[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6138181B2 - - Google Patents

Info

Publication number
JPS6138181B2
JPS6138181B2 JP53137801A JP13780178A JPS6138181B2 JP S6138181 B2 JPS6138181 B2 JP S6138181B2 JP 53137801 A JP53137801 A JP 53137801A JP 13780178 A JP13780178 A JP 13780178A JP S6138181 B2 JPS6138181 B2 JP S6138181B2
Authority
JP
Japan
Prior art keywords
diol
reaction
polyester
acid
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53137801A
Other languages
Japanese (ja)
Other versions
JPS5565224A (en
Inventor
Iwao Oomori
Kyoshi Murase
Yoshihisa Ogasawara
Hidemaro Tatemichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP13780178A priority Critical patent/JPS5565224A/en
Publication of JPS5565224A publication Critical patent/JPS5565224A/en
Publication of JPS6138181B2 publication Critical patent/JPS6138181B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は皮膚刺激性が䜎くか぀䜎粘床のポリ゚
ステルゞメタアクリレヌトの補造法を提䟛す
るものである。 ゞカルボン酞ずゞオヌルずアクリル酞ずからポ
リ゚ステルゞアクリレヌトを補造する合成法ずし
おは、ゞカルボン酞、ゞオヌルおよびアクリル酞
を䞀挙に反応させる䞀段法、あるいはゞカルボン
酞ずゞオヌルを反応させ、生成するポリ゚ステル
ゞオヌルをアクリル酞ず反応させる二段法が䞀般
に採甚される特公昭48―36956。これらの方法
においお取埗される生成物はいずれも決しお単䞀
化合物ではなく、以䞋の䞀般匏〔〕で瀺しうる
ような、分子量を異にする数皮のゞアクリレヌト
化合物がそれぞれある構成比率で存圚する混合物
である。 −−−−o 〔〕 アクリル酞残基 ゞカルボン酞残基 ゞオヌル残基 ポリ゚ステルゞオヌル骚栌の瞮合床。    生成物の平均分子量は、合成時のゞカルボン酞
ずゞオヌルの仕蟌モル比によ぀お調節が可胜であ
り、平均分子量は生成物の粘床に圱響するので、
仕蟌モル比の調節はポリ゚ステルゞアクリレヌト
補造䞊の重芁な芁玠ずなる。 このような合成法あるいは原料仕蟌モル比の差
が生成物にどんな圱響を䞎えるのか、この関係の
䞀䟋をゞカルボン酞ずしおフタル酞、ゞオヌルず
しおゞ゚チレングリコヌルを甚いた系に぀いお、
具䜓的に衚に瀺した。
The present invention provides a method for producing polyester di(meth)acrylate with low skin irritation and low viscosity. Synthesis methods for producing polyester diacrylate from dicarboxylic acid, diol, and acrylic acid include a one-step method in which dicarboxylic acid, diol, and acrylic acid are reacted all at once, or a method in which dicarboxylic acid and diol are reacted, and the resulting polyester diol is converted into acrylic acid. A two-step method of reacting with an acid is generally adopted (Special Publication No. 1973-36956). The products obtained by these methods are by no means a single compound, but several types of diacrylate compounds with different molecular weights each exist in a certain composition ratio, as shown by the following general formula [] It is a mixture. A-G(-B-G-) o A [] A: Acrylic acid residue B: Dicarboxylic acid residue G: Diol residue n: Degree of condensation of polyester diol skeleton. 0, 1, 2, 3... The average molecular weight of the product can be adjusted by the molar ratio of dicarboxylic acid and diol charged during synthesis, and the average molecular weight affects the viscosity of the product, so
Adjustment of the charging molar ratio is an important factor in producing polyester diacrylate. What kind of effect does such a difference in synthesis method or raw material molar ratio have on the product? An example of this relationship is a system using phthalic acid as the dicarboxylic acid and diethylene glycol as the diol.
Specific details are shown in Table 1.

【衚】 さお、このようにしお埗られた生成物は反応性
に富み、高沞点か぀䜎揮発生の化合物で無溶媒塗
料、むンキ、接着剀、架橋剀、さらに成型材料な
どの巟広い甚途が期埅され、たた利甚され埗るも
のであるが、䞊蚘した埓来の補法による生成物に
おいおは、䜎粘床のものは勿論比范的高粘床のも
のに至るたで、皮膚刺激性がた぀たくないずはい
えず、実甚䞊これを取扱う䜜業過皋で皮膚炎症な
どの健康障害をおこすずがあるずされおいる。 本発明者らはこの欠点を改良すべく鋭意怜蚎し
たずころ、生成物の分子量ず皮膚刺激性ずの間に
は、衚に瀺すごずき比范的良い盞関性があり、
䜎分子量化するに぀れお刺激性が著しく䞊昇する
ずの知芋を埗た。
[Table] The products obtained in this way are highly reactive, high boiling point, and low volatile compounds that have a wide range of uses, including solvent-free paints, inks, adhesives, crosslinking agents, and molding materials. Although this is expected and can be used, it cannot be said that the products produced by the conventional manufacturing methods mentioned above are free from skin irritation, not only those with low viscosity but also those with relatively high viscosity. It is said that the process of handling it in practice may cause health problems such as skin irritation. The inventors of the present invention conducted extensive studies to improve this drawback, and found that there is a relatively good correlation between the molecular weight of the product and the skin irritation, as shown in Table 2.
It was found that as the molecular weight decreases, the irritation level increases significantly.

