JPS6143993A - Production of alpha-amino acid - Google Patents
Production of alpha-amino acidInfo
- Publication number
- JPS6143993A JPS6143993A JP16599884A JP16599884A JPS6143993A JP S6143993 A JPS6143993 A JP S6143993A JP 16599884 A JP16599884 A JP 16599884A JP 16599884 A JP16599884 A JP 16599884A JP S6143993 A JPS6143993 A JP S6143993A
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- acid
- oxygen
- lyase
- enzyme
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】 産 土の利 野 本発明は酵素法によるα−アミノ酸の製造法に関する。[Detailed description of the invention] Producing soil benefits The present invention relates to a method for producing α-amino acids using an enzymatic method.
一旦迷p玉員−
従来、フェニルアラニンアンモニアリアーゼを用いて桂
皮酸及びアンモニアよりフェニルアラニンを製造するこ
とは知られている(英国特許第1489468号、特開
昭56−26197号等)。It has been known to produce phenylalanine from cinnamic acid and ammonia using phenylalanine ammonia lyase (British Patent No. 1489468, Japanese Patent Application Laid-open No. 56-26197, etc.).
又、アスパルテートアンモニアリアーゼ(=アスパルタ
ーゼ)を用いてフマル酸及びアンモニアよりアスパラギ
ン酸を製造するに際し、固定化法によることも知られて
いる(特開昭49−80160 )。It is also known that an immobilization method is used to produce aspartic acid from fumaric acid and ammonia using aspartate ammonia lyase (=aspartase) (Japanese Patent Application Laid-Open No. 80160/1983).
発明が解決しようとする問題点
しかしながら、上記のごとき2−エンカルボン酸とアン
モニアとを両化合物から対応するα−アミノ酸を生成す
る反応を触媒するアンモニアリアーゼの存在下に反応さ
せてα−アミノ酸を生成させるに際し、該酵素がアンモ
ニアにより失活されやすく、特に酵素が失活を強く促進
することを見出した。Problems to be Solved by the Invention However, α-amino acids can be produced by reacting the 2-enecarboxylic acid and ammonia as described above in the presence of ammonia lyase, which catalyzes the reaction that produces the corresponding α-amino acids from both compounds. It has been found that during production, the enzyme is easily deactivated by ammonia, and in particular, the enzyme strongly promotes deactivation.
問題点を解決するための 段
本発明はかかる酸素によるアンモニアリアーゼの失活を
さけるべく酸素又は空気接触を防止した条件下で酵素反
応を行わせるものである。さらに詳しくは、本発明は2
−エンカルボン酸及びアンモニアから対応するα−アミ
ノ酸を生成する反応を触媒するアンモニアリアーゼ又は
これを含有する菌体もしくはその処理物の存在下に、当
該2−エンカルボン酸と過剰のアンモニアとを水中、酸
素又は空気接触を防止した条件下で反応させることを特
徴とするα−アミノ酸の製造法に関する。Steps for Solving the Problems The present invention is directed to carrying out the enzyme reaction under conditions that prevent contact with oxygen or air in order to avoid such deactivation of ammonia lyase due to oxygen. More specifically, the present invention provides two
- The 2-enecarboxylic acid and excess ammonia are dissolved in water in the presence of an ammonia lyase that catalyzes the reaction of producing the corresponding α-amino acid from the enecarboxylic acid and ammonia, or a bacterial cell containing the same, or a processed product thereof. , relates to a method for producing α-amino acids, characterized in that the reaction is carried out under conditions that prevent contact with oxygen or air.
次に本発明をさらに詳しく説明する。Next, the present invention will be explained in more detail.
酸素あるいは空気接触を防止した条件は反応系(水中)
および反応容器中の気体部分の酸素を酸素を含まないガ
ス、例えば酸素を除いた空気、窒素、ヘリウムなどの不
活性気体で置換することにより達成することができる。The reaction system (in water) is the condition where oxygen or air contact is prevented.
This can also be achieved by replacing the oxygen in the gaseous portion of the reaction vessel with an oxygen-free gas, such as air excluding oxygen, nitrogen, or an inert gas such as helium.
