preferably formed by brazing a copper plate at intervals, but the heat exchanger may be formed by winding the copper plate in several layers or by using a plurality of tubes to connect the fluid at each stage of the cooling source. Of course, various types of heat exchangers may be used, provided that the transfer medium forms a long closed circulation path.
第一段の冷却源を用いて、同様な構造と同様な
方法で、冷却源の冷却端で一定の低温をうること
も本発明の範内である。 It is also within the scope of the present invention to use a first stage cooling source to achieve a constant low temperature at the cold end of the cooling source in a similar construction and in a similar manner.
また、流体伝達媒体、例えば、窒素、アルゴ
ン、空気、水素、ハロカーボン、不活性ガス、メ
タン、これらの混合物を使うことも本発明の範囲
内である。 It is also within the scope of the invention to use fluid transfer media such as nitrogen, argon, air, hydrogen, halocarbons, inert gases, methane, and mixtures thereof.
また、流体伝達媒体の循環を高めるために、冷
却源の各段の先端に小さな機械的のフアン等を設
けるのも本発明の範囲内にある。 It is also within the scope of the present invention to provide a small mechanical fan or the like at the top of each stage of the cooling source to enhance circulation of the fluid transfer medium.
以下に本発明の好適なる実施の態様を列記す
る。 Preferred embodiments of the present invention are listed below.
(1) 特許請求の範囲の装置で、冷却源と被冷却物
支持装置とは真空ジヤケツトスリーブ内に配置
され、流体伝達媒体は大気圧に保持されること
を特徴とした前記の装置。(1) The device as claimed in the claims, characterized in that the cooling source and the cooling object support device are arranged within a vacuum jacket sleeve, and the fluid transmission medium is maintained at atmospheric pressure.
(2) 特許請求の範囲の装置で、流体伝達媒体を密
閉し循環させる装置は、前記冷却源と接触した
第一熱交換器を有し、該熱交換器は、流体伝達
媒体を対流により循環させるために複数の伸長
した略並行な流路を有することを特徴とした前
記の装置。(2) The device as claimed in the claims, wherein the device for sealing and circulating a fluid transfer medium has a first heat exchanger in contact with the cooling source, and the heat exchanger circulates the fluid transfer medium by convection. 3. The device as described above, further comprising a plurality of elongated, generally parallel flow paths for providing a flow path.
(3) 前項の装置で、冷却源と接触状態で第一熱交
換器と共軸的に位置づけられた第二熱交換器を
有し、それによつて流体伝達媒体の循環流路の
長さを伸長することを特徴とした前記の装置。(3) An apparatus as defined in the preceding paragraph, having a second heat exchanger positioned coaxially with the first heat exchanger in contact with the cooling source, thereby controlling the length of the circulation path of the fluid transfer medium. The device as described above, characterized in that it is elongated.
(4) 前項の装置で、流体伝達媒体の対流による循
環を更に強化するために前記第一熱交換器と第
二熱交換器との間に煙突を介在させることを特
徴とした前記の装置。(4) The device according to the preceding item, characterized in that a chimney is interposed between the first heat exchanger and the second heat exchanger in order to further strengthen the circulation of the fluid transfer medium by convection.
(5) 特許請求の範囲の装置で、流体伝達媒体はヘ
リユウムであることを特徴とした前記の装置。(5) The device according to the claims, characterized in that the fluid transmission medium is helium.