【衚】【table】

【衚】 そこで衚の生成物を高速液䜓クロマトグラ
フにかけお第図に瀺す画分〜に分別し、そ
れぞれの画分および生成物A.B.C自䜓の皮膚刺激
性を調べた。その結果、䜎分子量ゞアクリレヌト
の画分に生成物それ自䜓ず同等以䞊
の皮膚刺激性があるこを認め、䞀方より高分子量
化ゞアクリレヌト≧の画分およびのそ
れは非垞に軜床であるこずを認識し、䜎分子量ゞ
アクリレヌトの画分が皮膚刺激性の決定芁玠ず
な぀おいるこずを知るに至぀た。䞊蚘生成物の
分別は、高速液䜓クロマトグラフ〔東掋曹達工業
(æ ª)補「HLC―807」を䜿甚。カラムTSK−GeI
G3000HGG2000HG、溶媒クロロホルム〕に
よ぀お行な぀た。 画分は以䞊のすべおの成分の混合物、
画分はの成分、画分はの成分を
瀺す。なおパタヌン䞭の成分は、NMR解析に
よれば非アクリレヌト化合物で、皮膚刺激性を瀺
さない䞍玔分である。 第図は第衚蚘茉の生物ず生成物
の画分およびの皮膚刺激性を瀺したも
のである。 䞊蚘の皮膚刺激性詊隓はザ・コンシナヌマヌ・
プロダクト・セヌフテむ・コミツシペン・オブ・
ザ・ナ・゚ス・むン・ザ・コヌド・オブ・プデ
ラル・レギナレヌシペンス。タむトル16、セクシ
ペン 1500.41The Consumer Product Safety
Commision of the U.S.A in the Code of
Federal RegulationsTitle 16
Section1500.41に埓぀たものであり、本発明に
おいお甚いる皮膚䞀次刺激指数ずは該詊隓方法に
よ぀お埗られるプラむマリヌ・むリテヌシペン・
むンデツクスPrimary irritation index―略
称P.I.I.―である。 この詊隓方法の詳现は䞋蚘のずおりである。す
なわち矀矜以䞊のバリカンで剪毛した癜りサ
ギを甚い、怜䜓0.5mlを個所に適甚する。りサ
ギは固定し、局所背郚の傍背柱郚に怜䜓をパ
ツチ匏で適甚し、盎ちにパツチ郚をふくめ胎䜓を
ゎム垃などのごき䞍䟵透性物質で24時間被芆す
る。 24時間埌にパツチを取り陀き、局所に珟われた
皮芙の反応を衚にしたが぀お採点する。りサギ
でそのたた攟眮し、72時間埌に再び皮膚の反応を
採点する。擊り傷を぀けた皮膚に぀いおも建康皮
膚ず同数適甚する。皮膚の擊り傷は角質局の剥離
にずどめ真皮にたで及んで出血を起したりしない
ように泚意する。24及び72時間の刀定は擊り傷を
぀けた皮膚に぀いおも行う。 健康皮膚及び擊り傷を぀けた皮膚の24及び72時
間の発赀ず痂皮圢成の倀及び氎疱圢党成の倀合
蚈個の倀を加え、さらにで割぀た倀を皮膚
䞀次刺激指数P.I.Iずし、P.I.I.が以䞋の時
はその怜䜓の皮膚䞀次刺激䜜甚は軜床ず刀定し、
〜の間では䞭等床、たた以䞊に時は匷い局
所刺激䜜甚を衚わすものず刀定する。
[Table] Therefore, Product A in Table 1 was subjected to high-performance liquid chromatography and fractionated into fractions 1 to 3 shown in Figure 1, and the skin irritation of each fraction and Product ABC itself was investigated. As a result, it was found that fraction 3 of low molecular weight diacrylates (n=0) had skin irritation comparable to or higher than the product itself, while fractions of higher molecular weight diacrylates (n≧1) and 3 I realized that it was very mild, and I came to know that Fraction 3, a low molecular weight diacrylate, is a determining factor in skin irritation. The above product A was fractionated using a high performance liquid chromatograph [Toyo Soda Kogyo Co., Ltd.
Uses "HLC-807" manufactured by Co., Ltd. Column; TSK-GeI
G3000HG+G2000HG, solvent: chloroform]. Fraction 1 is a mixture of all components with n=2 or more,
Fraction 2 shows the component with n=1, and fraction 3 shows the component with n=0. According to NMR analysis, component a in the pattern is a non-acrylate compound and is an impurity that does not cause skin irritation. FIG. 2 shows the skin irritation of organisms A, B, and C listed in Table 1 and fractions 1, 2, and 3 of product A. The above skin irritation test was conducted by The Consumer
Product Safety Commitment of
The U.S. in the Code of Federal Regulations. Title 16, Section 1500.41 (The Consumer Product Safety
Commission of the USA in the Code of
Federal Regulations, Title 16,
Section 1500.41), and the primary skin irritation index used in the present invention is the primary irritation index obtained by this test method.
This is the primary irritation index (abbreviated as PII). Details of this test method are as follows. That is, use 6 or more white rabbits in a group whose hair has been sheared with clippers, and apply 0.5 ml of the sample to one spot. The rabbit is immobilized, a patch is applied to the specimen locally (on the paradorsal region of the back), and the body, including the patch, is immediately covered with an impermeable material such as rubber cloth for 24 hours. After 24 hours, the patch is removed and the reaction of the locally appearing skin follicle is scored according to Table 1. Leave the rabbit alone and rescore the skin reaction 72 hours later. Apply the same amount to abraded skin as to Jiankang skin. Care should be taken to limit skin abrasions to exfoliation of the stratum corneum and not to extend to the dermis and cause bleeding. 24 and 72 hour determinations are also made on abraded skin. The 24- and 72-hour redness and crusting values and the total blister formation values for healthy skin and abraded skin (total of 8 values) are added, and the value is further divided by 4 to obtain the skin primary irritation index ( PII), and when PII is 2 or less, the primary skin irritation effect of the sample is judged to be mild.
A score of 2 to 5 is considered to be moderate, and a score of 6 or more is considered to indicate strong local irritation.

