JPS613804A - Raw material sheet for sintered metallic body and its production - Google Patents
Raw material sheet for sintered metallic body and its productionInfo
- Publication number
- JPS613804A JPS613804A JP12548184A JP12548184A JPS613804A JP S613804 A JPS613804 A JP S613804A JP 12548184 A JP12548184 A JP 12548184A JP 12548184 A JP12548184 A JP 12548184A JP S613804 A JPS613804 A JP S613804A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- material sheet
- sintered body
- sheet
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
A1発明の目的
(1)産業上の利用分野
本発明は金属焼結体用原料シートおよびその製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION A1 Object of the Invention (1) Field of Industrial Application The present invention relates to a raw material sheet for metal sintered bodies and a method for producing the same.
(2)従来の技術
本出願人は、先に焼結性金属粉末と合成樹脂バインダと
の混練物より得られる金属焼結体用原料シートを金属製
ベース材に貼着し、その原料シートを所定の形状に成形
した後成形体に焼結処理を施して焼結体を得ると同時に
その焼結体をベース材に溶着する技術を提案している。(2) Prior art The applicant first attached a raw material sheet for a metal sintered body obtained from a kneaded mixture of sinterable metal powder and a synthetic resin binder to a metal base material, and then attached the raw material sheet to a metal base material. We have proposed a technique in which a sintered body is obtained by sintering the molded body after being formed into a predetermined shape, and at the same time, the sintered body is welded to a base material.
(3)発明が解決しようとする問題点
上記原料シートにおいては、それをベース材に貼着する
際の取扱い性等を考慮して金属粉末に対し1〜10重量
%の合成樹脂バインダを混入しているので、バインダ使
用量が多い。このバインダは焼結工程において熱分解さ
れてガス化し焼結体より除去されるが、バインダ使用量
が多いと、その分焼結体の気孔率が高くなるため強度上
好ましくない。(3) Problems to be solved by the invention In the above-mentioned raw material sheet, 1 to 10% by weight of a synthetic resin binder is mixed with the metal powder in consideration of ease of handling when pasting it to a base material. Because of this, a large amount of binder is used. This binder is thermally decomposed, gasified, and removed from the sintered body in the sintering process, but if the amount of binder used is large, the porosity of the sintered body increases accordingly, which is not preferable in terms of strength.
本発明ば」−記に鑑み、バインダ使用量を減少し得るよ
うにした前記原料シートおよびその製造方法を提供する
ことを目的とする。In view of the above, an object of the present invention is to provide the raw material sheet and a method for manufacturing the same, which can reduce the amount of binder used.
B1発明の構成
(])問題点を解決するための手段
本発明に係る金属焼結体用原料シートは、焼結性金属粉
末と合成樹脂バインダとの混練物より得られるシート状
物内に、柔軟性を有する細線状補強体を分散させズ埋設
したことを特徴とする。B1 Structure of the Invention (]) Means for Solving the Problems The raw material sheet for metal sintered bodies according to the present invention contains, in a sheet-like material obtained from a kneaded product of sinterable metal powder and a synthetic resin binder, It is characterized by having thin, flexible reinforcing bodies dispersed and buried in holes.
また本発明に係る金属焼結体用原料シートの製造方法は
、焼結性金属粉末と合成樹脂バインダとの混練物より2
枚のシート状物を得る工程と、前記両シート物を、それ
らの間に柔軟性を有する細線状補強体を分散挟入させて
貼合せる工程とを用いることを特徴とする。In addition, the method for producing a raw material sheet for a metal sintered body according to the present invention includes a method for producing a raw material sheet for a metal sintered body from a kneaded product of a sinterable metal powder and a synthetic resin binder.
It is characterized by using a step of obtaining two sheet-like objects, and a step of bonding the two sheet objects together by interposing thin, flexible reinforcing bodies in a dispersed manner between them.
