JPS6138786B2 - - Google Patents
Info
- Publication number
- JPS6138786B2 JPS6138786B2 JP13731779A JP13731779A JPS6138786B2 JP S6138786 B2 JPS6138786 B2 JP S6138786B2 JP 13731779 A JP13731779 A JP 13731779A JP 13731779 A JP13731779 A JP 13731779A JP S6138786 B2 JPS6138786 B2 JP S6138786B2
- Authority
- JP
- Japan
- Prior art keywords
- detection
- refrigerant
- cooling water
- water system
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 67
- 239000000498 cooling water Substances 0.000 claims description 26
- 238000010521 absorption reaction Methods 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 21
- 239000006096 absorbing agent Substances 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 238000005057 refrigeration Methods 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 28
- 230000007423 decrease Effects 0.000 description 16
- 239000007921 spray Substances 0.000 description 6
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】
本発明は水あるいはアルコールなどを冷媒と
し、臭化リチウム溶液などの塩類溶液を吸収溶液
として冷凍サイクルを構成する吸収冷凍機に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption refrigerator that configures a refrigeration cycle using water or alcohol as a refrigerant and a salt solution such as a lithium bromide solution as an absorption solution.
従来のこの種の冷凍機例えば第1図に示す如
く、吸収器A、発生器G、凝縮器C、蒸発器E、
溶液熱交換器X、溶液ポンプPS、冷媒ポンプPM
が備えられ、溶液経路として配管1,2,3,
4,5、スプレー管6、オーバーフロー管7を備
え、冷媒経路として配管8,9、スプレー管1
0、配管11が上述の器機を接続して冷凍サイク
ルを形成している。 A conventional refrigerator of this kind, for example, as shown in FIG. 1, has an absorber A, a generator G, a condenser C, an evaporator E,
Solution heat exchanger X, solution pump PS, refrigerant pump PM
is provided, and piping 1, 2, 3,
4, 5, a spray pipe 6, an overflow pipe 7, and pipes 8, 9 and a spray pipe 1 as a refrigerant path.
0, piping 11 connects the above-mentioned equipment to form a refrigeration cycle.
12は加熱管、13は熱源熱量調節弁である。
冷却水系統としては、冷却水ポンプ14、配管1
5、冷却水管16、配管17、冷却水管18、配
管19が備えられ、吸収器A及び凝縮器Cを冷却
するようになつている。20は冷水管で、配管2
1,22により蒸発器Eに冷水を導くものであ
る。 12 is a heating tube, and 13 is a heat source heat amount control valve.
The cooling water system includes a cooling water pump 14, piping 1
5, a cooling water pipe 16, a pipe 17, a cooling water pipe 18, and a pipe 19 are provided to cool the absorber A and the condenser C. 20 is a cold water pipe, pipe 2
1 and 22 lead cold water to the evaporator E.
そのような構成の従来のものにおいては、運転
中の負荷が低下したり、又は冷却水温度が低くな
り過ぎるなど、負荷量に対して相対的に冷凍能力
が増大してアンバランンスになる場合には、吸収
能力が過大となり吸収器A内での吸収が盛に行な
われる結果溶液濃度は低下する。 In conventional systems with such a configuration, if the load during operation decreases or the cooling water temperature becomes too low, the refrigerating capacity increases relative to the load amount and becomes unbalanced. In this case, the absorption capacity becomes excessive, and absorption in the absorber A increases, resulting in a decrease in the concentration of the solution.
例えば、第2図に示す如く、正常の全負荷サイ
クルがサイクルABCDで示される冷凍装置におい
て、負荷が部分負荷になるとサイクルabcdの如
く濃度が低下したサイクルを画くようになる。そ
の結果、蒸発器E内の冷媒液面が低下し、押し込
みヘツドが不足し冷媒ポンプPMがキヤビテーシ
ヨンを起こすおそれがあり、これを防ぐために冷
媒ポンプPMはオン・オフ制御を行ない、必要な
押し込みヘツドを確保するよう調整を行なつてい
る。 For example, as shown in FIG. 2, in a refrigeration system whose normal full-load cycle is cycle ABCD, when the load becomes a partial load, the refrigeration system begins to draw a cycle in which the concentration decreases, such as cycle ABCD. As a result, the refrigerant liquid level in the evaporator E decreases, and there is a risk that the refrigerant pump PM will cause cavitation due to insufficient pushing head. We are making adjustments to ensure that.