【衚】 本発明者らはかくのごずく、反応生成物の皮膚
刺激性は、これを構成する各皮ゞアクリレヌト成
分のうちの特にの成分によ぀お最も倧きく
支配されおいるこずを知るに至り、䜎刺激性化ず
いう目的を達成するための手段ずしお、このもの
の含有率がより少ない、理想的には存圚しない補
造法の確立に぀いお考慮するに及んだ。ずころで
前蚘した埓来の段法、段法の合成法を採甚し
おいたのでは、䜎皮膚刺激性の䞊、曎に䜎粘床の
ポリ゚ステルゞアクリレヌトの補造は䞍可胜で
る。 すなわち、生成物におけるの成分の含有
率を䞋げる為には、生成物の理論瞮合床を倧きく
する方向の原料モル比で合成する方法があるが、
この堎合は生成物の粘床が高くなり、逆に理論瞮
合床を小さくする原料モル比により合成すれば、
䜎粘床化はするが今床はの成分の含有率が
倧ずな぀お、皮膚刺激性を高めるずころずなるの
である。なお、理論瞮合床ず原料モル比の関係
は、理論瞮合床をずしたずき、ゞカルボン酞
無氎物モルゞオヌルモルずな
る。 かくしお、本発明は、䞊述の欠点を克服する改
良された補造法を提䟛するものであり、その基本
は前段のゞカルボン酞およびたたはその無氎物
をゞオヌル過剰䞋で゚ステル化し、続いお残䜙の
ゞオヌルを陀去するこずによ぀おポリ゚ステルゞ
オヌルを補造し、぀いでこれを反応溶媒共存䞋に
アクリレヌト化するずころにある。 本発明においおは、生成物の粘床を䜎いものず
するために、生成物䞭のポリ゚ステルゞアクリレ
ヌトをに集䞭させるこずを意図しおおり、
この理由から原料ゞオヌルの過剰䞋で、すなわち
ゞオヌルずゞカルボン酞およびたたはその無氎
物を、モル比が前者埌者なる条件䞋で゚ス
テル化しお、たずポリ゚ステルゞオヌルの分子量
分垃をに集䞭化させ、぀いで残䜙のゞオヌ
ルを陀去するこずによ぀おアクリレヌト化工皋に
おけるゞオヌルゞアクリレヌトの成分
の生成を抑制し、生成物䞭の含有量を著しく䜎䞋
させ、䜎粘床か぀䜎皮膚刺激性の目的を達成する
ものである。 以䞊においおはポリ゚ステルゞアクリレヌトに
関しお詳述したが、ポリ゚ステルゞメタクリレヌ
トにおいお、ゞアクリレヌト皋ではないにしおも
同様な問題があり、本発明によればその解決が可
胜である。 本発明においお甚いられるゞカルボン酞及びそ
の無氎物ずしおはコハク酞アゞピン酞セバシ
ン酞12―ドデカン酞フマル酞マレむ
ン酞むタコン酞メサコン酞シトラコン酞
ムコン酞フタル酞テトラヒドロフタル酞ヘ
キサヒドロフタル酞ハむミツク酞゚ンド酞
ヘツト酞など及びこれらの無氎物が奜たしく甚い
られる。 たたゞオヌルずしおぱチレングリコヌルゞ
゚チレングリコヌルトリ゚チレングリコヌル
テトラ゚チレングリコヌルプロピレングリコヌ
ルゞプロピレングリコヌルネオペンチルグリ
コヌル―ブタンゞオヌル―ヘキ
サンゞオヌル―ブタンゞオヌル
―ペンタンゞオヌルなどが奜たしく甚いられる。 本発明の反応方法ずしおは次の方法が奜たしく
甚いられる。 前段反応 撹拌機、枩床蚈およびコンデンサヌを備えた反
応噚にゞカルボン酞およびたたはその無氎物、
ゞオヌルならびに觊媒を仕蟌み、加熱する。゚ス
テル化は垞圧䞋、窒玠気流䞭にお行ない、反応で
生成する氎はコンデンサヌで冷华陀倖する。殆ん
ど氎が留出しなくな぀た時点特に奜たしくぱス
テル化率90以䞊を反応終点ずする。反応埌、残
留するゞオヌルを枛圧䞋で留去し、原料ゞオヌル
が殆んど残存しない、ポリ゚ステルゞオヌルを埗
る。 なお本反応は、埌蚘する脱氎共沞剀を兌ねた反
応溶媒の共存䞋においお実斜するこずも可胜であ
る。 本反応における原料の仕蟌み割合ずしおは、ゞ
オヌルの䜿甚量が過剰であるこず、すなわちゞカ
ルボン酞およびたたはその無氎物モルに察し
おモルを越えるゞオヌルを仕蟌むこずが必芁
で、䞡者の奜たしいモル比はゞカルボン酞およ
びたたはその無氎物ゞオヌル以䞊、
より奜たしくは〜10、より䞀局奜たしくは
・〜・の範囲である。これよりゞオ
ヌルの䜿甚量が少ない堎合には、ポリ゚ステルゞ
オヌルひいおはポリ゚ステルゞメタアクリレ
ヌトの分子量が倧きくなり、粘床の䞊昇を招く。
たたいたずらに倚くしおも䜎分子量化に察する効
果がうすく、脱アルコ―ル操䜜に負担がかかるこ
ずになる。 反応枩床は通垞のポリ゚ステル補造における゚
ステル化枩床たずえば150〜250℃の範囲の採甚が
可胜であり、奜もしくは原料ゞオヌルの沞点以䞋
さらに奜たしくは沞点より20℃乃至70℃皋床䜎い
枩床である。 觊媒は通垞の゚ステル化、゚ステル亀換およぎ
重瞮合觊媒を䜿甚するこずができ、それらは文献
〔たずえばベルリン垂、アカデミヌ出版瀟、1975
幎発行、・ルヌドノむツヒ ・Ludewig著”ポリ゚ステル繊維類”
Polyeterfasern104頁および113〜121頁参照〕
に蚘茉されおいるが、望たしいのは塩化亜鉛、塩
化スズ、塩化アルミニりム、塩化第二鉄、䞉フツ
化ホり玠等のルむス酞觊媒でる。 枛圧䞋におけるゞオヌルの留去枩床は、取埗す
べきポリ゚ステルゞオヌルの高分子量化を防止す
るために、゚ステル化枩床より䜎い枩床、望たし
くはこれより10℃乃至30℃皋床䜎い枩床ずするの
が良い。 埌段反応 撹拌機、枩床蚈および冷华噚付氎分離噚を備え
た反応噚に、前段反応で補造したポリ゚ステルゞ
オヌル、メタアクリル酞、通垞奜たしくは脱
氎共沞剀を兌ねた反応溶媒、酞性觊媒および重合
防止剀を仕蟌み加熱しお、アクリレヌト化を行な
う。アクリレヌト化は必芁に応じ分子状酞玠共存
䞋に実斜し、反応で生成する氎は反応溶媒ずの共
沞混合物ずしお系倖に陀去する。殆んど氎が留出
しなくな぀た時点奜たしくぱステル化率95以
䞊を反応終点ずする。 埗られた反応液を䞭和曎には氎掗するこずによ
぀お、䞍玔物の陀かれた溶媒局ずしお回収する。
䞭和氎掗された反応液は、溶媒を陀去するため枛
圧䞋に䜎枩でストリツピングし、かくしお䜎粘床
か぀䜎刺激性のポリ゚ステルゞメタアクリレ
ヌトを補造、取埗するこずができる。 本反応における原料の仕蟌み割合は、ポリ゚ス
テルゞオヌルモルに察しおメタアクリル酞
1.8〜2.8モルである。これよりメタアクリル
酞の䜿甚量が少ない堎合には、ポリ゚ステルゞ
メタアクリレヌトの高分子量化に぀ながり粘
床が高くなる。䞀方倚い堎合は未反応メタア
クリル酞分が倚くな぀お損倱分が増加する。 なお、ポリ゚ステルゞオヌルの分子量は無氎酢
酞ピリゞン法による氎酞基䟡の定量倀から、次
匏により算出が可胜である。 ポリ゚ステルゞオヌルの分子量×ポリ゚ステルゞオヌルの氎酞基䟡 反応枩床は80〜150℃皋床が奜たしく、たた垞
圧、枛圧、加圧䞋のいずれでも反応を行なうこず
ができる。反応溶媒はベンれントル゚ン、キシ
レン―ヘキサンシクロヘキサンメチルシ
クロヘキサン゚チルシクロヘキサンオクタ
ンメチルむ゜ブチルケトンゞむ゜プロピル゚
ヌテルなどの氎ず共沞混合物を぀くり氎ず実質的
に分離する有機溶媒が単独でたたは皮以䞊の混
合物ずしお䜿甚される。反応溶媒の䜿甚量は皮
類、反応枩床などによ぀お倉わるが、原則ずしお
反応液の10〜80重量の範囲で䜿甚される。 酞性觊媒の䟋ずしおは、硫酞、―トル゚ンス
ルホン酞ベンれンスルホン酞メタンスルホン
酞むオン亀換暹脂あるいはこれらの混合物が挙
げられ、ずくにスルホン酞系の觊媒なかんづく
―トル゚ンスルホン酞が奜たしい。䜿甚量は原料
ポリ゚ステルゞオヌルに察し奜たしくは〜20モ
ルに盞圓る範囲である。 重合防止剀はハむドロキノンメトキシハむド
ドロキノン―ベンゟキノン―ブチルカテ
コヌルプノチマゞンたたは塩化銅などの各皮
銅塩が䜿甚されるが、䜿甚量ずしおは甚いるメ
タアクリル酞に察し0.005〜重量、奜たし
くは0.01〜0.2重量の範囲である。 吹蟌む分子状酞玠は、反応液䞭ぞ现かく分散さ
せるず溶解し易く、重合防止効果も良くなる。反
応液に吹蟌む堎合、酞玠ガスそのものでも良いが
空気、空気―窒玠混合ガス、空気―炭酞ガス混合
物などの垌釈ガスを䜿甚するず、爆発などの危険
性が避けられる。 反応生成物の䞭和にはNaOHKOH
Na2CO3K2CO3Na2SO4などのアルカリ金属、
アルカリ土類金属の氎酞化物、炭酞塩あるいは硫
酞塩の‘〜10氎溶液が䜿甚される。反応液を
このようなアルカリ氎溶液ず混合撹拌するこずに
より酞性觊媒、未反応メタアクリル酞は䞭和
されお氎盞ぞ抜出陀去される。 氎掗には氎又はNaCINaSO4NH4CI
NH42SO4などの䞭性塩の氎溶液が䜿甚されこれ
によ぀お䞍玔分のほずんどが氎盞ぞ抜出陀去され
る。溶媒陀去は枛圧䞋においお90℃以䞋奜たしく
は70℃以䞋の䜎枩で自斜する。 本発明により補造されるポリ゚ステルゞメ
タアクリレヌトは重合性に富み、高沞点で䜎揮
発性の化合物であり、埓来の゚ステル化法によ぀
お埗られるポリ゚ステルゞメタアクリレヌト
ず同様に、ラゞカル重合觊媒により、たたは光開
始剀を甚いお掻性光線たずえば玫倖線を照射する
こずにより、あるいは電子線のごずき攟射線を照
射するこずによ぀お容易か぀速やかに重合し優れ
た物性の硬化物を䞎えるものであり無溶媒塗料
むンキ接着剀架橋剀成圢材料その他の広い
分野で、重合性材料ずしお賞甚されるものであ
る。しかし本発明で補造されるポリ゚ステルゞ
メタアクリレヌトは、䜎粘床で特に皮膚刺激
性が少ないずいう特長を持぀おおり、産業䞊の利
甚は極めお倧きい。 以䞋に実斜䟋を瀺しお本発明をさらに説明する
が、本発明はこれらによ぀お限定されるものでは
ない。 本発明においお゚ステル化率ずは「ゞカルボン
酞ずゞオヌル前段反応」あるいは「ポリ゚ス
テルゞオヌルずメタアクリル酞埌段反
応」の各々の脱氎反応においお、その時の脱氎
量から求めるこずが可胜で以䞋の匏から算出され
る。 ゚ステル化率 反応によ぀お生じた氎理論生成氎量
×100 なお、実斜䟋においおアクリル酞が䜿甚されお
いるが、それ以倖のメタクリル酞を甚いおも同様
の結果を埗るこずができる。 実斜䟋  前段反応ポリ゚ステルゞオヌルの補造。 撹拌機枩床蚈コンデンサヌおよびガス吹蟌
管を備えた四぀口フラスコに無氎フタル酞222
1.5―ペンタンゞオヌル624無氎フタル酞
に察する1.5―ペンタンゞオヌルの仕蟌モル比4.0
に盞圓および塩化亜鉛0.8を加えお昇枩溶解
埌、宀玠ガスを通気し぀぀撹拌し、液枩168〜179
℃で反応を行な぀た。反応によ぀お生成する氎は
コンデンサヌ郚で反応系倖にずり出した。理論倀
の94.5の生成氎25.5を留出させたずころ
時間埌で反応をずめた。反応液䞭に残存す
る1.5―ペンタンゞオヌルは150℃mmの条
件䞋で留去し、淡黄色のポリ゚ステルゞオヌル
480を埗た。このポリ゚ステルゞオヌル䞭の1.5
―ペンタンゞオヌル分は1.6であ぀た〔東掋曹
達工業(æ ª)補高速液䜓クロマトグラフ「HLC―
801A」により定量。カラムHSK Gel G3000H
G2000H溶媒テトラヒドロフラン〕。 又、平均分子量は416であ぀た無氎酢酞ピ
リゞン法による氎酞基䟡定量倀から算出。 埌段反応ポリ゚ステルゞアクリレヌトの補造。 撹拌機枩床蚈冷华噚付氎分離噚およびガス
吹蟌管を備えた四぀口フラスコに、前段で補造し
たポリ゚ステルゞオヌル416アクリル酞144
ポリ゚ステルゞオヌルに察するアクリル酞の仕
蟌モル比2.0に盞圓トル゚ン840、パラトル
゚ンスルホン酞17およびプノチアゞン0.042
を加え、空気窒玠混合ガス容積比1/3を
200mlminの割合で反応混合物䞭に通気し぀぀
撹拌し、液枩97〜108℃で反応を行な぀た。反応
に䌎ない生成し留出するトル゚ン―氎共沞混合物
は、氎分離噚で氎ずトル゚ンに分離し、氎は反応
系倖にずり出し、トル゚ンは反応系内に戻した。
理論倀の98.5の生成氎35.5を留出出させ
たずころ時間埌で反応をずめた。 反応液を冷华埌、の苛性゜ヌダ溶液250
で䞭和し、ひき぀づきの硫酞゜ヌダを含む氎
溶液430で掗぀た。 掗浄埌に埗たトル゚ン局にハむドロキノンモノ
メチル゚ヌテル0.25を添加しお50〜55℃mm
の条件䞋でトル゚ンを留去し、淡橙色のポリ
゚ステルゞアクリレヌト470を埗た。無氎フタ
ル酞に察する1.5―ペンタンゞオヌルの仕蟌みモ
ル比を倉えた以倖は同様にしお、前段反応および
埌段反応を行ない、合蚈皮類のポリ゚ステルゞ
アクリレヌトを埗た。 各ポリ゚スルゞアクリレヌトに぀いお構成々分
の含有比率を求め方法は衚のおよび
参照、たた既述した方法によ぀お皮膚刺激性を
調べた。 埗られたポリ゚ステルゞオヌル前段反応生成
物ならびにポリ゚ステルゞアクリレヌト埌段
反応生成物の物性は衚にたずめお瀺したずお
りであ぀た。これによれば圓該ポリ゚ステルゞア
クリレヌトはいずれも䜎刺激性ではあるが䜎粘床
化のためにはしかるべき無氎フタル酞ず1.5ペン
タンゞオヌルの仕蟌比率を必芁ずするこずが理解
される。
[Table] The present inventors have thus learned that the skin irritation of the reaction product is most significantly controlled by the n=0 component among the various diacrylate components that make up the reaction product. As a means to achieve the goal of making the product less irritating, we began to consider the establishment of a production method that would ideally contain less of this substance. By the way, if the conventional one-stage or two-stage synthesis methods described above are employed, it is impossible to produce a polyester diacrylate that is low in skin irritation and also has a low viscosity. In other words, in order to reduce the content of the n=0 component in the product, there is a method of synthesis using a raw material molar ratio that increases the theoretical degree of condensation of the product.
In this case, the viscosity of the product will be high, and if it is synthesized with a raw material molar ratio that reduces the theoretical degree of condensation,