(2)作 用
前記原料シートは、柔軟性を有する細線状補強体を分散
させて埋設しているので、取扱い性、耐ひび割れ性およ
びなじみ性が良好で、それらの性質は合成樹脂バインダ
の使用量を従来のものの半分に減らしても何ら損なわれ
ることがない。(2) Function The raw material sheet has flexible fine wire reinforcing bodies dispersed and buried therein, so it has good handling properties, crack resistance, and conformability, and these properties are improved by the use of a synthetic resin binder. Even if the amount is reduced to half of the conventional one, there will be no loss.
また前記原料シートは、2枚のシート状物間に前記細線
状補強体を分散挟入させて両シート状物を貼合せること
により得られるので、製造作業が極めて容易である。Moreover, since the raw material sheet is obtained by dispersing and inserting the thin linear reinforcing body between two sheet-like materials and bonding the two sheet-like materials together, the manufacturing operation is extremely easy.
(3)実施例
本発明において用いられる柔軟性を有する細線状補強体
としては、ステンレス繊維等の金属繊維、炭素繊維、合
成樹脂製細線、銅等の金属製細線等が該当し、それらは
線状のまま、または網状に編成して使用される。(3) Examples Examples of flexible thin wire reinforcing bodies used in the present invention include metal fibers such as stainless steel fibers, carbon fibers, thin wires made of synthetic resin, thin wires made of metal such as copper, etc. It can be used as is or organized into a net.
第1図は原料シートStを示し、それは焼結性金属粉末
と合成樹脂バインダとを混練して得られるシート状物S
o内に、細線状補強体Rを網状に編成して埋設したもの
である。FIG. 1 shows a raw material sheet St, which is a sheet material S obtained by kneading sinterable metal powder and a synthetic resin binder.
The thin wire reinforcing bodies R are knitted into a net shape and buried in the inside.
上記原料シー+−Stは以下に述べる手法により製造さ
れる。The raw material Sea+-St is produced by the method described below.
Ni自溶性合金粉末 80重量%と、Mo粉砕粉末 2
0重量%とを■−ブレンダにより十分に混合し゛ζ混合
粉末を得、また四フッ化エチレン樹脂エマルジ9ンとア
クリル樹脂エマルジョンを1:1に混合して合成樹脂バ
インダを得る。Ni self-fusing alloy powder 80% by weight and Mo pulverized powder 2
0% by weight are sufficiently mixed in a blender to obtain a mixed powder, and a synthetic resin binder is obtained by mixing a tetrafluoroethylene resin emulsion and an acrylic resin emulsion at a ratio of 1:1.
上記混合粉末に対し合成樹脂バインダ1.6重量%を添
加して卓上ニーダにより十分に混練し、この混練物を1
00〜150℃に加熱して合成樹脂バインダ中の水分を
蒸発させる。得られた混練物の性状は、合成樹脂バイン
ダにより粘結されて無数の団塊状を呈する。Add 1.6% by weight of a synthetic resin binder to the above mixed powder and thoroughly knead it using a bench kneader.
The water in the synthetic resin binder is evaporated by heating to 00 to 150°C. The obtained kneaded product has a shape of numerous nodules due to being caked by the synthetic resin binder.
上記混練物を80〜100℃に加熱してロール機に複数
回通しW−a ]、 6 tarのシート状物を得る。The above-mentioned kneaded material is heated to 80 to 100[deg.] C. and passed through a roll machine multiple times to obtain a 6 tar sheet-like material.
この場合ロール機のロールを混練物と同程度に加熱する
とシート成形作業が容易に行われる。In this case, if the rolls of the roll machine are heated to the same degree as the kneaded material, the sheet forming operation can be easily performed.
前記シー]状物を2枚に切断し、第2図に示すようにそ
れらシート状物S+、Sz間に細線状補強体Rとして炭
素繊維を綱状に編成したものを挟入し、それらをロール
機Mに通して両シート状物SI+32を貼合せる。The sheet material was cut into two pieces, and as shown in FIG. Both sheet materials SI+32 are pasted together through a roll machine M.