この場合、ガス置換は水中に不活性ガスを吹き込むこと
などにより、水中及び気体部分に酸素が検出されなくな
るまで行うのが適当である。又、ガス置換は酵素反応の
開始前のみ行ってもよいし開始前・開始中を通して行っ
てもよい。酸素あるいは空気接触を防止した条件は又、
水中に酸化防止剤を溶解することによっても達せられる
。酸化防止剤としては亜硫酸のアルカリ金属塩(ナトリ
ウム塩、カリウム塩等)。In this case, it is appropriate to carry out gas replacement by blowing an inert gas into the water until no oxygen is detected in the water or in the gas portion. Further, gas replacement may be performed only before the start of the enzyme reaction, or may be performed before and throughout the start of the enzyme reaction. Conditions that prevent oxygen or air contact are also
It can also be achieved by dissolving antioxidants in water. Alkali metal salts of sulfite (sodium salts, potassium salts, etc.) are used as antioxidants.
アルカリ土類金属塩(マグネシウム塩等)もしくはアン
モニウム塩;メルカプトエタノール、グルタチオン、シ
スティン、硫化水素、ジチオスレイトールなどのSH基
含有化合物;ヒドロキノンなどのヒドロキノン類;ブチ
ルクレゾール、カテコールなどのフェノール類;アスコ
ルビン酸などのレダクトン化合物などが使用可能である
。Alkaline earth metal salts (such as magnesium salts) or ammonium salts; SH group-containing compounds such as mercaptoethanol, glutathione, cysteine, hydrogen sulfide, and dithiothreitol; hydroquinones such as hydroquinone; phenols such as butyl cresol and catechol; ascorbin Reductone compounds such as acids can be used.
酸化防止剤の使用濃度は0.1 m M〜10mMが適
当である。酸素あるいは空気接触を防止した条件は又、
酵素源として固定化菌体・酵素を使用する場合に、菌体
又は酵素と共に酸化防止剤を固定化菌体・酵素調製に際
し混入せしめることによっても達成しつる。かかる酸化
防止剤としてはトコフェロール、2.6−シーtert
−ブチル−4−メチル。The appropriate concentration of the antioxidant used is 0.1mM to 10mM. Conditions that prevent oxygen or air contact are also
When using immobilized bacterial cells/enzyme as an enzyme source, this can also be achieved by mixing an antioxidant together with the bacterial cells or enzyme during the preparation of the immobilized bacterial cells/enzyme. Such antioxidants include tocopherol, 2.6-tert
-Butyl-4-methyl.
フェノール、トリスノニルフェニルホスファイト。Phenol, trisnonylphenyl phosphite.
トリフェニルホスファイト、ジステアリル−3,3′一
チオジプロピオン酸等アミン系、キノン系、フェノール
系、硫黄系、リン系の多くの化合物が使用しうる。上記
以外にも化学便覧応用編938頁(昭和55年発行)の
酸化防止剤の項に掲げられた化合物を同様目的に使用し
うる。これらの酸化防止剤は担体ゲル1kg当り1〜1
0g使用する。Many amine-based, quinone-based, phenol-based, sulfur-based, and phosphorus-based compounds can be used, such as triphenyl phosphite and distearyl-3,3'-monothiodipropionic acid. In addition to the above compounds, compounds listed in the section of antioxidants in the Applied Chemical Handbook, page 938 (published in 1980) can be used for the same purpose. These antioxidants are added in amounts of 1 to 1 per kg of carrier gel.
Use 0g.
調整に際しては、酸化防止剤、及び菌体又は酵素をゲル
化液に機械的によく分散してエマルジョンとし、ついで
常法により固定化する。For preparation, the antioxidant and bacterial cells or enzymes are mechanically well dispersed in a gelling solution to form an emulsion, and then fixed by a conventional method.
上記酸素あるいは空気接触を防止した条件は各単独のみ
でなく組み合わせてもよく、組み合わせの場合さらに効
果を高める。The above-mentioned conditions for preventing contact with oxygen or air may be used not only individually but also in combination, and the effect is further enhanced when used in combination.
