[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6142390A - Method for making pure water for boiler - Google Patents

Method for making pure water for boiler

Info

Publication number
JPS6142390A
JPS6142390A JP16274784A JP16274784A JPS6142390A JP S6142390 A JPS6142390 A JP S6142390A JP 16274784 A JP16274784 A JP 16274784A JP 16274784 A JP16274784 A JP 16274784A JP S6142390 A JPS6142390 A JP S6142390A
Authority
JP
Japan
Prior art keywords
boiler
turbine
seawater
water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16274784A
Other languages
Japanese (ja)
Inventor
Kazuharu Takada
和治 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP16274784A priority Critical patent/JPS6142390A/en
Publication of JPS6142390A publication Critical patent/JPS6142390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To make high purity water for a boiler at low cost, by supplying distilled water, which was passed through an ion exchanger, to a boiler and driving turbine by steam generated by the boiler while condensing the exhaust gas of the turbine by a condenser. CONSTITUTION:Seawater with temp. of about 20 deg.C is heated to about 30 deg.C by the waste heat of a turbine condenser while pumped up and the greater part thereof is discarded from a pipe 3 while the remainder is flowed into a three- fluid heat exchanger 5 through a pipe 4 to be heated to about 60 deg.C and reaches a steam compression type evaporator 9 through a pipe 8. The seawater preheated to about 60 deg.C is scattered on a horizontal heat transfer tube bundle 10 from a scattering apparatus 11 and evaporated through the heat exchange with the high temp. fluid in the tube bundle 10 while the generated steam is compressed by a compressor 14 and introduced into the tubes of the horizontal heat transfer tube bundle 10 at high temp. to be converted to a heating source and, after condensed by heat exchange, the condensate is flowed out to an outlet side header 17 to enter the three-fluid heat exchanger 5 at about 70 deg.C. Conc. seawater enters the three-fluid heat exchanger 5 at about 60 deg.C from a conc. seawater sump 19.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超臨界圧で作動する高圧ボイラの給水製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing feed water for a high pressure boiler operating at supercritical pressure.

(従来の技術) 超臨界圧の蒸気を使用するタービンは、各段での仕事を
するたびに減塩減圧が行われ、茎気中に塩類が存在すれ
ば、これらは熔齢度を減じて各段のノズルやWに析出し
、蒸気流の抵抗や振動の原因となり、タービン効率に影
響を与える。よって蒸気中への塩類の混入は極力避けな
ければならない。
(Conventional technology) Turbines that use supercritical pressure steam undergo salt reduction and depressurization each time they perform work at each stage, and if salts are present in the stem air, these will reduce the age of the smelt. It deposits on the nozzles and W of each stage, causing steam flow resistance and vibration, and affecting turbine efficiency. Therefore, mixing of salts into the steam must be avoided as much as possible.

ボイラで発生ずる蒸気の品質は、臨界圧になると給水の
性状が大きく作用する。すなわち給水中の不純物は蒸気
中への塩類金Iri類の混入物とボイラ管壁に析出する
スケールの二つに分かれ、何れもタービンの障害となる
ため、超臨界圧で作動するタービン用ボイラ給水は、熔
解イオン量が0.2PPM以下の高純度が要求されてい
る。
The quality of the steam generated in the boiler is greatly influenced by the properties of the feed water once it reaches critical pressure. In other words, impurities in the feed water are divided into two types: salts such as gold Iri mixed into the steam, and scale deposited on the boiler pipe walls, both of which impede the turbine. High purity is required, with the amount of dissolved ions being 0.2 PPM or less.

このように酷しい条件を満足させるため、従来は水道水
をイオン交換器に通すことによって溶解イオン量を0.
2ppmまで減少させていたが、水道水は通常1100
pp程度の不純物を含みその量は大であって、これを除
くためには多量のイオン交換樹脂の使用が余儀なくされ
、装置は大形化し、また再生に多量の薬品が必要となり
、さらに再4ト時に生する廃水の下水処理にも多額の費
用を要するなど、コスト高となって改善が望まれていた
In order to satisfy such severe conditions, conventionally, tap water is passed through an ion exchanger to reduce the amount of dissolved ions to 0.
It was reduced to 2 ppm, but tap water usually has a concentration of 1100.
The amount of impurities is large, and the removal of these impurities requires the use of a large amount of ion exchange resin, making the equipment large and requiring a large amount of chemicals for regeneration. Improvements have been desired due to the high cost of sewage treatment of the wastewater produced during the process.