(6) 超伝導マグネツトの近傍に配置された冷却端
を有する縦長型冷却部と、前記冷却部の冷却端
と接触状態で流体伝達媒体を密閉し循環させる
装置と、その装置は冷却部の冷却端に取付けら
れた熱交換を有し、それによつてその熱交換器
は流体伝達媒体を伸長型密閉循環流路内で循環
させることと、超伝導マグネツト支持体と、そ
の支持体は超伝導マグネツトを循環する流体伝
達媒体と接触状態に位置づけ、その支持体は冷
却部の動きにより生じる力が前記超伝導マグネ
ツトへ直接伝達されないように装着されている
こととの結合体でなる超伝導マグネツトの振動
は伝えない冷却伝達装置。(6) A vertically elongated cooling section having a cooling end disposed near the superconducting magnet, a device for sealing and circulating a fluid transfer medium in contact with the cooling end of the cooling section, and the device for cooling the cooling section. an end-mounted heat exchanger for circulating a fluid transfer medium in an elongated closed circulation channel, a superconducting magnetic support, and a superconducting magnetic support; is placed in contact with the circulating fluid transmission medium, and its support is mounted so that the force generated by the movement of the cooling part is not directly transmitted to the superconducting magnet. Cooling transmission device that does not transmit.
第1図は本発明による装置の一部縦断側面図、
第2図は第1図の2−2線の拡大断面図、第3図
は本発明の他の実施例を説明する拡大した第1図
の部分図、第4図は本発明の他の実施例を示す一
部縦断側面図、第5図は超伝導マグネツトを冷却
するに適した実施例を示す一部縦断側面図であ
る。
符号の説明、10……密閉循環式ヘリユウム冷
却源、12……第一冷却部、14……第二冷却
部、16……延長スタツド、18……支持リン
グ、20……支持部材、22……標本ホルダー、
24……支持体、26……支持部材、28……可
撓性振動隔離スリーブ、30……外側真空遮蔽
板、32……空気取出口、34……真空ジヤケツ
トスリーブ、36……輻射熱遮断用支持アダプタ
ー、38……輻射熱遮断体、40……延長部、4
2……被冷却物アダプター、43……垂直通路、
44……被冷却物、46……第一段熱交換器、4
8……第二段熱交換器、49……間隔保持片、5
2……注入口、54……取入口管、56……出口
管、58……熱交換器、60……熱交換器、62
……煙突、64,66……熱交換器、68……煙
突、70……流体ハウジング、72……スリー
ブ、74……キヤツプ、80……外方真空胴板、
82……第一遮蔽板、84……第二遮蔽板、86
……ジユワー瓶、88……マグネツトキヤビテ
イ、90……マグネツト、92……チユーブ、9
4……電気供給体、100……煙突、10′……
冷却源、12′……第一冷却部、14′……第二冷
却部、28′……振動隔離スリーブ。
FIG. 1 is a partially longitudinal side view of the device according to the invention;
2 is an enlarged sectional view taken along line 2-2 in FIG. 1, FIG. 3 is an enlarged partial view of FIG. 1 illustrating another embodiment of the present invention, and FIG. FIG. 5 is a partially longitudinal side view showing an embodiment suitable for cooling a superconducting magnet. Explanation of symbols, 10... Closed circulation helium cooling source, 12... First cooling section, 14... Second cooling section, 16... Extension stud, 18... Support ring, 20... Support member, 22... ...specimen holder,
24...Support, 26...Support member, 28...Flexible vibration isolating sleeve, 30...Outer vacuum shielding plate, 32...Air outlet, 34...Vacuum jacket sleeve, 36...Radiant heat shield support adapter for, 38... radiant heat shield, 40... extension part, 4
2... Cooled object adapter, 43... Vertical passage,
44...Object to be cooled, 46...First stage heat exchanger, 4
8... Second stage heat exchanger, 49... Spacing piece, 5
2...Inlet, 54...Intake pipe, 56...Outlet pipe, 58...Heat exchanger, 60...Heat exchanger, 62
... Chimney, 64, 66 ... Heat exchanger, 68 ... Chimney, 70 ... Fluid housing, 72 ... Sleeve, 74 ... Cap, 80 ... Outer vacuum shell plate,
82...First shielding plate, 84...Second shielding plate, 86
...Jewel bottle, 88...Magnetic cavity, 90...Magnet, 92...Tube, 9
4... Electricity supply body, 100... Chimney, 10'...