2−エンカルボン酸及び対応アンモニアリアーゼの組み
合わせとしては桂皮酸とフェニルアラニンアンモニアリ
アーゼ、トランス−p−クマール酸とチロシンアンモニ
アリアーゼ、フマル酸とアスパルテートアンモニアリア
ーゼ、メサコン酸とメチルアスパルテートアンモニアリ
アーゼ、トランスカフェ酸とジヒドロキシフェニルアラ
ニンアンモニアリアーゼ等が用いられる。Combinations of 2-enecarboxylic acids and corresponding ammonia lyases include cinnamic acid and phenylalanine ammonia lyase, trans-p-coumaric acid and tyrosine ammonia lyase, fumaric acid and aspartate ammonia lyase, mesaconic acid and methylaspartate ammonia lyase, and transcaffeinate. Acid, dihydroxyphenylalanine ammonia lyase, etc. are used.
2−エンカルボン酸の濃度としては0.02〜3.0M
が適当である。桂皮酸の場合はこれによるフェニルアラ
ニンアンモニアリアーゼ活性の阻害をさけるため特に0
.02〜062Mが適当である。アンモニアの使用量は
2−エンカルボン酸に対し、1.5〜200倍モルが適
当である。The concentration of 2-enecarboxylic acid is 0.02 to 3.0M
is appropriate. In the case of cinnamic acid, in order to avoid inhibition of phenylalanine ammonia lyase activity by this, the
.. 02-062M is suitable. The appropriate amount of ammonia to be used is 1.5 to 200 times the molar amount of the 2-enecarboxylic acid.
本発明においては酵素源としてアンモニアリアーゼを含
有する菌体(例えば洗浄菌体、乾燥菌体)その処理物(
例えば菌体摩砕物、菌体の自己消化物、菌体の超音波処
理物、固定化菌体、限外濾過膜に酵素を封入したもの)
又は当該酵素(粗酵素。In the present invention, a processed product of bacterial cells (e.g. washed bacterial cells, dried bacterial cells) containing ammonia-lyase as an enzyme source (
For example, bacterial cell grinding, bacterial autolysis, ultrasonication of bacterial cells, immobilized bacterial cells, enzymes encapsulated in ultrafiltration membranes)
Or the enzyme (crude enzyme).
精製酵素)もしくは固定化酵素を使用しうる。Purified enzymes) or immobilized enzymes can be used.
又、菌体の膜透過性の改善等のためにエタノール、。Also, ethanol to improve the membrane permeability of bacterial cells.
トルエン、エチルエーテルなどの溶剤による処理(特公
昭58−19275>、界面活性剤処理(特願昭58−
151415)等を行ってもよく、又これら溶剤、界面
活性剤は酵素反応系に添加してもよい。界面活性剤の種
類、使用量は上記特願昭の場合と同様でよい。固定化菌
体・酵素はゲル包括法、吸着法、共有結合による固定化
法等のいずれによっても調整できる。例えばゲル包括法
ではポリアクリルアミドゲル、ポリビニルアルコールゲ
ル、寒天ゲル、カラギーナンゲル、アルギン酸ゲル等に
常法により包含させる(特公昭56−29517.56
−19994等)。酵素源の量は多い程、反応には有利
であり、又、酵素活性が酵素の種類により区々であるの
で、酵素源の使用量は一概に決められないが、通常、菌
体使用の場合、単位菌体く1■)当り、基質0.008
〜40i matが適当である。上記各アンモニアリア
ーゼを菌体内に含有する微生物は種々知られている。例
えばアスパルターゼではエシェリヒア・コリに属する菌
株、シトロバクタ−・フロインディ ATCC6750
、フェニルアラニンアンモニアリアーゼではロドトルラ
・ルブラATCC20258,スポロボロマイセス・ロ
ゼウスIFO1040,チロシンアンモニアリアーゼで
はロドトルラ・ルブラATCC20258,スポロボロ
マイセス・ロゼウスIFO1040,メチルアスパルテ
ートアンモニアリアーゼではクロストリジウム・チタノ
モルファムに属する菌株、ジヒドロキシフェニルアラニ
ンアンモニアリアーゼではロドトルラ・ルブラIFO9
01,スポロボロマイセス・ロゼウスIF01037.
スポロボロマイセス・サルモニカラ−IF01038.