水道水の代わりに海水で代表される塩水を原水とする通
常の淡水化多段フラッシュ蒸発装置、多重効用蒸発装置
などより取得できる蒸留水を使用する方法がある。この
及留水は不純物が約2 ppm程度で、−1−述の水道
水に比べて不純物は約1150に過ぎず、l&続のイオ
ン交換器もこれにならって小形となり、イオン交換樹脂
の使用量も減し、処理費用はほぼイオン量に比例して安
くなるので経済的であるが、その経済性は技術の開発に
よってもっと追求されるべきであった。
Instead of tap water, there is a method of using distilled water that can be obtained from a normal desalination multi-stage flash evaporator, a multi-effect evaporator, etc. that uses salt water such as seawater as raw water. This distilled water has about 2 ppm of impurities, which is only about 1,150 impurities compared to the tap water mentioned in -1-, and the ion exchangers of I&Z have also become smaller and use ion exchange resin. It is economical because the amount is reduced and the processing cost is reduced in proportion to the amount of ions, but its economic efficiency should have been pursued further through technological development.

(発明が解決しようとする問題点) そこで、この蒸留水がもっと低エネルギ消費で製造でき
れば、ボイラ給水用高純水は更にコスト安にできること
に着目し、経済的効果の向上を企図したのが本発明であ
る。
(Problem to be solved by the invention) Therefore, we focused on the fact that if this distilled water could be produced with lower energy consumption, the cost of high-purity water for boiler water supply could be further reduced, and the present invention aimed to improve the economic effect. It is.

海水を通常の多段フラッシュ、多重効用蒸発によって淡
水化し高純度のボイラ給水とする場合、淡水化のための
エネルギー消費量は約70,0OOKcal / tで
価格としては約400円/lになり、相当な高価格とな
っている。
When seawater is desalinated by normal multi-stage flashing and multi-effect evaporation to provide high-purity boiler feed water, the energy consumption for desalination is approximately 70,0OOKcal/t and the price is approximately 400 yen/l, which is equivalent to It has a high price.

一方、蒸発法の一種である蔑気圧縮法は、蒸発器で発生
した茎気を断熱圧縮することによりその蒸発器の加熱蒸
気として再利用して造水し、しかも圧縮するために加え
るエネルギは蒸発熱(潜熱)の士数分の−に過ぎず、熱
効率の高い淡水化法である。スタート時列部からの熱源
によって加熱し、所定の温度に達すれば圧縮機を熱源に
して、圧縮後の温度T2と圧縮111]の蒸発塩rff
Tlの温度差T2−TIで熱交換さ一口で造本を行い、
蔑発器を所定温度に維持するため外部よりの僅かな補助
熱を加えるのみで作動するエネルギ消費の少ない蒸発法
である。
On the other hand, the air compression method, which is a type of evaporation method, adiabatically compresses the stem air generated in the evaporator and reuses it as heated steam in the evaporator to produce water. It is a desalination method with high thermal efficiency, with only a fraction of the heat of vaporization (latent heat). It is heated by the heat source from the start time section, and when it reaches a predetermined temperature, the compressor is used as the heat source to heat the evaporated salt rff at the temperature T2 after compression and compression 111].
Bookbinding is performed in one heat exchange with the temperature difference T2-TI.
This is an evaporation method that consumes little energy and operates by simply adding a small amount of auxiliary heat from the outside to maintain the generator at a predetermined temperature.

本発明はこの熱効率の高い葎気圧縮法に着目し、ここで
得られた蒸留水をボイラ給水の原料とすれば、より経済
性の高いボイラ給水を製造できる点を要旨とするもので
ある。
The present invention focuses on this air compression method with high thermal efficiency, and the gist of the present invention is that if the distilled water obtained by this method is used as a raw material for boiler feed water, it is possible to produce boiler feed water with higher economic efficiency.