上記工程を経て厚さ3.0fiの原料シートSLを得る
。このように細線状補強体Rを網状に編成すると、その
取扱い性が良好であるから原料シートStの製造が容易
に行われ、また原料シー)Stにおいて細線状補強体R
が均一に分散されるので全体に亘ってなじみ性の平均化
された原料シートStを得ることができる。従来、この
原料シートと同一厚さを有する原料シートを製造する場
合は合成樹脂バインダを混合粉末に対して3重量%程度
添加しているが、本発明においてはバインダ使用量を略
半分にすることができる。Through the above steps, a raw material sheet SL having a thickness of 3.0 fi is obtained. When the fine wire reinforcements R are knitted in a net shape in this way, the handling properties are good, so the production of the raw material sheet St can be carried out easily, and the fine wire reinforcements R are knitted in the raw material sheet St.
is uniformly dispersed, so it is possible to obtain a raw material sheet St with uniform compatibility throughout. Conventionally, when producing a raw material sheet having the same thickness as this raw material sheet, approximately 3% by weight of a synthetic resin binder is added to the mixed powder, but in the present invention, the amount of binder used is approximately halved. I can do it.
次に第3.第4図を参照しながら上記原料シートstを
用いたプレス用金型の製造方法について説明する。Next, the third. A method for manufacturing a press mold using the raw material sheet st will be described with reference to FIG. 4.
第3図(a)に示すように、ベース材1は鋳鋼(、Jr
s 5csG材)より鋳造されたもので、そのワーク
成形部を形成するベース面1aは完成された金型におけ
るワーク成形部外面(鎖線示)よりも5〜20寵低くな
るように成形されている。As shown in FIG. 3(a), the base material 1 is cast steel (Jr.
The base surface 1a forming the workpiece molding part is formed to be 5 to 20 centimeters lower than the outer surface of the workpiece molding part (indicated by chain lines) in the completed mold. .
ベース材1は鋳放しのまま使用されるも・ので、その黒
皮を持つベース面1aには清掃後アクリル樹脂接着剤を
塗布する。、
第3図(b)に示すように、ベース面1aに原料シート
stを積層して貼着し、合成樹脂製成形型MOにより積
層原料シートStを押圧してワーク成形部を成形する。Since the base material 1 is used as-cast, an acrylic resin adhesive is applied to the base surface 1a having a black crust after cleaning. As shown in FIG. 3(b), the raw material sheets st are laminated and pasted on the base surface 1a, and the laminated raw material sheets St are pressed by a synthetic resin mold MO to form a workpiece molding part.
=に記原料シートStの貼着作業は、そのシート3tの
取扱い性およびなじみ性が良好であるから容易に行われ
、また原料シートS口ま耐ひび割れ性に優れているので
成形後のシート面は平滑である。The work of pasting the raw material sheet St described in = is easy because the sheet 3t has good handling and conformability, and the raw material sheet S has excellent crack resistance, so the sheet surface after molding is is smooth.
第3図<c>に示すように、ベース材1を容器2に収容
し、積層原料シートStの表面をセラミック粉末で覆い
、容器2内に直径0.7.5nの鋼球3を流込んでバン
クアップを行う。この鋼球3の重さにより後述するNi
自溶性合金−MO粉末の焼結時焼結体の寸法変化、即ち
膨張を抑制するものである。As shown in FIG. 3<c>, the base material 1 is placed in a container 2, the surface of the laminated raw material sheet St is covered with ceramic powder, and a steel ball 3 with a diameter of 0.7.5n is poured into the container 2. Perform bank up with . Depending on the weight of this steel ball 3, Ni
This suppresses the dimensional change, that is, expansion, of the sintered body during sintering of the self-fusing alloy-MO powder.