ピチア・メンブラナエファシエンスIFO460,ビ
チア・ファリノサIF0465.サツカロマイセス・リ
ポリチカIFO717,ビチア・ギリエルモンディIF
0961等があげられる。Treatment with solvents such as toluene and ethyl ether (Japanese Patent Publication No. 58-19275), treatment with surfactants (Japanese Patent Application No. 58-1927)
151415) etc., and these solvents and surfactants may be added to the enzyme reaction system. The type and amount of surfactant used may be the same as in the case of the above-mentioned patent application. Immobilized bacterial cells and enzymes can be prepared by any of the gel entrapment methods, adsorption methods, covalent bond immobilization methods, and the like. For example, in the gel entrapment method, it is included in polyacrylamide gel, polyvinyl alcohol gel, agar gel, carrageenan gel, alginate gel, etc. by a conventional method (Japanese Patent Publication No. 56-29517.56
-19994 etc.). The larger the amount of enzyme source, the more advantageous it is to the reaction, and the enzyme activity varies depending on the type of enzyme, so the amount of enzyme source to be used cannot be determined unconditionally, but usually when using bacterial cells. , substrate 0.008 per unit bacterial cell 1)
~40i mat is suitable. Various microorganisms containing each of the above-mentioned ammonia lyases within their cells are known. For example, for aspartase, strains belonging to Escherichia coli, Citrobacter freundii ATCC6750
, Rhodotorula rubra ATCC 20258 and Sporobolomyces roseus IFO 1040 for phenylalanine ammonia-lyase, Rhodotorula rubra ATCC 20258 and Sporobolomyces roseus IFO 1040 for tyrosine ammonia-lyase, and dihydroxyphenyl, a strain belonging to Clostridium titanomorphum for methylaspartate ammonia-lyase. alanine Rhodotorula rubra IFO9 for ammonia lyase
01, Sporobolomyces roseus IF01037.
Sporobolomyces salmonicara-IF01038.
Pichia membranaefaciens IFO460, Vitia farinosa IF0465. Satucharomyces lipolytica IFO717, Vitia Guillermondi IF
Examples include 0961.
酵素反応に際し、反応液中にMn”、Co2“。During the enzyme reaction, Mn'' and Co2'' are present in the reaction solution.
F e22 Ca”、 Mg22 ln″“などの2価
金属イオン、特にMn”、Zn”を存在させることによ
り、酵素の安定性を高め、又酵素除去効果をさらに高め
ることができる。The presence of divalent metal ions such as Fe22Ca'' and Mg22ln'', particularly Mn'' and Zn'' can enhance the stability of the enzyme and further enhance the enzyme removal effect.
具体的には酵素反応開始前、開始中の反応液にMnC1
* 、MnSO4、CoCJ2.Fe5Oa。Specifically, MnC1 is added to the reaction solution before and during the initiation of the enzyme reaction.
*, MnSO4, CoCJ2. Fe5Oa.
CaCj!z、MgSO3,ZTISO4、ZnCRw
等を添加する。これらの金属化合物は1μM〜50mM
、好ましくは3μM〜5mMの範−一し用する。CaCj! z, MgSO3, ZTISO4, ZnCRw
etc. are added. These metal compounds are 1μM to 50mM
, preferably in the range of 3 μM to 5 mM.
酵素源は回分使用でも固定化し° 6で使用しても
よいが、通常連続使用によるメリットから固定カラム方
式が好ましい。Although the enzyme source may be used batchwise or immobilized and used at 6° C., a fixed column method is usually preferred because of the advantages of continuous use.
酵素反応時のpHは通常pH8〜11.特に8−10で
行われる。本反応はアンモニア過剰下に行うので、pH
調整を要すれば塩酸、硫酸等の無機酸、酢酸、プロピオ
ン酸等の有機酸の添加により行う。反応温度は使用酵素
等によって異なるが、通常15−45℃が適当である。The pH during the enzyme reaction is usually pH 8-11. Particularly held at 8-10. Since this reaction is carried out in excess ammonia, the pH
If adjustment is required, it is carried out by adding an inorganic acid such as hydrochloric acid or sulfuric acid, or an organic acid such as acetic acid or propionic acid. Although the reaction temperature varies depending on the enzyme used, etc., 15-45°C is usually appropriate.
反応開始後1通常1100時間で著量のα−アミノ酸が
生成する。カラム方式の場合、さらに長時間(例えば1
000時間)の連続反応が可能である。A significant amount of α-amino acid is produced 1, usually 1100 hours after the start of the reaction. In the case of a column method, the time is even longer (e.g. 1
000 hours) continuous reaction is possible.
