[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6139507A - Neodymium-iron permanent magnet - Google Patents

Neodymium-iron permanent magnet

Info

Publication number
JPS6139507A
JPS6139507A JP59160409A JP16040984A JPS6139507A JP S6139507 A JPS6139507 A JP S6139507A JP 59160409 A JP59160409 A JP 59160409A JP 16040984 A JP16040984 A JP 16040984A JP S6139507 A JPS6139507 A JP S6139507A
Authority
JP
Japan
Prior art keywords
magnetic
neodymium
permanent magnet
magnetic field
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59160409A
Other languages
Japanese (ja)
Inventor
Yoshio Inokoshi
良夫 猪越
Moriyoshi Hata
畑 守中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP59160409A priority Critical patent/JPS6139507A/en
Publication of JPS6139507A publication Critical patent/JPS6139507A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance the Curie point of the titled permanent magnet without having substantial deterioration in the value of magnetic characteristics, especially in the density of residual magnetic flux, as well as to obtain the permanent magnet having excellent environmental temperature characteristics by a method wherein a magnetic anisotropic alloy consisting of neodymium, boron, germanium and iron of specific ratio, is used. CONSTITUTION:A composition consisting of 25-35wt% neodymium, 0.5-2.5wt% boron, 0.1-10wt% germanium and Fe of the remaining (provided that the impurities such as oxygen, nitrogen and the like are 200ppm or less) is weighed, and an ingot is formed in a high frequency melting furnace. Then, after the ingot is crushed using a jaw crusher, for example, it is coarsely pulverized using a disc mill, and the alloy powder of 3-5mu m in grain size is obtained using a ball mill. Then, the magnetic powder is molded in the magnetic field intensity of 10,000 oersted by applying pressure of 2 ton/cm<2> of a horizontal type magnetic field press (the applying directions of magnetic field and the direction of pressure of press are at right angle) for the purpose of giving orientational property to the magnetic powder. Besides, a heat treatment is performed in vacuum at 1,100 deg.C for 1hr for the purpose of accomplishing high density, cooled in the furnace, and an aging treatment is performed at 610 deg.C for the purpose of improving coercive force.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ネオジム−鉄−ボロン−ゲルシマニウム4元
系永久磁石に関するもので、時計、各種電気製品からコ
ンピューター周辺端末、プリンターに到るまで幅広い分
野で利用可能である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a neodymium-iron-boron-gersimanium quaternary permanent magnet, which can be used in a wide range of applications from watches and various electrical products to computer peripheral terminals and printers. available in the field.

〔従来の技術〕[Conventional technology]

従来、希土類−鉄系永久磁石合金は3元系までが発表報
告されており例えば特開昭59−46008号公開にこ
のような従来の系が示されている。
Hitherto, rare earth-iron permanent magnet alloys up to ternary systems have been published and reported, and such a conventional system is disclosed, for example, in Japanese Patent Application Laid-Open No. 59-46008.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のネオジム−鉄−ボロ23元系合金磁石は、高性能
化のためIFeを多量(60w t%以圭)含んでいる
が、反面キュリ一点が低くボロンを加えてせいぜい30
0℃前後で、実用に具する場合使用環境温度による表面
磁束密度の変化が大きく不安定であり1例えば高精度高
品質が要求される分野・時計のステッピングモーター等
には、使用が困難である0 本発明は、係る欠点を改善すべく、―気持性値、とりわ
け残留磁束密度の大きな低下はない上でかつキュリ一点
を向上さしめ、環境温度特性の優れた永久磁石を得るこ
とを目的としている。
Conventional neodymium-iron-boro 23-element alloy magnets contain a large amount of IFe (more than 60wt%) to improve performance, but on the other hand, the Curie point is low and only 30% IFe is added when boron is added.
When used in practical applications at around 0℃, the surface magnetic flux density changes greatly and is unstable depending on the operating environment temperature.1 For example, it is difficult to use in fields that require high precision and quality, such as stepping motors for watches. 0 In order to improve such drawbacks, the present invention aims to obtain a permanent magnet that does not significantly reduce the feelability value, especially the residual magnetic flux density, improves the Curie point, and has excellent environmental temperature characteristics. There is.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため、本発明は、希土類−遷移金
属間化合物において、キュリ一点を向上させ条有効な手
段として、添加元素による多元系化があることに鑑み、
ネオジム−鉄−ボロン3元系をベースに、多数の組I!
i、系を調製、試みた。
In order to solve the above-mentioned problems, the present invention takes into account that an effective means for improving the Curie point in rare earth-transition metal intermetal compounds is to use additive elements to create a multi-element system.
Based on the neodymium-iron-boron ternary system, many groups I!
i. A system was prepared and tried.