(問題点を解決するための手段) 藤気圧縮法を用いて海水より1tの蒸留水を作る場合、
「縮機動力は約8KWIIが必要である。この動力に相
当する熱量は8 KWII X 860Kca l /
 KWH= 6880Kca lであるが、この熱量だ
けでは蒸発器を所定温度に維持できないので外部より約
16.0OOKcalを補助熱として導入する必要があ
り、これにはタービン抽気を用いる。一方、原水として
冷海水を用いるのにくらべ、タービンコンデンサの温排
水を原料水として用いると蒸発器を所定温度に維持する
補助熱約4 、000Kca lが節減できる。
(Means for solving the problem) When producing 1 ton of distilled water from seawater using the fuji compression method,
“Approximately 8KWII is required for compressor power.The amount of heat equivalent to this power is 8KWII x 860Kcal/
KWH=6880Kcal, but since this amount of heat alone cannot maintain the evaporator at a predetermined temperature, it is necessary to introduce about 16.0OOKcal from the outside as auxiliary heat, and turbine extraction air is used for this purpose. On the other hand, compared to using cold seawater as raw water, using heated wastewater from the turbine condenser as raw water can save about 4,000 Kcal of auxiliary heat for maintaining the evaporator at a predetermined temperature.

圧m機動力8KWl+の発電効率を30%とみなせば単
純に総使用熱量を計算すると 圧縮機動力相当熱 −−−−−−−−23,0OOKc
a l補助熱      −−−−−−−−−−16,
000Kca I福JL杖茎J葺4節j2!熟−−−−
−−−−−一−−−−−・−J川(1↓総使用熱量  
          35.000Kca lとなり、
従来の多段フラッシュ、多重効用蒸発による消費熱量7
0.000Kca lにくらべ半減できる。
If we consider the power generation efficiency of 8KWl+ of compressor power as 30%, we can simply calculate the total amount of heat used: Heat equivalent to compressor power −−−−−−−−23,0OOKc
a l auxiliary heat ------------------------16,
000Kca I Fuku JL cane stem J roof 4 section j2! Ripe------
−−−−−1−−−−−・−J River (1↓Total amount of heat used
It becomes 35,000Kcal,
Heat consumption due to conventional multi-stage flash and multi-effect evaporation 7
It can be reduced by half compared to 0.000Kcal.

原水は海水以外、河川水、地下水、工場排水等の塩水が
広く利用できることは勿論である。
Of course, raw water other than seawater can be widely used, such as river water, groundwater, and saltwater such as factory wastewater.

−F記に鑑み本発明は、タービンコンデンサ冷却排水の
一部を蒸気圧縮式蒸発器に供給して蒸発させ、この蒸気
を圧縮して凝縮させて凝縮水とし、該蒸留水をイオン交
換器をjIシたのちボイラに給水し、該ボイラで発生し
た蒸気によりタービンを駆動し、タービン排気を該コン
デンサにて凝縮するようにしたボイラ給水製造法、およ
びタービン抽気を該蒸発器に導いて蒸発温度維持の補助
熱源としたボイラ給水製造法を提供するものである。
- In view of the above, the present invention supplies a part of the turbine condenser cooling wastewater to a vapor compression type evaporator to evaporate it, compresses and condenses this vapor to form condensed water, and converts the distilled water into an ion exchanger. A boiler feed water production method in which water is then supplied to the boiler, the steam generated in the boiler drives a turbine, and the turbine exhaust is condensed in the condenser, and the turbine extracted air is guided to the evaporator to reduce the evaporation temperature. This provides a method for producing boiler feedwater as an auxiliary heat source for maintenance.

(作用) この方法によれば、イオン交換器に入る水は、通常の多
段フラッシュ、多重効用蒸発法で得られた蒸留水に比べ
てエネルギ消背景はほぼ半分に近くまで減少でき、給水
処理単価は低くなる。これはタービンコンデンサの排熱
を利用して原水を予熱しているため蒸発温度を維持する
のに少ないエネルギーですみ、蒸気圧縮式蒸発法の熱経
済性と相撲ってエネルギ消費は一層低減できるためであ
(実施例) 図は本発明の一実施例を示すフローシートであり、この
図面を参照して説明する。
(Function) According to this method, the energy consumption of the water entering the ion exchanger can be reduced to nearly half that of distilled water obtained by ordinary multi-stage flash and multi-effect evaporation methods, and the unit cost of water treatment is reduced. becomes lower. This is because the waste heat of the turbine condenser is used to preheat the raw water, so less energy is required to maintain the evaporation temperature, which combines with the thermal economy of the vapor compression evaporation method to further reduce energy consumption. (Example) The figure is a flow sheet showing an example of the present invention, and description will be made with reference to this figure.