反応液からのα−アミノ酸の精製はシリカゲル。The α-amino acid was purified from the reaction solution using silica gel.
セファデックス等によるカラムクロマトグラフィー、デ
ュオライトA7等のイオン交換樹脂等により行うことが
できる。Column chromatography using Sephadex or the like, ion exchange resin such as Duolite A7, etc. can be used.
次に本発明の実施例を示す。Next, examples of the present invention will be shown.
実施例1゜
スポロボロミセス・ロゼウスIFO1040をコーンス
テイープリカー15g、L−フェニルアラニン2.5g
およびN a C12,5gを含む培地509mlで2
8℃、17時間振盪培養した。遠心分離して得た菌体を
0.9%(W/V)冷食塩水で洗浄の後、遠心分離して
洗浄菌体を得た。これを3%(w/v)カラギーナン水
溶液5Qm+中に懸濁しKCl2%(w/v)水溶液中
に滴下して固定化菌体を辱た。Example 1 Sporobolomyces roseus IFO1040 was mixed with 15 g of cornstarch liquor and 2.5 g of L-phenylalanine.
2 in 509 ml of medium containing 12.5 g of NaCl and
Shaking culture was carried out at 8°C for 17 hours. The cells obtained by centrifugation were washed with 0.9% (W/V) cold saline, and then centrifuged to obtain washed cells. This was suspended in a 3% (w/v) carrageenan aqueous solution 5Qm+ and dropped into a 2% (w/v) KCl aqueous solution to kill the immobilized bacterial cells.
この固定化菌体を各10g、4本のカラムに分取し、第
1表に示す培地をそれぞれlil/hrの速度で通塔し
た。この結果を第2表に示す。カラムは28℃に保温し
た。Each 10 g of the immobilized bacterial cells was fractionated into four columns, and the culture medium shown in Table 1 was passed through each column at a rate of lil/hr. The results are shown in Table 2. The column was kept at 28°C.
第 1 表 −
第 2 表
実施例2
0ドトルラ・ルブラΔTCC20258を酵母エキス1
.0 g 、ペプトン1.0 g 、食塩0.5 gお
よびL−フェニルアラニン0.05 gを含む培地10
0m1で28℃、17時間振盪培養した。該培養液50
0 mlを遠心分離して得た菌体を0.9%(W/V)
冷食塩水で洗浄の後、遠心分離して洗浄菌体を得を得た
。これをアノンLG(両性異面活性剤アルキルグリシン
の商品名1日本油脂製)2%(W/V)水溶液201+
11で室温下、30分間接触処理した。このアノンLG
処理菌体を3%(W/V)カッパカラギーナン溶液50
m1中に懸濁しKCl2%(W/V)水溶液に滴下して
固定化菌体を得た。Table 1 - Table 2 Example 2 0. Dotorla rubra ΔTCC20258 with yeast extract 1
.. Medium 10 containing 0 g, peptone 1.0 g, sodium chloride 0.5 g and L-phenylalanine 0.05 g
Shaking culture was carried out in 0ml at 28°C for 17 hours. The culture solution 50
0.9% (W/V) of bacterial cells obtained by centrifuging 0 ml
After washing with cold saline, centrifugation was performed to obtain washed bacterial cells. Add this to Anon LG (trade name of amphoteric active agent alkylglycine, manufactured by NOF Corporation) 2% (W/V) aqueous solution 201+
11 at room temperature for 30 minutes. This anon LG
Treated bacterial cells with 3% (W/V) kappa carrageenan solution 50
The cells were suspended in ml and added dropwise to a 2% (W/V) KCl aqueous solution to obtain immobilized bacterial cells.
この固定化菌体各10gを4本の試験管A−D中に分取
した。A−Dにはそれぞれ第3表の基質溶液を添加し、
28℃、48時間反応させた。反応液を除き再びそれぞ
れの基質溶液として反応を繰り返した。各回ごとの反応
液中のし一フェニルアラニンの生成量を分析した結果を
第4表に示す。10 g each of these immobilized bacterial cells were fractionated into four test tubes A to D. The substrate solutions shown in Table 3 were added to each of A-D,
The reaction was carried out at 28°C for 48 hours. The reaction solution was removed and the reaction was repeated using each substrate solution. Table 4 shows the results of analyzing the amount of phenylalanine produced in the reaction solution each time.