Although the viscosity is lowered, the content of n=0 components increases, increasing skin irritation. The relationship between the theoretical degree of condensation and the raw material molar ratio is N moles of dicarboxylic acid (anhydride): N moles of diol (N+1), where N is the theoretical degree of condensation. The present invention thus provides an improved production process which overcomes the above-mentioned drawbacks, the basis of which is the esterification of the initial dicarboxylic acid and/or its anhydride in an excess of diol, followed by the esterification of the remaining diol. A polyester diol is produced by removing the polyester diol, which is then acrylated in the coexistence of a reaction solvent. In the present invention, in order to reduce the viscosity of the product, it is intended that the polyester diacrylate in the product is concentrated at n=1,
For this reason, the molecular weight distribution of the polyester diol is first adjusted to n=1 by esterifying the diol and dicarboxylic acid and/or its anhydride in an excess of raw material diol, that is, under conditions such that the molar ratio of the former/latter is >2. diol diacrylate (n=0 component) in the acrylation step by concentrating and then removing the remaining diol.
The purpose of this is to suppress the production of and significantly reduce the content in the product, achieving the objectives of low viscosity and low skin irritation. Although polyester diacrylate has been described in detail above, polyester dimethacrylate has similar problems, although not as bad as diacrylate, and the present invention can solve these problems. The dicarboxylic acids and their anhydrides used in the present invention include succinic acid, adipic acid, sebacic acid, 1,12-dodecanedioic acid, fumaric acid, maleic acid, itaconic acid, mesaconic acid, citraconic acid,
Muconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, hymic acid, endo acid,
Het's acid and the like and their anhydrides are preferably used. In addition, diols include ethylene glycol, diethylene glycol, triethylene glycol,
Tetraethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, 1,6-hexanediol, 1,4-butanediol, 1,5
-Pentanediol etc. are preferably used. The following method is preferably used as the reaction method of the present invention. Pre-stage reaction: dicarboxylic acid and/or its anhydride, in a reactor equipped with a stirrer, thermometer and condenser
Charge diol and catalyst and heat. Esterification is carried out under normal pressure in a nitrogen stream, and the water produced in the reaction is cooled and removed using a condenser. The reaction end point is when almost no water is distilled out, particularly when the esterification rate is 90% or more. After the reaction, the remaining diol is distilled off under reduced pressure to obtain a polyester diol in which almost no raw material diol remains. Note that this reaction can also be carried out in the presence of a reaction solvent that also serves as a dehydration entrainer, which will be described later. Regarding the charging ratio of raw materials in this reaction, it is necessary to use an excessive amount of diol, that is, it is necessary to charge more than 2 mol of diol per 1 mol of dicarboxylic acid and/or its anhydride, and the preferred molar ratio of both is The ratio is dicarboxylic acid and/or its anhydride: diol = 1:3 or more,
The ratio is more preferably 1:3 to 10, even more preferably 1:3.5 to 4.5. If the amount of diol used is smaller than this, the molecular weight of the polyester diol and eventually the polyester di(meth)acrylate will increase, leading to an increase in viscosity.
Moreover, even if the amount is increased excessively, the effect on lowering the molecular weight will be weak, and the dealcoholization operation will be burdensome. The reaction temperature can be the esterification temperature normally used in polyester production, for example in the range of 150 to 250°C, preferably below the boiling point of the raw material diol, more preferably about 20 to 70°C lower than the boiling point. Catalysts can be the customary esterification, transesterification and polycondensation catalysts, which are described in the literature [eg City of Berlin, Akademie Verlag, 1975
“Polyester Fibers” by H. Ludewig, published in 2007.
(Polyeterfasern) see pages 104 and 113-121]
preferred are Lewis acid catalysts such as zinc chloride, tin chloride, aluminum chloride, ferric chloride, and boron trifluoride. The temperature for distilling off the diol under reduced pressure is preferably lower than the esterification temperature, preferably about 10°C to 30°C lower than the esterification temperature, in order to prevent the polyester diol to be obtained from having a high molecular weight. Post-stage reaction: In a reactor equipped with a stirrer, a thermometer, and a water separator with a condenser, the polyester diol produced in the first-stage reaction, (meth)acrylic acid, a reaction solvent that usually preferably also serves as a dehydration entrainer, and an acidic A catalyst and a polymerization inhibitor are charged and heated to effect acrylation. Acrylation is carried out in the presence of molecular oxygen, if necessary, and water produced in the reaction is removed from the system as an azeotrope with the reaction solvent. The reaction end point is when almost no water is distilled out, preferably at an esterification rate of 95% or more. The resulting reaction solution is neutralized and further washed with water to recover a solvent layer free of impurities.
The reaction solution that has been neutralized and washed with water is stripped at a low temperature under reduced pressure to remove the solvent, thereby producing and obtaining polyester di(meth)acrylate with low viscosity and low irritation. The charging ratio of raw materials in this reaction is (meth)acrylic acid per mol of polyester diol.
It is 1.8-2.8 mol. If the amount of (meth)acrylic acid used is smaller than this, the molecular weight of the polyester di(meth)acrylate will increase and the viscosity will increase. On the other hand, if the amount is too large, the amount of unreacted (meth)acrylic acid increases and the loss increases. The molecular weight of the polyester diol can be calculated from the hydroxyl value determined by the acetic anhydride/pyridine method using the following formula. Molecular weight of polyester diol=1000×2/hydroxyl value of polyester diol (mep/g) The reaction temperature is preferably about 80 to 150°C, and the reaction can be carried out under normal pressure, reduced pressure, or increased pressure. Reaction solvents include benzene, toluene, xylene, n-hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, octane, methyl isobutyl ketone, diisopropyl ether, and other organic solvents that form an azeotrope with water and are substantially separated from water. Or used as a mixture of two or more. The amount of reaction solvent used varies depending on the type, reaction temperature, etc., but as a general rule, it is used in the range of 10 to 80% by weight of the reaction solution. Examples of acidic catalysts include sulfuric acid, P-toluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, ion exchange resins, or mixtures thereof, especially sulfonic acid catalysts, especially P-toluenesulfonic acid.