しかしこのような従来の方法では、冷媒ポンプ
PMをオン・オフ制御するため流量の変動が激し
く運転が不安定となる。しかも全負荷から低負荷
に至る濃度の変動幅も大きいので、負荷が変つた
場合に応答性が悪いという欠点があつた。 However, with this conventional method, the refrigerant pump
Because PM is controlled on and off, the flow rate fluctuates significantly, making operation unstable. Moreover, since the range of variation in concentration from full load to low load is large, there is a drawback that responsiveness is poor when the load changes.
また、冷却水温度が低下した場合には、第3図
に示す如く、正常の冷却水温度における全負荷サ
イクルであるサイクルABCDが低濃度の領域に移
行し、サイクルabcdの如く運転され、その結果
前述の負荷が低下した場合と同様なトラブルを招
き、運転に支障を来たすものであつた。 In addition, when the cooling water temperature decreases, as shown in Figure 3, cycle ABCD, which is the full load cycle at normal cooling water temperature, shifts to the low concentration region and is operated like cycle ABCD. This caused problems similar to those caused when the load decreased as described above, and caused problems in driving.
また、従来のものには、冷媒ポンプPMは常に
運転せしめ、蒸発器E内の冷媒液面の低下に応じ
て冷媒ポンプPMの出口管路の弁を絞つたり、出
口側にバイパスを設けて一部をバイパス流として
逃したりするものが見られるが、何れも運転中は
常に一定の動力を消費し、一部は無駄な動力の消
費を伴うものであつた。 In addition, in the conventional type, the refrigerant pump PM is always operated, and depending on the drop in the refrigerant level in the evaporator E, the valve of the outlet pipe of the refrigerant pump PM is throttled, or a bypass is provided on the outlet side. Although there are some systems in which a portion of the flow escapes as a bypass flow, all of them always consume a certain amount of power during operation, and some of them are accompanied by wasteful power consumption.
本発明は、押し込みヘツド変動要素を検出し
て、冷媒ポンプの回転数の制御を行なうことによ
り、従来のものの、上記の欠点を除き、負荷変動
や冷却水温度変動などがあつても冷媒ポンプの連
続運転を可能とし、またキヤビテーシヨンを防い
で安定した運転を行なわしめ、負荷変動や冷却温
度変動に当たつても速やかに追従することがで
き、しかも運転状態に応じてポンプ動力を減少せ
しめて動力の無駄な消費を防ぐことができる吸収
冷凍機を提供することを目的とするものである。 The present invention eliminates the above-mentioned drawbacks of the conventional method by detecting pushing head fluctuation factors and controlling the rotational speed of the refrigerant pump. It enables continuous operation, prevents cavitation, and ensures stable operation, and can quickly respond to changes in load and cooling temperature.Moreover, it reduces the pump power depending on the operating condition to maintain stable operation. The purpose of this invention is to provide an absorption refrigerator that can prevent wasteful consumption of.
本発明は、吸収器、発生器、凝縮器、蒸発器、
溶液熱交換器、溶液ポンプ、冷媒ポンプ及びこれ
らを接続する溶液経路、冷媒経路を備えて冷凍サ
イクルを形成する吸収冷凍機において、前記冷媒
ポンプの押し込みヘツドの変動を押し込みヘツド
変動要素を検出することによつて検知する押し込
みヘツド検知機構と、該押し込みヘツド検知機構
からの信号を受けて前記冷媒ポンプの回転数を制
御して冷媒流量を調節する冷媒ポンプ制御機構を
備えていることを特徴とする吸収冷凍機である。 The present invention provides absorbers, generators, condensers, evaporators,
In an absorption refrigerator that includes a solution heat exchanger, a solution pump, a refrigerant pump, and a solution path and a refrigerant path connecting these to form a refrigeration cycle, detecting fluctuations in the pushing head of the refrigerant pump. and a refrigerant pump control mechanism that controls the rotational speed of the refrigerant pump and adjusts the refrigerant flow rate in response to a signal from the push-in head detection mechanism. It is an absorption refrigerator.