第 3 表
第 4 表
実施例3
ニジエリシア・コリの菌体25gをpH7の緩衝液中で
自己消化させ、ついで濾過した濾液にpu8.0に緩衝
化させたデュオライ)A?樹脂IQmlを懸濁させ、p
H8,0に調整したのち、約18時間ゆるやかに攪拌
した。樹脂を2分しカラムA。Table 3 Table 4 Example 3 25 g of N. coli cells were autolysed in a pH 7 buffer, and the filtered filtrate was buffered to pu 8.0. Suspend resin IQml, p
After adjusting to H8.0, the mixture was gently stirred for about 18 hours. Divide the resin into two columns.
Bに充填した。第5表に示す基質液をそれぞれのカラム
に5V−1(通塔容量/樹脂容量・hr)で通塔した。B was filled. The substrate liquid shown in Table 5 was passed through each column at a rate of 5V-1 (passing capacity/resin capacity/hr).
経時の流出液中のアスパラギン酸量を第6表に示た。カ
ラムは40℃に保温した。Table 6 shows the amount of aspartic acid in the effluent over time. The column was kept at 40°C.
第 6 表
実施例4
培地中のL−フェニルアラニンをL−チロシンに代える
以外は実施例1と同様にして調製した固定化園体各11
1gをA、B、C3本のカラムに分取し、第7表に示す
培地をそれぞれ0.5ml/hrの速度で通過した。こ
の結果を第8表に示す。Table 6 Example 4 Each 11 immobilized cells were prepared in the same manner as in Example 1 except that L-phenylalanine in the medium was replaced with L-tyrosine.
1 g was fractionated into three columns A, B, and C, and passed through the media shown in Table 7 at a rate of 0.5 ml/hr, respectively. The results are shown in Table 8.
実施例5
実施例2と同様に調製したアノンLG処理園体を40g
湿潤状態にて秤取し、各10gを以下にのべる方法(A
−D)で固定化した。A、Bではポリビニルアルコール
(鹸化度99.5モル%1重合度1700)10%溶液
各40gと混合し、−25℃で凍結した。Cではポリビ
ニルアルコール10%(w/v)溶液40gにトリスノ
ニルフェニルホスファイト(体皮化学スミライザーTP
S)100mgをよく分散混合した後、A、Bと同様に
10gの菌体とよく混合したのち凍結した。凍結物を5
+nm角状に裁断し、A−C各々を1001111にり
カラムに充填した。カラムB、Cには25℃でカラムを
保温しつつ実施例2.第3表のD液を、カムΔには25
℃でカラムを保温しつつ同表のA液を4ml/hrの速
度で通塔した。Example 5 40g of Anon LG treated orchard prepared in the same manner as in Example 2
Weigh it in a wet state and place 10g of each on the following method (A
-D). In A and B, each sample was mixed with 40 g of a 10% solution of polyvinyl alcohol (degree of saponification 99.5 mol%, degree of polymerization 1700) and frozen at -25°C. In C, trisnonylphenyl phosphite (dermal chemical Sumilizer TP) was added to 40 g of 10% (w/v) polyvinyl alcohol solution.
S) After 100 mg was well dispersed and mixed, it was mixed well with 10 g of bacterial cells in the same manner as A and B, and then frozen. 5 frozen items
It was cut into +nm square pieces, and each of A to C was packed into a column using 1001111. Example 2 was applied to columns B and C while keeping the column warm at 25°C. Add liquid D from Table 3 to the cam Δ at 25%.
While keeping the column warm at °C, solution A shown in the same table was passed through the column at a rate of 4 ml/hr.
各カラムの留出液の組成を第9表に示す。Table 9 shows the composition of the distillate from each column.
第 9 表
発明の効果
本発明により、アンモニアリアーゼ使用による2−エン
カルボン酸からα−アミノ酸の製造に際し、酵素活性の
持続化を図ることができる。Table 9 Effects of the Invention According to the present invention, enzyme activity can be sustained during the production of α-amino acids from 2-enecarboxylic acids using ammonia lyase.