次いで、容器2を真空焼結炉4に設置して第4図に示す
加熱−冷却条件で有機物質の分解と金属粉末の焼結を行
う。キャリヤガスは窒素ガスまたは還元性の強い水素ガ
スが用いられる。Next, the container 2 is placed in a vacuum sintering furnace 4, and the organic substance is decomposed and the metal powder is sintered under the heating-cooling conditions shown in FIG. As the carrier gas, nitrogen gas or highly reducing hydrogen gas is used.
(A)第1加熱ゾーン(第4図A)
この加熱ゾーンAは常温から650℃までであり、昇温
速度は10〜b
熱ゾーンAでは先ず水分が蒸発し、次いで合成樹脂バイ
ンダ中の四フフ化エチレン樹脂およびアクリル樹脂が分
解してガス化する。これら合成樹脂は300〜400℃
でガス化するが、熱伝導を考慮して600〜650℃に
90分間均熱保持して殆どの有機物質を除去し、Ni自
溶性合金−Mo粉末体を残置する。この有機物質のガス
化を真空焼結炉4内の真空度の変化により説明すると、
常温ではI TOrrであるが、650℃で90分間均
熱保持したときは最高2 ’l”orrに真空度が低下
する。これは主として有機物質の分解ガスの生成による
。そして90分を経過した後は真空度は再びITorr
に上昇するもので、これは真空焼結炉4内より分解ガス
が除去されたごとを意味する。(A) First heating zone (Fig. 4A) This heating zone A is from room temperature to 650°C, and the temperature increase rate is 10~b. In the heating zone A, water first evaporates, then the four Fufluorinated ethylene resin and acrylic resin decompose and gasify. These synthetic resins have a temperature of 300 to 400℃
However, in consideration of heat conduction, most of the organic substances are removed by soaking at 600 to 650° C. for 90 minutes, and the Ni self-soluble alloy-Mo powder remains. The gasification of this organic substance can be explained by the change in the degree of vacuum inside the vacuum sintering furnace 4.
At room temperature, it is I TOrr, but when soaked at 650°C for 90 minutes, the degree of vacuum decreases to a maximum of 2'l''orr. This is mainly due to the generation of decomposed gas of organic substances. After that, the vacuum level is set to ITorr again.
This means that the cracked gas is removed from the vacuum sintering furnace 4.
(B)第2加熱ゾーン(第4図B)
この加熱ゾーンBは900〜1000℃の範囲であり、
Ni自溶性合金−Mo粉末体をNi自溶性合金の固相線
(1010〜1020℃)以下の温度、例えば950℃
に30分間均熱保持して固相焼結処理を施し、これを仮
焼結する。第1加熱ゾーン八からの昇温速度は10〜b
る。(B) Second heating zone (Fig. 4B) This heating zone B is in the range of 900 to 1000°C,
Ni self-fusing alloy-Mo powder body is heated at a temperature below the solidus line (1010 to 1020°C) of the Ni self-fusing alloy, for example 950°C.
A solid phase sintering process is performed by soaking and holding for 30 minutes, and this is pre-sintered. The temperature increase rate from the first heating zone 8 is 10~b.
真空焼結炉4内のNi自溶性合金−Mo粉末体は、その
表面から加熱されて昇温するので、粉末体全体が均一温
度に達するまでは所定の加熱時間が必要である。若し焼
結温度である1000〜1200℃にいきなり加熱する
とNi自溶性合金−Mo粉末体の表面部分とベース面に
接する部分との間に温度差ができて、気孔率のばらつき
が多くなり均一な焼結体が得られないだけでなく、焼結
後クラック等の欠陥を生じ易くなる。Since the Ni self-fusing alloy-Mo powder body in the vacuum sintering furnace 4 is heated from its surface and increases in temperature, a predetermined heating time is required until the entire powder body reaches a uniform temperature. If it is suddenly heated to the sintering temperature of 1000-1200℃, a temperature difference will be created between the surface part of the Ni self-fusing alloy-Mo powder and the part in contact with the base surface, which will increase the variation in porosity and make it uniform. Not only is it impossible to obtain a sintered body, but also defects such as cracks are likely to occur after sintering.