-Toluenesulfonic acid is preferred. The amount used is preferably in the range of 4 to 20 mol % based on the raw material polyester diol. Various copper salts such as hydroquinone, methoxyhydroquinone, P-benzoquinone, t-butylcatechol, phenothymazine, or copper chloride are used as polymerization inhibitors, and the amount used is 0.005 to 1 per (meth)acrylic acid used. % by weight, preferably in the range 0.01-0.2% by weight. If the molecular oxygen to be blown into the reaction solution is finely dispersed, it will be easily dissolved and the polymerization prevention effect will be improved. When injecting into the reaction solution, oxygen gas itself may be used, but dangers such as explosions can be avoided by using a diluent gas such as air, an air-nitrogen mixture, or an air-carbon dioxide mixture. NaOH, KOH,
Alkali metals such as Na 2 CO 3 , K 2 CO 3 , Na 2 SO 4 ,
A 1-10% aqueous solution of alkaline earth metal hydroxide, carbonate or sulfate is used. By mixing and stirring the reaction solution with such an aqueous alkaline solution, the acidic catalyst and unreacted (meth)acrylic acid are neutralized and extracted and removed into the aqueous phase. For washing, use water or NaCI, NaSO 4 , NH 4 CI,
An aqueous solution of a neutral salt such as (NH 4 ) 2 SO 4 is used, which extracts most of the impurities into the aqueous phase. Solvent removal is carried out under reduced pressure at a low temperature of 90°C or lower, preferably 70°C or lower. The polyester di(meth)acrylate produced by the present invention is a highly polymerizable compound with a high boiling point and low volatility, and like the polyester di(meth)acrylate obtained by the conventional esterification method, it is free from radical It can be easily and quickly polymerized to give a cured product with excellent physical properties by using a polymerization catalyst or by irradiating active light such as ultraviolet rays using a photoinitiator, or by irradiating radiation such as electron beam. Yes, solvent-free paint,
It is used as a polymerizable material in a wide range of fields such as inks, adhesives, crosslinking agents, molding materials, and others. However, the polyester di(meth)acrylate produced by the present invention has the characteristics of low viscosity and low skin irritation, and has extremely large industrial applications. The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto. In the present invention, the esterification rate can be determined from the amount of dehydration at that time in each dehydration reaction of "dicarboxylic acid and diol (first stage reaction)" or "polyester diol and (meth)acrylic acid (second stage reaction)". It is calculated from the following formula. Esterification rate (%) = Water produced by reaction (g) / Theoretical amount of water produced (g
)×100 Although acrylic acid is used in the examples, similar results can be obtained using other methacrylic acids. Example 1 First stage reaction: Production of polyester diol. Phthalic anhydride 222 in a four-necked flask equipped with a stirrer, thermometer, condenser and gas inlet tube.
g, 1.5-pentanediol 624 g (molar ratio of 1.5-pentanediol to phthalic anhydride 4.0)
) and 0.8 g of zinc chloride were added and dissolved at elevated temperatures, then stirred while ventilating nitrogen gas to bring the liquid temperature to 168-179.
The reaction was carried out at ℃. Water produced by the reaction was taken out of the reaction system in a condenser section. The reaction was stopped when water (25.5 g) containing 94.5% of the theoretical value was distilled off (after 7 hours). The 1.5-pentanediol remaining in the reaction solution was distilled off under the conditions of 150°C and 3 mmHg, and a pale yellow polyester diol was obtained.
Obtained 480g. 1.5 in this polyester diol
- Pentanediol content was 1.6% [High performance liquid chromatograph "HLC" manufactured by Toyo Soda Kogyo Co., Ltd.]
801A”. Column: HSK Gel G3000H
+G2000H, solvent: tetrahydrofuran]. The average molecular weight was 416 (calculated from the hydroxyl value determined by the acetic anhydride/pyridine method). Post-stage reaction: Production of polyester diacrylate. In a four-necked flask equipped with a stirrer, a thermometer, a water separator with a condenser, and a gas blowing tube, add 416 g of polyester diol produced in the previous step and 144 g of acrylic acid.
(equivalent to a charging molar ratio of acrylic acid to polyester diol of 2.0), 840 g of toluene, 17 g of para-toluenesulfonic acid, and 0.042 g of phenothiazine.
g and air/nitrogen mixed gas (volume ratio 1/3).
The reaction mixture was stirred while aerating the mixture at a rate of 200 ml/min, and the reaction was carried out at a liquid temperature of 97 to 108°C. The toluene-water azeotrope produced and distilled during the reaction was separated into water and toluene in a water separator, the water was taken out of the reaction system, and the toluene was returned to the reaction system.
The reaction was stopped when water (35.5 g) containing 98.5% of the theoretical value was distilled off (after 2 hours). After cooling the reaction solution, add 250g of 5% caustic soda solution.
It was then washed with 430 g of an aqueous solution containing 7% sodium sulfate. 0.25 g of hydroquinone monomethyl ether was added to the toluene layer obtained after washing, and the mixture was heated to 3 mm at 50 to 55°C.
Toluene was distilled off under Hg conditions to obtain 470 g of pale orange polyester diacrylate. The first and second reactions were carried out in the same manner except that the molar ratio of 1.5-pentanediol to phthalic anhydride was changed to obtain a total of four types of polyester diacrylates. The content ratio of the constituent components of each polyester diacrylate was determined (methods are *4 and *5 in Table 1).
), and skin irritation was also investigated using the method described above. The physical properties of the obtained polyester diol (first stage reaction product) and polyester diacrylate (second stage reaction product) were as summarized in Table 4. According to this, it is understood that although all of the polyester diacrylates are hypoallergenic, an appropriate charging ratio of phthalic anhydride and 1.5 pentanediol is required in order to lower the viscosity.