管1から汲上げられた約20℃の海水は、タービンコン
デンサ2の排熱によって約30℃まで昇温したのち、大
部分は管3から徘棄し、一部は管4を経て玉流体熱交換
器5に流入する。この玉流体熱交換器5は凝縮水管束6
と濃縮海水管束7を有し、管束外側は前記海水が流れる
構造であって、海水はここで約60℃まで昇温し、管8
を通って茎気圧縮式芸発器9に至る。
Seawater at about 20°C pumped up from pipe 1 rises in temperature to about 30°C due to the exhaust heat from turbine condenser 2, and then most of it wanders out from pipe 3, and some passes through pipe 4 and is converted to fluid heat. It flows into exchanger 5. This ball fluid heat exchanger 5 has a condensate water pipe bundle 6
and a concentrated seawater tube bundle 7, and the outside of the tube bundle has a structure through which the seawater flows, and the seawater is heated to about 60° C.
It passes through and reaches the stem air compression type generator 9.

この蒸気圧縮式蒸発器9は容器内に水平伝熱管束IOを
有し、そのL方に散布装置11が配胃され該伝熱管束1
0の管外(Il+空間12は蒸気入口管13、圧縮機1
4、蒸気出口管15を経て水平伝熱管束の入口側ヘッダ
ー16に連絡している。水平伝熱管束の出口柳1ヘッダ
ー17は、その下部は凝縮水溜18.1!:なり、容器
下部は濃縮海水面19となっており、該出口側ヘッダー
17に真空ポンプ20が連絡して、該蒸発器9を真空に
維持しでいる。
This vapor compression type evaporator 9 has a horizontal heat exchanger tube bundle IO in a container, and a dispersion device 11 is disposed on the L side of the horizontal heat exchanger tube bundle IO.
0 outside the pipe (Il + space 12 is steam inlet pipe 13, compressor 1
4. It is connected to the inlet header 16 of the horizontal heat transfer tube bundle via the steam outlet pipe 15. The outlet willow 1 header 17 of the horizontal heat transfer tube bundle has a condensate reservoir 18.1 at the bottom! : The lower part of the container is at the concentrated seawater level 19, and a vacuum pump 20 is connected to the outlet header 17 to maintain the evaporator 9 in a vacuum.

前述のとおり約60゛Cまで予p4Vされた海水は(K
重装W I 1から水平伝熱管束101−に散布され、
高温の管内流体と熱交換して及発し、発仕蒸気はr「縮
機14で圧縮され、高温となったのり水平伝熱管束の管
内に導入されて加熱源となり、熱交換後凝縮して出口側
ヘッダー17に流出し、凝縮水溜1Bに溜り、ポンプ2
1を経て約70℃で玉流体熱交換器5に入る。
As mentioned above, seawater preheated to 4V to about 60°C is (K
Spreading from the heavy equipment W I 1 to the horizontal heat exchanger tube bundle 101-,
The steam is emitted by exchanging heat with the high-temperature fluid inside the pipes, and the generated steam is compressed in the condenser 14, and the heated steam is introduced into the pipes of the horizontal heat transfer tube bundle and becomes a heating source, and after heat exchange, it condenses. It flows out to the outlet side header 17, collects in the condensate reservoir 1B, and pumps 2.
1 and enters the fluid heat exchanger 5 at about 70°C.

濃縮海水は下部の濃縮海水面19からポンプ22によっ
て約68℃で玉流体熱交換器5に入る。
The concentrated seawater enters the ball fluid heat exchanger 5 at about 68° C. from the lower concentrated seawater level 19 by the pump 22.