Cooling source, 12'...first cooling section, 14'...second cooling section, 28'...vibration isolation sleeve.
Claims (1)
て冷却を伝達する装置で、前記冷却源は不動構造
の支持体に支持部材を介して固定し、前記冷却段
の周囲には、流体伝達媒体の循環流路を形成し、
前記循環流路中には前記流体伝達媒体の循環手段
を設け、該循環手段は、前記流体伝達媒体の環対
流を生じさせるための複数の長い略平行の流路を
形成した熱交換器であり、該熱交換器は前記冷却
段に固定され、前記被冷却物は循環する流体伝達
媒体と接触している被冷却物アダプターとその延
長部および真空ジヤケツトスリーブを介して標本
ホルダーに固定され、該標本ホルダーは、前記不
動構造の支持体に取付けた前記冷却源の支持部材
とは異なる台で前後左右動する光学台に支持部材
を介して取付けられ、かつ、前記標本ホルダーは
前記冷却源とは可撓性振動隔離スリーブを介して
前記流体伝達媒体が洩れないように水密に連結さ
れ、前記流体伝達媒体は前記冷却源と前記循環流
路とを前記可撓性振動隔離スリーブにより接続し
た循環流路内を循環するように構成した振動は伝
えない冷却伝達装置。1 A device that transmits cooling from a cooling source to an object to be cooled via a cooling stage, in which the cooling source is fixed to a support of an immovable structure via a support member, and a fluid transmission system is installed around the cooling stage. Forms a circulation flow path for the medium,
A circulation means for the fluid transfer medium is provided in the circulation flow path, and the circulation means is a heat exchanger having a plurality of long substantially parallel flow paths for causing ring convection of the fluid transfer medium. , the heat exchanger is secured to the cooling stage and the cooled object is secured to the specimen holder via a cooled object adapter and its extension and vacuum jacket sleeve in contact with a circulating fluid transfer medium; The specimen holder is attached via a support member to an optical table that moves back and forth and left and right on a stand different from the support member of the cooling source attached to the support of the immovable structure, and the specimen holder is attached to the support member of the cooling source. are connected in a water-tight manner through a flexible vibration isolating sleeve to prevent the fluid transmission medium from leaking; A cooling transmission device that does not transmit vibrations and is configured to circulate within a flow path.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US368351A US3894403A (en) | 1973-06-08 | 1973-06-08 | Vibration-free refrigeration transfer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5059087A JPS5059087A (en) | 1975-05-22 |
JPS6145177B2 true JPS6145177B2 (en) | 1986-10-07 |
Family
ID=23450863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP49062445A Expired JPS6145177B2 (en) | 1973-06-08 | 1974-06-03 |
Country Status (4)
Country | Link |
---|---|
US (1) | US3894403A (en) |
JP (1) | JPS6145177B2 (en) |
DE (1) | DE2423301C2 (en) |
GB (1) | GB1472183A (en) |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4077231A (en) * | 1976-08-09 | 1978-03-07 | Nasa | Multistation refrigeration system |
US4241592A (en) * | 1977-10-03 | 1980-12-30 | Schlumberger Technology Corporation | Cryostat for borehole sonde employing semiconductor detector |
GB2027181B (en) * | 1978-06-21 | 1982-09-02 | Philips Electronic Associated | Detectors and envelope arrangements for detectors |
US4223540A (en) * | 1979-03-02 | 1980-09-23 | Air Products And Chemicals, Inc. | Dewar and removable refrigerator for maintaining liquefied gas inventory |
US4279127A (en) * | 1979-03-02 | 1981-07-21 | Air Products And Chemicals, Inc. | Removable refrigerator for maintaining liquefied gas inventory |
US4218892A (en) * | 1979-03-29 | 1980-08-26 | Nasa | Low cost cryostat |