【衚】 実斜䟋 〜 ゞカルボン酞ずゞオヌルの組合せを倉曎した他
は実斜䟋ず同様の方法ただし実斜䟋および
は、空気宀玠混合ガスを通気せずで、前段
反応および埌段反応ず詊隓を行ない、衚に瀺す
ずりの䜎粘床でか぀䜎皮膚刺激性のポリ゚ステル
ゞアクリレヌトを埗た。なお前段反応における原
料モル比は、ゞカルボン酞ゞオヌルず
した。
[Table] Examples 2 to 5 The first stage reaction was carried out in the same manner as in Example 1 except that the combination of dicarboxylic acid and diol was changed (however, in Examples 2 and 4, the air/room nitrogen mixed gas was not vented). Subsequent reactions and tests were conducted to obtain polyester diacrylates with low viscosity and low skin irritation shown in Table 5. The molar ratio of raw materials in the first reaction was dicarboxylic acid:diol=1:4.

【衚】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第図は衚蚘茉の生成物を高速液䜓クロマ
トグラフにかけお分別したずきの溶出パタヌンを
瀺す図であり、第図は衚蚘茉の生成物
および生成物から分別された各区分の皮
膚刺激性を瀺す図である。
Figure 1 is a diagram showing the elution pattern when product A listed in Table 1 was fractionated by high performance liquid chromatography, and Figure 2 is a diagram showing the elution pattern of product A listed in Table 1,
FIG. 3 is a diagram showing the skin irritation of each category separated from B, C and product A.