この玉流体熱交換器5で約40°Cまで冷却された凝縮
水は管23を通ってイオン交換器24に入り、不純物は
除去され、約0.2ppmの高純度となり、前記コンデ
ンサ2の復水と混合し、ポンプ25を経てボイラ26へ
供給される。ボイラ発牛朶気はタービン27に供給され
て発電機28を駆動し、タービン抽気は温度調節計31
のある管30を経て大rl側ヘッダー16に入り、補助
熱源となっ゛r所定の友発温度を維持する。タービン排
気はコンデンサ2で冷J、11海水と熱交換して凝縮さ
れる。29は燃焼装置である。
The condensed water cooled to about 40°C in the ball fluid heat exchanger 5 passes through the pipe 23 and enters the ion exchanger 24, where impurities are removed and the water has a high purity of about 0.2 ppm. It is mixed with water and supplied to the boiler 26 via the pump 25. The cow steam from the boiler is supplied to the turbine 27 to drive the generator 28, and the turbine extracted air is supplied to the temperature controller 31.
It enters the large RL side header 16 through a certain pipe 30, and serves as an auxiliary heat source to maintain a predetermined heating temperature. The turbine exhaust gas is condensed in condenser 2 by exchanging heat with cold seawater. 29 is a combustion device.

(効果) 本発明においては、タービンコンデンサ冷却排水の一部
を蒸気圧縮式蒸発器に供給して蒸発させ、この蒸気を圧
縮して凝縮させて蒸留水とし、該蒸留水をイオン交換器
を通したのちボイラに給水し、該ボイラで発生した蒸気
によりタービンを駆動し、タービン排気を該コンデンサ
によって凝縮するようにしたボイラ給水法であるから、
イオン交換器に入る給水は蒸気圧縮式蒸発法の圧縮機の
仕事量が蒸発熱(潜熱)の士数分の−にすぎないと云う
有利性をそのまま活用でき、さらにタービンコンデンサ
によって冷却海水に与えられた熱を利用して蒸発器を所
定温度に保つようにしたから従来の多段フラッシュ、多
重効用蒸発法から得られた蒸留水に比べて、所要エネル
ギはほぼ半分ですみ、ボイラ用高純水をつくるための給
水処理費用が安くなるという経済的効果を有する。
(Effects) In the present invention, a part of the turbine condenser cooling waste water is supplied to a vapor compression type evaporator and evaporated, this vapor is compressed and condensed to produce distilled water, and the distilled water is passed through an ion exchanger. This is a boiler water supply method in which water is then supplied to the boiler, the steam generated by the boiler drives the turbine, and the turbine exhaust is condensed by the condenser.
The feed water that enters the ion exchanger can take advantage of the advantage that the work of the compressor of the vapor compression evaporation method is only a fraction of the heat of vaporization (latent heat), and furthermore, it can be applied to the cooling seawater by the turbine condenser. The generated heat is used to maintain the evaporator at a predetermined temperature, so compared to distilled water obtained from conventional multi-stage flash and multi-effect evaporation methods, the energy required is approximately half, making it possible to produce high-purity water for boilers. This has an economical effect of lowering the cost of water treatment.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例におけるフローシートである。 2・・・コンデンサ、  5・・・:流体熱交換器、9
・・・蒸気圧縮式蒸発器、 10・・・水平伝熱管束、 11・・・散布装置、14
・・・圧縮機、    24・・・イオン交換器、26
・・・ボイラ、     27・・・タービン、28・
・・発電機。
The figure is a flow sheet in one embodiment of the present invention. 2... Condenser, 5...: Fluid heat exchanger, 9
... Vapor compression evaporator, 10... Horizontal heat transfer tube bundle, 11... Spreading device, 14
...Compressor, 24...Ion exchanger, 26
...Boiler, 27...Turbine, 28.
··Generator.

Claims (2)

【特許請求の範囲】[Claims] (1)タービンコンデンサ冷却排水の一部を蒸気圧縮式
蒸発器に供給して蒸発させ、この蒸気を圧縮して凝縮さ
せて蒸留水とし、該蒸留水をイオン交換器を通した後ボ
イラに給水し、該ボイラで発生した蒸気によりタービン
を駆動し、タービン排気を該コンデンサにて凝縮するよ
うにしたボイラ給水製造法。
(1) A portion of the turbine condenser cooling wastewater is supplied to a vapor compression evaporator and evaporated, this vapor is compressed and condensed to produce distilled water, and the distilled water is passed through an ion exchanger and then supplied to the boiler. A boiler feedwater production method in which a turbine is driven by steam generated in the boiler, and turbine exhaust gas is condensed in the condenser.
(2)第1項記載のボイラ給水製造法において、タービ
ン抽気を該蒸発器に導いて蒸発温度維持の補助熱源とし
たボイラ給水製造法。
(2) In the method for producing boiler feed water according to item 1, turbine bleed air is guided to the evaporator and used as an auxiliary heat source for maintaining the evaporation temperature.
JP16274784A 1984-07-31 1984-07-31 Method for making pure water for boiler Pending JPS6142390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16274784A JPS6142390A (en) 1984-07-31 1984-07-31 Method for making pure water for boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16274784A JPS6142390A (en) 1984-07-31 1984-07-31 Method for making pure water for boiler