US4277949A (en) * | 1979-06-22 | 1981-07-14 | Air Products And Chemicals, Inc. | Cryostat with serviceable refrigerator |
FR2460460A1 (en) * | 1979-06-28 | 1981-01-23 | Rivoire Jacques | STABLE AND ACCURATE CRYOGENIC DEVICE |
DE2944464A1 (en) * | 1979-11-03 | 1981-05-14 | C. Reichert Optische Werke Ag, Wien | DEVICE FOR THE CRYSTAL SUBSTITUTION OF SMALL BIOLOGICAL OBJECTS FOR MICROSCOPIC, IN PARTICULAR ELECTRON MICROSCOPIC EXAMINATIONS |
CS217448B1 (en) * | 1980-07-15 | 1983-01-28 | Vladimir Matena | Cryosurgical tool |
US4363217A (en) * | 1981-01-29 | 1982-12-14 | Venuti Guy S | Vibration damping apparatus |
US4394819A (en) * | 1982-08-16 | 1983-07-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Vibration isolation and pressure compensation apparatus for sensitive instrumentation |
JPS5932758A (en) * | 1982-08-16 | 1984-02-22 | 株式会社日立製作所 | Cryostat with helium refrigerator |
US4539822A (en) * | 1984-02-27 | 1985-09-10 | National Electrostatics Corporation | Vibration isolator for cryopump |
US4562703A (en) * | 1984-11-29 | 1986-01-07 | General Electric Company | Plug tube for NMR magnet cryostat |
US4745761A (en) * | 1985-10-30 | 1988-05-24 | Research & Manufacturing Co., Inc. | Vibration damped cryogenic apparatus |
US4715189A (en) * | 1985-11-12 | 1987-12-29 | Hypres, Inc. | Open cycle cooling of electrical circuits |
US4739633A (en) * | 1985-11-12 | 1988-04-26 | Hypres, Inc. | Room temperature to cryogenic electrical interface |
US4680936A (en) * | 1985-12-24 | 1987-07-21 | Ga Technologies Inc. | Cryogenic magnet systems |
US4862697A (en) * | 1986-03-13 | 1989-09-05 | Helix Technology Corporation | Cryopump with vibration isolation |
US4835972A (en) * | 1986-03-13 | 1989-06-06 | Helix Technology Corporation | Flex-line vibration isolator and cryopump with vibration isolation |
GB8607356D0 (en) * | 1986-03-25 | 1986-05-21 | Ortec Inc | Modular cryogenic detector head assembly |
US4667487A (en) * | 1986-05-05 | 1987-05-26 | General Electric Company | Refrigerated penetration insert for cryostat with rotating thermal disconnect |
US4667486A (en) * | 1986-05-05 | 1987-05-26 | General Electric Company | Refrigerated penetration insert for cryostat with axial thermal disconnect |
JPH0776641B2 (en) * | 1986-05-16 | 1995-08-16 | ダイキン工業株式会社 | Cryogenic refrigerator |
US4833899A (en) * | 1986-11-14 | 1989-05-30 | Helix Technology Corporation | Cryopump with vibration isolation |
US4869077A (en) * | 1987-08-21 | 1989-09-26 | Hypres, Inc. | Open-cycle cooling apparatus |
US4870830A (en) * | 1987-09-28 | 1989-10-03 | Hypres, Inc. | Cryogenic fluid delivery system |
US4959964A (en) * | 1988-09-16 | 1990-10-02 | Hitachi, Ltd. | Cryostat with refrigerator containing superconductive magnet |
DE4227388C2 (en) * | 1992-08-19 | 1996-09-12 | Spectrospin Ag | Cryostat with mechanically flexible thermal contact |
US5327733A (en) * | 1993-03-08 | 1994-07-12 | University Of Cincinnati | Substantially vibration-free shroud and mounting system for sample cooling and low temperature spectroscopy |
US5363077A (en) * | 1994-01-31 | 1994-11-08 | General Electric Company | MRI magnet having a vibration-isolated cryocooler |
US5442928A (en) * | 1994-08-05 | 1995-08-22 | General Electric | Hybrid cooling system for a superconducting magnet |