Claims (1)

【特蚱請求の範囲】[Claims]  ゞオヌルずゞカルボン酞およびたたはその
無氎物を、モル比が前者埌者なる条件䞋で
゚ステル化させた埌、未反応ゞオヌルを陀去する
こずによりポリ゚ステルゞオヌルを埗、぀いでポ
リ゚ステルゞオヌルをそのモルあたり1.8〜2.8
モルのアクリル酞およびたたはメタクリル酞ず
溶媒の存圚䞋に反応させるこずを特城ずするポリ
゚ステルゞメタアクリレヌトの補造方法。
1. After esterifying a diol and a dicarboxylic acid and/or its anhydride under conditions such that the molar ratio of the former/latter is >2, a polyester diol is obtained by removing unreacted diol, and then the polyester diol is 1.8-2.8 per mole
1. A method for producing polyester di(meth)acrylate, which comprises reacting a molar amount of acrylic acid and/or methacrylic acid in the presence of a solvent.
JP13780178A 1978-11-10 1978-11-10 Production of polyester di(meth)acrylate Granted JPS5565224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13780178A JPS5565224A (en) 1978-11-10 1978-11-10 Production of polyester di(meth)acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13780178A JPS5565224A (en) 1978-11-10 1978-11-10 Production of polyester di(meth)acrylate