Publications (1)

Publication Number Publication Date
JPS6142390A true JPS6142390A (en) 1986-02-28

Family

ID=15760491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16274784A Pending JPS6142390A (en) 1984-07-31 1984-07-31 Method for making pure water for boiler

Country Status (1)

Country Link
JP (1) JPS6142390A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289287A (en) * 1986-06-09 1987-12-16 Hisaka Works Ltd Method and apparatus for desalting sea water by utilizing solar heat
KR100405230B1 (en) * 2001-08-06 2003-11-12 주식회사 경동보일러 ion water producing device
JP2014210252A (en) * 2013-04-05 2014-11-13 株式会社ササクラ Evaporation processing method of aqueous solution
JP2015013268A (en) * 2013-07-08 2015-01-22 株式会社ササクラ Method of evaporation treatment of aqueous solution
JP2015205240A (en) * 2014-04-18 2015-11-19 株式会社ササクラ Evaporative concentration device and evaporative concentration method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935653A (en) * 1972-08-15 1974-04-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935653A (en) * 1972-08-15 1974-04-02

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289287A (en) * 1986-06-09 1987-12-16 Hisaka Works Ltd Method and apparatus for desalting sea water by utilizing solar heat
KR100405230B1 (en) * 2001-08-06 2003-11-12 주식회사 경동보일러 ion water producing device
JP2014210252A (en) * 2013-04-05 2014-11-13 株式会社ササクラ Evaporation processing method of aqueous solution
US10329166B2 (en) 2013-04-05 2019-06-25 Sasakura Engineering Co., Ltd. Evaporative treatment method for aqueous solution
JP2015013268A (en) * 2013-07-08 2015-01-22 株式会社ササクラ Method of evaporation treatment of aqueous solution
JP2015205240A (en) * 2014-04-18 2015-11-19 株式会社ササクラ Evaporative concentration device and evaporative concentration method

Similar Documents

Publication Publication Date Title
US5346592A (en) Combined water purification and power of generating plant
CN103265089B (en) High temperature high efficiency multi-effect seawater distillation desalination apparatus and method
EP2246531A1 (en) Power plant with CO2 capture and water treatment plant
CN101948148A (en) Energy-saving low-temperature multiple-effect seawater desalting device
WO2002032813A1 (en) Process and plant for multi-stage flash desalination of water
CN105217702A (en) A kind of desulfurization wastewater treatment system
CN103550941B (en) Low-temperature evaporation and concentration device and high-concentration waste water concentration method
CN102616972A (en) Comprehensive recycling method and device for high-salt-content amino acid waste water
CN109292860A (en) Falling-film evaporation coupled absorption refrigeration high-salt sewage treatment equipment and high-salt sewage treatment method
US4553396A (en) Brine concentrator
JP4139597B2 (en) Desalination equipment
JPS6142390A (en) Method for making pure water for boiler
CN102267733A (en) Industrial waste heat low-temperature multi-effect seawater desalting system
AU2005284554A1 (en) Seawater desalination plant
CN217988400U (en) Recovery unit of well low concentration ethylene glycol aqueous solution
JP3524582B2 (en) Non-azeotropic mixed fluid cycle plant
CN116116023A (en) Evaporation concentration system
CN214734637U (en) Low-temperature evaporation device
CN208087250U (en) The device that high-salt wastewater low-temperature evaporation is concentrated using hot industry waste water
CN212050608U (en) Concentration device and desulfurization wastewater treatment equipment
CN211871444U (en) Evaporation concentration system for salt-containing wastewater
JPS61141985A (en) Seawater desalting system
CN116059664B (en) evaporation concentration system
JP7540804B1 (en) Desalination and Salt Production Plant
CN113120983B (en) A method for steam injection boilers to separate water waste heat at high temperature to complete self-distillation and purification