US5485730A (en) * | 1994-08-10 | 1996-01-23 | General Electric Company | Remote cooling system for a superconducting magnet |
US5816052A (en) * | 1997-02-24 | 1998-10-06 | Noran Instruments, Inc. | Method and apparatus for mechanically cooling energy dispersive X-ray spectrometers |
FR2776762B1 (en) * | 1998-03-31 | 2000-06-16 | Matra Marconi Space France | THERMAL BINDING DEVICE FOR CRYOGENIC MACHINE |
GB0105923D0 (en) * | 2001-03-09 | 2001-04-25 | Oxford Instr Superconductivity | Dilution refrigerator |
AU2003253222A1 (en) * | 2002-07-26 | 2004-02-23 | Nikkiso Cryo, Inc. | Process and apparatus for assembling and disassembling a cryogenic pump |
JP2005024184A (en) * | 2003-07-03 | 2005-01-27 | Sumitomo Heavy Ind Ltd | Cryogenic cooling device |
GB0411607D0 (en) * | 2004-05-25 | 2004-06-30 | Oxford Magnet Tech | Recondenser interface |
DE102004037173B3 (en) * | 2004-07-30 | 2005-12-15 | Bruker Biospin Ag | Cryogenic cooler for workpiece incorporates cold head attached to two-stage cooler with attachments to sealed cryostat and with radiation shield inside vacuum-tight housing |
FR2877090B1 (en) * | 2004-10-22 | 2007-05-11 | Commissariat Energie Atomique | CRYOSTAT FOR THE STUDY OF VACUUM SAMPLES |
US8307665B2 (en) * | 2006-04-06 | 2012-11-13 | National Institute Of Advanced Industrial Science And Technology | Sample cooling apparatus |
US8516834B2 (en) * | 2008-08-14 | 2013-08-27 | S2 Corporation | Apparatus and methods for improving vibration isolation, thermal dampening, and optical access in cryogenic refrigerators |
US8844298B2 (en) | 2008-11-18 | 2014-09-30 | S2 Corporation | Vibration reducing sample mount with thermal coupling |
US8307666B2 (en) * | 2009-03-27 | 2012-11-13 | S2 Corporation | Methods and apparatus for providing rotational movement and thermal stability to a cooled sample |
US8746008B1 (en) | 2009-03-29 | 2014-06-10 | Montana Instruments Corporation | Low vibration cryocooled system for low temperature microscopy and spectroscopy applications |
JP5503929B2 (en) * | 2009-09-16 | 2014-05-28 | 川崎重工業株式会社 | Refrigerant supply / discharge device for superconducting rotator, superconducting rotator provided with the refrigerant supply / discharge device |
GB2493553B (en) * | 2011-08-11 | 2017-09-13 | Oxford Instr Nanotechnology Tools Ltd | Cryogenic cooling apparatus and method |
US8433380B1 (en) * | 2011-12-28 | 2013-04-30 | Kookmin University Industry Academic Cooperation Foundation | Mössbauer spectroscopy system for applying external magnetic field at cryogenic temperature using refrigerator |
KR102095739B1 (en) * | 2013-04-24 | 2020-04-01 | 지멘스 헬스케어 리미티드 | An assembly comprising a two-stage cryogenic refrigerator and associated mounting arrangement |
JP5839734B2 (en) * | 2013-12-26 | 2016-01-06 | 大陽日酸株式会社 | Evaporative gas reliquefaction equipment for low temperature liquefied gas |
US10109407B2 (en) * | 2014-01-24 | 2018-10-23 | Nadder Pourrahimi | Structural support for conduction-cooled superconducting magnets |
US10775285B1 (en) | 2016-03-11 | 2020-09-15 | Montana Intruments Corporation | Instrumental analysis systems and methods |
US10451529B2 (en) | 2016-03-11 | 2019-10-22 | Montana Instruments Corporation | Cryogenic systems and methods |
US11125663B1 (en) | 2016-03-11 | 2021-09-21 | Montana Instruments Corporation | Cryogenic systems and methods |