Publications (2)

Publication Number Publication Date
JPS5565224A JPS5565224A (en) 1980-05-16
JPS6138181B2 true JPS6138181B2 (en) 1986-08-28

Family

ID=15207159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13780178A Granted JPS5565224A (en) 1978-11-10 1978-11-10 Production of polyester di(meth)acrylate

Country Status (1)

Country Link
JP (1) JPS5565224A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130273A (en) * 1980-03-19 1981-10-13 Nippon Steel Corp Manufacture of precoated steel plate
JP4225599B2 (en) * 1998-03-09 2009-02-18 スリヌ゚ム カンパニヌ Image display sheet and image display system
DE10208211A1 (en) 2002-02-26 2003-09-11 Mnemoscience Gmbh Polymer networks
ITMI20080507A1 (en) * 2008-03-26 2009-09-27 Novamont Spa BIODEGRADABLE POLYESTER, ITS PREPARATION PROCESS AND PRODUCTS INCLUDING THE POLYESTER.
CN102134311B (en) * 2011-01-04 2013-02-06 南京工䞚倧孊 Preparation method of terpene polyester acrylate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461294A (en) * 1977-10-26 1979-05-17 Ube Ind Ltd Production of oligoestr acrylate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461294A (en) * 1977-10-26 1979-05-17 Ube Ind Ltd Production of oligoestr acrylate

Also Published As

Publication number Publication date
JPS5565224A (en) 1980-05-16

Similar Documents

Publication Publication Date Title
US5543557A (en) Acrylate monomer having a reduced primary irritation index and a method of making same
JPS6138181B2 (en)
US6153788A (en) Process for preparing esters of ethylenically unsaturated carboxylic acids
JPH06219991A (en) Production of polyfunctional @(3754/24)meth)acrylate
EP0087580B1 (en) di(meth)acrylate esters and process for producing the same
US5268489A (en) Production of unsaturated cycloaliphatic esters and derivatives thereof
CA1189869A (en) Acetal glycol diacrylates and process for producing them
JPS6281378A (en) Acrylate compound and production thereof
JPH032143B2 (en)
JPH0681782B2 (en) Method for producing polyester poly (meth) acrylate
JPH07126214A (en) Production of 4-hydroxybutyl acrylate
JPH10259202A (en) Production of (meth) acrylic ester of cyclodextrin and (meth)acrylic ester of cyclodextrin
JPH08217726A (en) Production of pentaerythritol (meth)acrylic ester
JPH0641283A (en) Production of unsaturated polyester oligomer
JPS6043853B2 (en) Production method of low skin irritation oligomer
JPH06172262A (en) Production of lactone-modified acrylic acid ester or methacrylic acid ester
JPH04134049A (en) Production of pentaerythritol tetraester
US3715394A (en) Process for the preparation of lactic acid
JPS6121461B2 (en)
JPS59161382A (en) Spiro-orthocarbonate compound
Yoshihara et al. Asymmetric induction in free radical addition of thiols to l-menthyl crotonate.
JPH0797351A (en) Novel (meth)acrylate compound and its production
JPS6233135A (en) Novel(meth)acrylate and production thereof
JPH0368870B2 (en)
JPH0366643A (en) Diluent for radiation curing resin