その結果、前述の第2、特許請求の範囲で示された組成
が、問題点を解決するための1つの方法であることを見
出したことに基く。尚、Geの10、 Ow t%以上
の添加は、大幅な磁束密度の低下を招くので、10.0
wt%以下に限定するO〔作用〕 一般に希土類−鉄系化合物において、例えばBのような
元素を添加するとyθ−Fe原子間距離が大きくなり、
キュリ一点が向上、安定化することが報告されている。
As a result, the present invention is based on the discovery that the composition indicated in the second claim described above is one method for solving the problem. Note that adding more than 10.0% of Ge causes a significant decrease in magnetic flux density.
O limited to wt% or less [effect] In general, in rare earth-iron compounds, when an element such as B is added, the yθ-Fe interatomic distance increases,
It has been reported that Curi's score is improved and stabilized.

(参考文猷、日本応用磁気学会主催、第35回研究会資
料) 本発明においても、Geを添加することにより、
キュリ一点向上に寄与する作用をもつと考えられる。
(Reference Bunyu, materials from the 35th research meeting sponsored by the Japanese Society of Applied Magnetics) Also in the present invention, by adding Ge,
It is thought to have the effect of contributing to an improvement in curri by one point.

〔実施例1〕 以下本発明の詳細な説明する。[Example 1] The present invention will be explained in detail below.

ネオジム33.5 w t%、ボロン1.3 w t%
、ゲルマニウムQ、 5 w t%、残Fe(ただし酸
素、窒素等の不純物は200ppm以下)の組成となる
様、秤量し、高周波溶解炉にてインゴットを調製する0
この後ショークラッシャーで1m角まで予備粉砕した後
・ディスクミルで50〜100μmまで粗く粉砕し、更
にボールミルで粒度3〜5μ情の合金粉末を得る。次に
本磁性粉末に配向性を付与させるため、横型磁界中プレ
ス(磁界の印加力向上プレスの圧力方向)で、1万エル
ステツドの磁界強度中で圧力2トン/−で成型する。更
に高密化を達成させる目的で、真空中で1100”0X
1Hの処理を施し炉冷した0また保磁力教養の為に次に
610℃で1時間時効処理を施した。
Neodymium 33.5 wt%, boron 1.3 wt%
, germanium Q, 5 wt%, residual Fe (however, impurities such as oxygen and nitrogen are 200 ppm or less), and an ingot is prepared in a high frequency melting furnace.
Thereafter, it is pre-pulverized to a size of 1 m square using a show crusher, coarsely crushed to a size of 50 to 100 μm using a disk mill, and then further crushed to a particle size of 3 to 5 μm using a ball mill to obtain alloy powder. Next, in order to impart orientation to the magnetic powder, it is molded using a horizontal magnetic field press (in the pressure direction of the press for increasing the applied force of the magnetic field) at a pressure of 2 tons/- in a magnetic field strength of 10,000 oersteds. For the purpose of achieving even higher density, 1100"0X in vacuum
The material was subjected to a 1H treatment and cooled in a furnace, and then an aging treatment was performed at 610° C. for 1 hour to develop the coercive force.

試料測定は、゛ブロックより切り出し、水平同軸補償4
πニーHコイルを用い測定した。
For sample measurement, cut out from the block and horizontal coaxial compensation 4
Measurement was performed using a π knee H coil.

以下結果を従来のGoが含まれていない3元系N d 
−F e −B系の場合と比較し第1表に示す。
The results are shown below for the conventional ternary system N d that does not contain Go.
A comparison with the case of -F e -B system is shown in Table 1.

第  1  表 従来の6元系と比較し残留磁束密度が小さな低下はある
もののキーリ一点が最大210℃も上昇したことが判明
できる0また最も使用されると考えられる環境温度域(
−20℃〜+80℃)における磁石裸体の表面磁束密度
への温度特性を添付図面に示す。この図より、Nd−F
e−B3元系永久磁石材料がGeを添加し4元系とする
ことにより初めて精密電子部品用磁石(例えば電子式腕
時計用ローター磁石)として使用可能となることが判る
Table 1: Although there is a small decrease in residual magnetic flux density compared to the conventional six-element system, it can be seen that the temperature at one point of Keeley has increased by up to 210℃.
The temperature characteristics of the surface magnetic flux density of the bare magnet body at temperatures ranging from -20°C to +80°C are shown in the attached drawings. From this figure, Nd-F
It can be seen that the e-B ternary permanent magnet material can be used as a magnet for precision electronic parts (for example, a rotor magnet for an electronic wristwatch) only by adding Ge to make it a quaternary permanent magnet material.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、従来の3元/A”d−P
θ−B系磁石は、その表面磁束密度が使用する環境温度
により大きく影響を受け、いわ噛る信頼性の欠ける磁石
であったが、Geを添加することにより大幅にキュリ一
点が改善され、従って温度特性の優れた磁石の提供か可
能となった゛・とりわけそのこと−は、表面磁束の精度
が強く要求される分野に対し工業的価値は大き′い。
As explained above, the present invention is based on the conventional ternary/A"dP
The surface magnetic flux density of θ-B magnets is greatly affected by the environmental temperature in which they are used, and they have been somewhat unreliable. However, by adding Ge, the Curie point has been significantly improved, and therefore The fact that it is now possible to provide magnets with excellent temperature characteristics is of great industrial value in fields where surface magnetic flux accuracy is strongly required.