CN107664678B (en) * | 2017-09-12 | 2019-12-13 | 北京大学 | Low-vibration ultrahigh-vacuum low-temperature physical property measuring device |
WO2020076988A1 (en) | 2018-10-09 | 2020-04-16 | Montana Instruments Corporation | Cryocooler assemblies and methods |
US11956924B1 (en) | 2020-08-10 | 2024-04-09 | Montana Instruments Corporation | Quantum processing circuitry cooling systems and methods |
CN112361688B (en) * | 2020-10-11 | 2022-12-06 | 广东绿菜园农业科技有限公司 | Intelligent food sample reserving and storing equipment |
CN116313372B (en) * | 2023-05-23 | 2023-08-11 | 宁波健信超导科技股份有限公司 | Superconducting magnet and cooling system and method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3364687A (en) * | 1965-05-03 | 1968-01-23 | Massachusetts Inst Technology | Helium heat transfer system |
US3422632A (en) * | 1966-06-03 | 1969-01-21 | Air Prod & Chem | Cryogenic refrigeration system |
US3423955A (en) * | 1966-06-08 | 1969-01-28 | Andonian Associates Inc | Flexible cold finger for cooling samples to cryogenic temperatures |
US3745785A (en) * | 1972-01-17 | 1973-07-17 | Us Air Force | Solid cryogen heat transfer apparatus |
-
1973
- 1973-06-08 US US368351A patent/US3894403A/en not_active Expired - Lifetime
-
1974
- 1974-05-09 GB GB2056874A patent/GB1472183A/en not_active Expired
- 1974-05-14 DE DE2423301A patent/DE2423301C2/en not_active Expired
- 1974-06-03 JP JP49062445A patent/JPS6145177B2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE2423301A1 (en) | 1975-01-02 |
JPS5059087A (en) | 1975-05-22 |
DE2423301C2 (en) | 1985-07-18 |
US3894403A (en) | 1975-07-15 |
GB1472183A (en) | 1977-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6145177B2 (en) | ||
US4277949A (en) | Cryostat with serviceable refrigerator | |
GB2126694A (en) | Cryostat with refrigerating machine | |
US3845639A (en) | Relatively rotatable cryogenic transfer system | |
KR20040052214A (en) | Heat exchanger assembly and heat exchange manifold | |
KR910006683A (en) | Tubular heat exchanger | |
US3714981A (en) | Heat shield assembly | |
CN113053615B (en) | Helium microcirculation refrigeration Dewar system for superconducting magnet | |
JPS6294769A (en) | Two-step thermal coupling | |
US3686422A (en) | Cryogenic conduit assembly for conducting electricity | |
GB2102109A (en) | Cryostats | |
JPS61153553A (en) | Plug pipe for nuclear magnetic resonance magnet cryostat | |
JP6164409B2 (en) | NMR system | |
Zimm et al. | Test results on a 50K magnetic refrigerator | |
CN108444322B (en) | Thermal control device | |
JP2645346B2 (en) | Low temperature physical property test equipment | |
JP2008028146A (en) | Thermal shield for superconducting magnet, superconducting magnet device, and magnetic resonance imaging apparatus | |
GB2149901A (en) | Low temperature containers | |
US5189880A (en) | Dilution refrigerators | |
Haruyama et al. | High-power pulse tube cryocooler for liquid xenon particle detectors | |
WO2020161343A1 (en) | Cryostat for operation with liquid helium and method of operating the same | |
JPH1196953A (en) | Cooled specimen observation device | |
CN113587504B (en) | Refrigerating device, reagent storage device and in-vitro diagnostic instrument | |
JPH04335991A (en) | Loop type heat pipe | |
JPH04198839A (en) | Heat absorbing wall for space environment testing apparatus |