手続補正書
昭和59年2月26日
1、事件の表示
昭和59年特許顆第165998号
2、発明の名称
α−アミノ酸の製造法
3、補正をする者
事件との関係 特許出願人
郵便番号 100
住 所 東京都千代田区大手町−丁目6番1号名称
(102)協和醗酵工業株式会社明細書の発明の詳細な
説明の欄
5、補正の内容Procedural amendment dated February 26, 1980 1, Indication of the case 1982 Patent Case No. 165998 2, Name of the invention Process for producing α-amino acids 3, Person making the amendment Relationship to the case Patent applicant postal code 100 Address: 6-1 Otemachi-chome, Chiyoda-ku, Tokyo Name
(102) Column 5 of the detailed description of the invention in the Kyowa Hakko Kogyo Co., Ltd. specification, content of amendments
Claims (6)
α−アミノ酸を生成する反応を触媒するアンモニアリア
ーゼ又はこれを含有する菌体もしくはその処理物の存在
下に、当該2−エンカルボン酸と過剰のアンモニアとを
水中、酸素又は空気接触を防止した条件下で反応させる
ことを特徴とするα−アミノ酸の製造法。(1) In the presence of ammonia lyase that catalyzes the reaction of producing the corresponding α-amino acid from 2-enecarboxylic acid and ammonia, or a bacterial cell containing this, or a processed product thereof, the 2-enecarboxylic acid and excess 1. A method for producing an α-amino acid, which comprises reacting with ammonia in water under conditions that prevent contact with oxygen or air.
の酸素を酸素を含まないガスで置換することにより達せ
られる特許請求の範囲第1項記載の製造法。(2) The production method according to claim 1, wherein the conditions preventing contact with oxygen or air are achieved by replacing oxygen in the reaction system with a gas that does not contain oxygen.
化防止剤を溶解することにより達せられる特許請求の範
囲第1項記載の製造法。(3) The production method according to claim 1, wherein conditions preventing contact with oxygen or air are achieved by dissolving an antioxidant in water.
って、酸素あるいは空気接触を防止した条件が固定化菌
体又は固定化酵素中に酸化防止剤を包含せしめることに
より達せられる特許請求の範囲第1項記載の製造法。(4) A patent in which the enzyme source used is immobilized bacterial cells or an immobilized enzyme, and the conditions that prevent contact with oxygen or air are achieved by incorporating an antioxidant into the immobilized bacterial cells or immobilized enzyme. The manufacturing method according to claim 1.
の組み合わせが、桂皮酸とフェニルアラニンアンモニア
リアーゼ、トランス−p−クマール酸とチロシンアンモ
ニアリアーゼ、フマル酸とアスパルテートアンモニアリ
アーゼ、メサコン酸とメチルアスパルテートアンモニア
リアーゼ、又はトランスカフェ酸とジヒドロキシフェニ
ルアラニンアンモニアリアーゼである特許請求の範囲第
1項記載の製造法。(5) Combinations of 2-enecarboxylic acids and corresponding ammonia lyases include cinnamic acid and phenylalanine ammonia lyase, trans-p-coumaric acid and tyrosine ammonia lyase, fumaric acid and aspartate ammonia lyase, and mesaconic acid and methylaspartate ammonia lyase. , or transcaffeic acid and dihydroxyphenylalanine ammonia lyase.