第2加熱ゾーンBでは未分解の有機物質が完全にガス化
して除去される。このガス化等により真空焼結炉4内の
真空度は一時的に4 Torrに低下するが30分経
過後にはI Torrに復帰する。In the second heating zone B, undecomposed organic substances are completely gasified and removed. Due to this gasification, etc., the degree of vacuum in the vacuum sintering furnace 4 temporarily decreases to 4 Torr, but returns to I Torr after 30 minutes.
(C>第3加熱ゾーン(第4図C)
この加熱ゾーンCは、Ni自溶性合金の固相線(101
0〜1020℃)直下から液相線(1075〜1085
℃)を越える温度、即ち1000〜1200℃の範囲で
あり、Ni自溶性合金−Mo仮焼結体を、例えば液相線
を越える温度である1100〜1180℃、好ましくは
1160℃に120分間恒温保持してNi自溶性合金の
溶融により液相焼結処理を施し焼結体を形成する。この
場合Ni自溶性合金の流動はMOの存在により妨げられ
、したがって形状維持性が良い。第2加熱ゾーンBから
の昇温速度は15〜b
り、Ni自溶性合金−Mo仮焼結体は第2加熱ゾーンB
で既に高温加熱されているので、第3加熱ゾーンCまで
の昇温時間は僅かである。この第3加熱ゾーンCの保持
時間が不充分であると焼結が完全に行われず、焼結体に
欠陥を生ずる。(C>Third heating zone (Fig. 4C)) This heating zone C is located at the solidus line (101
0~1020℃) to just below the liquidus line (1075~1085℃)
℃), i.e. in the range of 1000 to 1200℃, and the Ni self-fusing alloy-Mo pre-sintered body is kept at a constant temperature of 1100 to 1180℃, preferably 1160℃, which is a temperature exceeding the liquidus line, for 120 minutes. While holding the Ni self-fusing alloy, a liquid phase sintering process is performed by melting the Ni self-fluxing alloy to form a sintered body. In this case, the flow of the Ni self-fusing alloy is hindered by the presence of MO, and therefore shape retention is good. The temperature increase rate from the second heating zone B is 15~b, and the Ni self-fluxing alloy-Mo pre-sintered body is
Since it has already been heated to a high temperature, the time required to raise the temperature to the third heating zone C is short. If the holding time in the third heating zone C is insufficient, sintering will not be completed completely, resulting in defects in the sintered body.
上記のように焼結温度を1160℃に選定する理由は、
焼結温度が1200℃程度となると、焼結体の寸法変化
が大きくなり、また炉温I+IJlillが容易でな(
、その上炉内温度がばらつくといった不具合があり、こ
れらの不具合を除去するための作業温度としては116
0℃が適当であるからである。The reason for selecting the sintering temperature at 1160℃ as mentioned above is
When the sintering temperature is about 1200℃, the dimensional change of the sintered body becomes large, and the furnace temperature I+IJlill is difficult to adjust (
Moreover, there is a problem that the temperature inside the furnace fluctuates, and the working temperature to eliminate these problems is 116.
This is because 0°C is appropriate.
(D)冷却ゾーン(第4図D)
この冷却ゾーンDは、前記焼結温度がら略8゜0℃まで
の1次冷却ゾーンD、と、略soo”cがら略400℃
までの2次冷却ゾーンD2と、略400℃から常温まで
の3次冷却ゾーンD、とに分けられる。(D) Cooling zone (Fig. 4D) This cooling zone D consists of a primary cooling zone D from the sintering temperature to about 8°C, and a cooling zone D from about soo'c to about 400°C.
The cooling zone is divided into a secondary cooling zone D2 ranging from approximately 400° C. to room temperature, and a tertiary cooling zone D ranging from approximately 400° C. to room temperature.