【図面の簡単な説明】[Brief explanation of drawings]

図は、環境温度による本系磁石の表面磁束密度による影
響を示した図である〇 以上
The figure shows the influence of surface magnetic flux density of this system magnet due to environmental temperature.

Claims (1)

【特許請求の範囲】[Claims] ネオジム(Nd)25〜35wt%、ボロン(B)0.
5〜2.5wt%、ゲルマニウム(Ge)0.1〜10
.0wt%、残Feから構成される磁気異方性合金であ
ることを特徴とする永久磁石。
Neodymium (Nd) 25-35wt%, boron (B) 0.
5-2.5wt%, germanium (Ge) 0.1-10
.. A permanent magnet characterized by being a magnetically anisotropic alloy comprising 0 wt% of residual Fe.
JP59160409A 1984-07-30 1984-07-30 Neodymium-iron permanent magnet Pending JPS6139507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59160409A JPS6139507A (en) 1984-07-30 1984-07-30 Neodymium-iron permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59160409A JPS6139507A (en) 1984-07-30 1984-07-30 Neodymium-iron permanent magnet

Publications (1)

Publication Number Publication Date
JPS6139507A true JPS6139507A (en) 1986-02-25

Family

ID=15714310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59160409A Pending JPS6139507A (en) 1984-07-30 1984-07-30 Neodymium-iron permanent magnet

Country Status (1)

Country Link
JP (1) JPS6139507A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248981A2 (en) * 1986-06-12 1987-12-16 Kabushiki Kaisha Toshiba Permanent magnet and permanent magnetic alloy
EP0258609A2 (en) * 1986-07-23 1988-03-09 Hitachi Metals, Ltd. Permanent magnet with good thermal stability
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core
KR20220065674A (en) * 2020-11-13 2022-05-20 코마도 쏘시에떼 아노님 Corrosion-inhibiting protection for watch magnets, in particular neodymium-iron-boron magnets

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248981A2 (en) * 1986-06-12 1987-12-16 Kabushiki Kaisha Toshiba Permanent magnet and permanent magnetic alloy
EP0258609A2 (en) * 1986-07-23 1988-03-09 Hitachi Metals, Ltd. Permanent magnet with good thermal stability
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core
KR20220065674A (en) * 2020-11-13 2022-05-20 코마도 쏘시에떼 아노님 Corrosion-inhibiting protection for watch magnets, in particular neodymium-iron-boron magnets
JP2022078952A (en) * 2020-11-13 2022-05-25 コマディール・エス アー Anti-corrosion protection for portable timepiece magnets, in particular neodymium-iron-boron magnets
US12012651B2 (en) 2020-11-13 2024-06-18 Comadur Sa Corrosion-inhibiting protection for watch magnets, in particular neodymium-iron-boron magnets

Similar Documents

Publication Publication Date Title
Brown et al. Developments in the processing and properties of NdFeb-type permanent magnets
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPS60238447A (en) Permanent magnet containing rare earth element
JPS6139507A (en) Neodymium-iron permanent magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
JPS62241304A (en) Rare earth permanent magnet
JPS61245505A (en) Manufacture of rare-earth iron magnet
JPS61119651A (en) Rare earth element-iron type permanent magnet
JPS61195946A (en) Magnetic material and permanent magnet
JPS6139506A (en) Neodymium-iron permanent magnet
JPH0152469B2 (en)
JPS6318603A (en) Permanent magnet
JPS62164849A (en) Rare earth ferrous permanent magnet
JPS6179749A (en) Permanent magnet alloy
JPH0514020B2 (en)
JPH01238001A (en) Manufacture of rare earth permanent magnet
KR930008824B1 (en) Rhenium meterials of permanent magnet and making method thereof
JPS6196056A (en) Permanent magnet alloy
JPS62158852A (en) Permanent magnet material
JPH05112852A (en) Permanent magnet alloy
JPH023205A (en) Manufacture of permanent magnet
Burket et al. A Method of Magnetic Annealing of Vanadium Permendur‐Type Alloys
Banerjee et al. Small Angle X‐Ray Scattering from MnS in Silicon Steels
JPH07161515A (en) Rare earth permanent magnet material
JPS61166949A (en) Alloy for permanent magnet