範囲第1項記載の製造法。(6) The manufacturing method according to claim 1, wherein divalent metal ions are present in water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16599884A JPS6143993A (en) | 1984-08-08 | 1984-08-08 | Production of alpha-amino acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16599884A JPS6143993A (en) | 1984-08-08 | 1984-08-08 | Production of alpha-amino acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6143993A true JPS6143993A (en) | 1986-03-03 |
Family
ID=15822972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16599884A Pending JPS6143993A (en) | 1984-08-08 | 1984-08-08 | Production of alpha-amino acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6143993A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0143560A2 (en) * | 1983-10-31 | 1985-06-05 | Genex Corporation | Method for stabilizing the enzymic activity of phenylalanine ammonia lyase during L-phenylalanine production |
EP0165757A2 (en) * | 1984-06-11 | 1985-12-27 | Genex Corporation | Production of L-phenylalanine |
US5981239A (en) * | 1997-09-24 | 1999-11-09 | Great Lakes Chemical Corp. | Synthesis of optically active phenylalanine analogs using Rhodotorula graminis |
WO2003000915A1 (en) * | 2001-06-25 | 2003-01-03 | Showa Denko K.K. | Method for producing l-amino acids |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60133892A (en) * | 1983-10-31 | 1985-07-17 | ジエネツクス・コ−ポレイシヨン | Production of l-phenylalanine |
-
1984
- 1984-08-08 JP JP16599884A patent/JPS6143993A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60133892A (en) * | 1983-10-31 | 1985-07-17 | ジエネツクス・コ−ポレイシヨン | Production of l-phenylalanine |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0143560A2 (en) * | 1983-10-31 | 1985-06-05 | Genex Corporation | Method for stabilizing the enzymic activity of phenylalanine ammonia lyase during L-phenylalanine production |
EP0143560A3 (en) * | 1983-10-31 | 1987-04-29 | Genex Corporation | Method for stabilizing the enzymic activity of phenylalanine ammonia lyase during l-phenylalanine production |
EP0165757A2 (en) * | 1984-06-11 | 1985-12-27 | Genex Corporation | Production of L-phenylalanine |
EP0165757A3 (en) * | 1984-06-11 | 1987-07-22 | Genex Corporation | Production of l-phenylalanine |
US5981239A (en) * | 1997-09-24 | 1999-11-09 | Great Lakes Chemical Corp. | Synthesis of optically active phenylalanine analogs using Rhodotorula graminis |
WO2003000915A1 (en) * | 2001-06-25 | 2003-01-03 | Showa Denko K.K. | Method for producing l-amino acids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chibata et al. | Biocatalysis: immobilized cells and enzymes | |
Yamamoto et al. | Continuous production of L‐alanine using Pseudomonas dacunhae immobilized with carrageenan | |
US4335209A (en) | Process for preparation of L-tryptophan by enzyme | |
EP0206904B1 (en) | Process for the enzymatic production of l-alpha amino acids from alpha keto acids | |
JPS6143993A (en) | Production of alpha-amino acid | |
JPS59198972A (en) | Microbiologically produced l-phenylalanine dehydrogenase, obtaining method thereof and production of l-alpha-amino- carboxylic acid | |
EP0050007B1 (en) | A heat-resistant adenylate kinase, a stable immobilized adenylate kinase composite material, and processes for their production | |
JP2001503979A (en) | Methods and compositions for preparing D-aspartic acid | |
Chibata et al. | Immobilized cells: Historical background | |
US4753882A (en) | Urease and process for preparation thereof | |
US7220562B2 (en) | Preparation of (E)- and (Z)-2-methyl-2-butenoic acids | |
CA1284464C (en) | D(-)-mandelate dehydrogenase produced microbiologically, a process for its production and application thereof | |
Tsai et al. | Production and immobilization of D-aminoacylase of Alcaligenes faecalis DA1 for optical resolution of N-acyl-DL-amino acids | |
Sato et al. | Production of L-aspartic acid | |
EP0859060A2 (en) | Method of producing D-amino acid and amine | |
JP3204924B2 (en) | Method for producing L-aspartic acid and fumaric acid and / or L-malic acid | |
Stöcklein et al. | Conversion of L-phenylalanine to L-tyrosine by immobilized bacteria | |
JP3392865B2 (en) | Immobilized enzyme preparation and method for producing D-α-amino acid | |
Packdibamrung et al. | An inducible NADP+-dependent d-phenylserine dehydrogenase from Pseudomonas syringae NK-15: purification and biochemical characterization | |
JPH0328188B2 (en) | ||
US5134073A (en) | Microbiologically produced n-acetyl-2,3-didehydroleucine acylase | |
Chibata et al. | Applications of immobilized enzymes and immobilized microbial cells for L-amino acid production | |
US5212069A (en) | Method of using N-acetyl-2,3-Didehydroleucine acylase for the preparation of D- or L-tryptophyl glycine, D- or L-tryptophyl-D-methionine or L-tryptophyl-D-cysteine | |
JPS6058068A (en) | Novel amine dehydrogenase and oxidation of amine using it | |
Okamura et al. | Aspartate dehydrogenase in vitamin B12-producing Klebsiella pneumoniae IFO 13541 |