1次冷却ゾーンD1は、焼結体の高温下における安定域
であり、この冷却ゾーンD、ではできるだけ熱的な刺激
を避け、同時に冷却効率を考慮して最高2℃/分程度の
ゆっくりした速度で冷却する。この冷却ゾーンDIで急
冷が行われると焼結体にクランクが多発する。The primary cooling zone D1 is a stable region of the sintered body under high temperatures, and in this cooling zone D, thermal stimulation is avoided as much as possible, and at the same time, the cooling rate is slow at a maximum of about 2°C/min in consideration of cooling efficiency. Cool it down. When rapid cooling is performed in this cooling zone DI, cranks occur frequently in the sintered body.
2次冷却ゾーンD2では、ベース材lの線膨張とAr、
変態における寸法変化を吸収するために最高3℃/分程
度のゆっくりした速度で冷却する。In the secondary cooling zone D2, linear expansion of the base material l and Ar,
Cool at a slow rate of up to 3° C./min to accommodate dimensional changes during transformation.
この場合焼結体の線収縮は14.6 x 10−’/’
cであるが、多孔質であるためベース材1の収縮に追随
する。この冷却ゾーンD2で急冷が行われると焼結体に
クランクが多発する。In this case, the linear shrinkage of the sintered body is 14.6 x 10-'/'
c, but since it is porous, it follows the shrinkage of the base material 1. When rapid cooling is performed in this cooling zone D2, cranks occur frequently in the sintered body.
3次冷却ゾーンD、では、水、油等の液冷以外のガス冷
却(空冷を含む)により焼結体およびベース材lの温度
を常温まで冷却する。In the tertiary cooling zone D, the temperature of the sintered body and the base material 1 is cooled to room temperature by gas cooling (including air cooling) other than liquid cooling such as water or oil.
第2図(e)に示すように、上記加熱−冷却処理を経て
、ワーク成形部5aをNi自溶性合金−Moよりなる焼
結体Saによって形成された金型5が得られる。As shown in FIG. 2(e), through the heating and cooling process described above, a mold 5 is obtained in which the workpiece forming portion 5a is formed of a sintered body Sa made of Ni self-fluxing alloy-Mo.
上記焼結体Saはベース材1との溶着性および面粗度が
良好で、気孔率も低い。その上クランク等の欠陥の発生
がなく、また寸法変化も±θ〜+2fi以内と精度が良
く、簡単な仕上げ加工を施すことより直ちにプレス作業
に使用することができる。The sintered body Sa has good weldability and surface roughness with the base material 1, and has a low porosity. Furthermore, there is no occurrence of defects such as cranks, and the dimensional change is accurate within ±θ to +2fi, so it can be used for press work immediately after simple finishing.
原料シート状物間の炭素繊維製線状補強体Rは焼結体S
a中に残留しており、その補強体Rによる繊維強化能に
より焼結体Saの強度を向上させることができる。The carbon fiber linear reinforcement R between the raw material sheets is a sintered body S
It remains in the sintered body Sa, and the strength of the sintered body Sa can be improved by the fiber reinforcing ability of the reinforcing body R.
この繊維強化能はステンレス繊維等の金属繊維を用いた
場合にも同様に得られる。This fiber reinforcing ability can be similarly obtained when metal fibers such as stainless steel fibers are used.
線状補強体として銅の411rlIaを用いた場合には
、その細線は焼結工程で溶融して焼結体の気孔を埋め、
その強度を向上させる効果を有する。When copper 411rlIa is used as the linear reinforcement, the thin wire melts during the sintering process and fills the pores of the sintered body.
It has the effect of improving its strength.
線状補強体として合成樹脂製細線を用いた場合には、そ
の細線は合成樹脂バインダと共に熱分解されてガス化し
焼結体より除去される。When a synthetic resin thin wire is used as the linear reinforcing body, the thin wire is thermally decomposed together with the synthetic resin binder, gasified, and removed from the sintered body.
なお、両シート状物S+、Szの貼合せ作業は熱板を持
つプレス機により行うこともできる。Note that the bonding operation of both sheet-like materials S+ and Sz can also be performed using a press machine having a hot plate.
C1発明の効果
本発明に係る金属焼結体用原料シートは、柔軟性を有す
る細線状補強体を分散させて埋設しているので、取扱い
性、耐ひび割れ性およびなじみ性が良好で、それらの性
質は合成樹脂バインダの使用量を従来のものの半分に減
らしても何ら損なわれることがない。C1 Effects of the Invention The raw material sheet for metal sintered bodies according to the present invention has flexible fine wire reinforcing bodies dispersed and buried therein, so that it has good handling properties, crack resistance, and conformability. The properties are not impaired in any way even if the amount of synthetic resin binder used is reduced to half of the conventional one.
また本発明に係る金属焼結体用原料シートの製造方法は
、2枚のシート状物間に前記細線状補強体を分散させて
両シート状物を貼合せるという簡車な手法を採用してい
るので、製造作業が極めて容易である。Further, the method for manufacturing a raw material sheet for a metal sintered body according to the present invention employs a simple method of dispersing the thin wire reinforcing body between two sheet-like materials and bonding both sheet-like materials. This makes manufacturing work extremely easy.
図面は本発明の一実施例を示すもので、第1図は要部を
破断した原料シートの斜視図、第2図は原料シートの製
造を示す説明図、第3図(al〜(dlは本発明に係る
原料シートを用いたプレス用金型の製造工程説明図、第
4図は焼結工程における温度と時間の関係を示すグラフ
である。
R・・・細線状補強体、So、S+ 、Sz・・・シー
ト状物、Sa・・・焼結体
第3図
第1図
第2図
第4図
時間The drawings show one embodiment of the present invention, and FIG. 1 is a perspective view of a raw material sheet with main parts cut away, FIG. 2 is an explanatory diagram showing the production of the raw material sheet, and FIG. Fig. 4 is a graph showing the relationship between temperature and time in the sintering process.R: Fine wire reinforcement, So, S+ , Sz... sheet-like material, Sa... sintered body Fig. 3 Fig. 1 Fig. 2 Fig. 4 Time
Claims (7)
り得られるシート状物内に、柔軟性を有する細線状補強
体を分散させて埋設してなる金属焼結体用原料シート。(1) A raw material sheet for a metal sintered body, which is made by dispersing and embedding flexible thin wire reinforcing bodies in a sheet-like material obtained by kneading a sinterable metal powder and a synthetic resin binder.
の範囲第(1)項記載の金属焼結体用原料シート。(2) The raw material sheet for a metal sintered body according to claim (1), wherein the thin wire reinforcing body is made of metal fiber.
の範囲第(1)記載の金属焼結体用原料シート。(3) The raw material sheet for a metal sintered body according to claim 1, wherein the thin wire reinforcing body is made of carbon fiber.
の範囲第(1)項記載の金属焼結体用原料シート。(4) The raw material sheet for a metal sintered body according to claim (1), wherein the thin wire reinforcing body is made of synthetic resin.
求の範囲第(1)項記載の金属焼結体用原料シート。(5) The raw material sheet for a metal sintered body according to claim (1), wherein the thin wire reinforcing body is made of a thin metal wire.
り2枚のシート状物を得る工程と、前記両シート物を、
それらの間に柔軟性を有する細線状補強体を分散挟入さ
せて貼合せる工程と、よりなる金属焼結体用原料シート
の製造方法。(6) a step of obtaining two sheet-like products from a kneaded product of sinterable metal powder and a synthetic resin binder;
A method for manufacturing a raw material sheet for a metal sintered body, which comprises the steps of: dispersing and laminating flexible fine wire reinforcing bodies between them;
請求の範囲第(6)項記載の金属焼結体用原料シートの
製造方法。(7) The method for producing a raw material sheet for a metal sintered body according to claim (6), wherein the thin wire reinforcing bodies are knitted in a net shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12548184A JPS613804A (en) | 1984-06-19 | 1984-06-19 | Raw material sheet for sintered metallic body and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12548184A JPS613804A (en) | 1984-06-19 | 1984-06-19 | Raw material sheet for sintered metallic body and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS613804A true JPS613804A (en) | 1986-01-09 |
Family
ID=14911154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12548184A Pending JPS613804A (en) | 1984-06-19 | 1984-06-19 | Raw material sheet for sintered metallic body and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS613804A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0741515A (en) * | 1993-05-20 | 1995-02-10 | Gold Star Co Ltd | Thermally stable photopolymerizable substance for alignment of liquid crystal |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS498505A (en) * | 1972-05-16 | 1974-01-25 | ||
JPS54112706A (en) * | 1978-02-24 | 1979-09-03 | Fujikoshi Kk | Production of liquid phase sintered alloy |
JPS54132412A (en) * | 1978-03-31 | 1979-10-15 | Fujikoshi Kk | Production of sintered body for brazing use |
JPS60230910A (en) * | 1984-04-28 | 1985-11-16 | Nitto Electric Ind Co Ltd | Metallic powder molding having low shrinkability and formation of metallic coating layer using said molding |
-
1984
- 1984-06-19 JP JP12548184A patent/JPS613804A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS498505A (en) * | 1972-05-16 | 1974-01-25 | ||
JPS54112706A (en) * | 1978-02-24 | 1979-09-03 | Fujikoshi Kk | Production of liquid phase sintered alloy |
JPS54132412A (en) * | 1978-03-31 | 1979-10-15 | Fujikoshi Kk | Production of sintered body for brazing use |
JPS60230910A (en) * | 1984-04-28 | 1985-11-16 | Nitto Electric Ind Co Ltd | Metallic powder molding having low shrinkability and formation of metallic coating layer using said molding |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0741515A (en) * | 1993-05-20 | 1995-02-10 | Gold Star Co Ltd | Thermally stable photopolymerizable substance for alignment of liquid crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4426627C2 (en) | Process for the production of a metallic composite material | |
US4289833A (en) | Liquid phase sintered dense composite body for brazed joints and method for making the same | |
US2076952A (en) | Production of hard metal alloys | |
JPS60221506A (en) | Formation of sliding surface in machine tool | |
JPS613804A (en) | Raw material sheet for sintered metallic body and its production | |
US5074458A (en) | Method of producing bimetal for use as material for plain bearing | |
US4300951A (en) | Liquid phase sintered dense composite bodies and method for producing the same | |
JPS613805A (en) | Raw material sheet for sintered metallic body and its production | |
JPS613806A (en) | Raw material sheet for sintered metallic body and its production | |
FI81283C (en) | Process when making a mold body of an iron alloy | |
JPS60224701A (en) | Production of female die | |
JP2717895B2 (en) | Method for producing Cu-Mo composite rolled sheet | |
JPS55154551A (en) | Manufacture of high chromium alloy material | |
JPS60245703A (en) | Production of metallic laminated body | |
JPS60244499A (en) | Production of die pair for press | |
JPS59209473A (en) | Production of bonding member for sintered hard alloy and sintered steel | |
GB2075554A (en) | Production of powdered metal articles | |
JPH0153326B2 (en) | ||
JPH0153321B2 (en) | ||
JPS613807A (en) | Raw material sheet for sintered metallic body and its manufacture | |
JP3922481B2 (en) | Thermoelectric semiconductor sintered element manufacturing method and extrusion mold for thermoelectric semiconductor sintered body | |
JPS60230906A (en) | Production of die | |
JPH0610319B2 (en) | Method for producing self-lubricating sintered copper alloy | |
JPS60221503A (en) | Production of metallic mold | |
JPS60221504A (en) | Production of metallic mold pair |