本発明を実施例につき図面を用いて説明すれ
ば、第4図は吸収器A、蒸発器Eの付近を示し、
押し込みヘツド変動要素として、蒸発器E内の冷
媒液面高さを検出するフロート41が押し込みヘ
ツド検知機構として設けられている。フロート4
1の動きによる信号を受けて冷媒ポンプPMの回
転数を制御する制御機構42が設けられている。
冷媒ポンプPMの回転数は、駆動電動機の回転転
数制御、駆動電動機と冷媒ポンプPMとの間の動
力伝達機構中の変速機構による変速比制御などに
より行なう。冷媒液面高さが低くなると冷媒ポン
プPMの回転数を低下せしめるようになつてい
る。 The present invention will be explained with reference to the drawings according to an embodiment. FIG. 4 shows the vicinity of the absorber A and the evaporator E;
As a pushing head varying element, a float 41 for detecting the height of the refrigerant liquid level in the evaporator E is provided as a pushing head detection mechanism. float 4
A control mechanism 42 is provided that receives a signal from the movement of the refrigerant pump PM and controls the rotation speed of the refrigerant pump PM.
The rotation speed of the refrigerant pump PM is controlled by controlling the rotation speed of the drive motor, controlling the gear ratio by a speed change mechanism in the power transmission mechanism between the drive motor and the refrigerant pump PM, and the like. When the refrigerant liquid level becomes low, the rotation speed of the refrigerant pump PM is reduced.
運転中に負荷が低下したり、又は冷却水温度が
低下すると、負荷量と冷凍能力とのアンバランス
により吸収能力が相対的に過大となり、吸収溶液
の濃度が低下し、蒸発器E内の冷媒液面が下降す
る。冷媒液面高さが所定の高さよりも低くなると
フロート41がこれを検出し、制御機構42の操
作により冷媒ポンプPMの回転数を低下せしめ
る。これによりスプレー流量が減少すると冷水管
20へふりかかる冷媒液量が減り蒸発量が抑制さ
れ、従つて溶液の濃度が過度に低下するのを防
ぎ、蒸発器E内の冷媒液面を確保し、所要の押し
込みヘツドを与え、冷媒ポンプPMのキヤビテー
シヨンを起こすことなく、連続運転を可能とし安
定した運転を行なうことができる。 When the load decreases or the cooling water temperature decreases during operation, the absorption capacity becomes relatively excessive due to the imbalance between the load amount and the refrigeration capacity, the concentration of the absorption solution decreases, and the refrigerant in the evaporator E The liquid level falls. When the refrigerant liquid level becomes lower than a predetermined height, the float 41 detects this, and the control mechanism 42 is operated to reduce the rotation speed of the refrigerant pump PM. As a result, when the spray flow rate is reduced, the amount of refrigerant sprinkled onto the cold water pipe 20 is reduced, and the amount of evaporation is suppressed, thereby preventing the concentration of the solution from decreasing excessively and ensuring the refrigerant liquid level in the evaporator E. By providing the necessary pushing head, it is possible to perform continuous operation and stable operation without causing cavitation of the refrigerant pump PM.
冷媒ポンプPMの回転数制御は、連続的でも段
階的でもよい。 The rotation speed control of the refrigerant pump PM may be continuous or stepwise.
この場合のサイクル線図は第2図又は第3図に
おけるサイクルa′b′c′d′となり、従来の方法にお
けるサイクルabcdに比べ濃度が高い方向に移行
しているので、上述の如く蒸発器E内の冷媒液面
を確保すると共に、全負荷サイクルとの濃度の変
化幅が減少しているので、負荷変動又は冷却水温
度の変動などに対して良好な応答性を示す。 The cycle diagram in this case is cycle a′b′c′d′ in FIG. 2 or 3, and the concentration is higher than cycle abcd in the conventional method. Since the refrigerant liquid level in E is secured and the range of change in concentration with respect to the full load cycle is reduced, it exhibits good responsiveness to changes in load or cooling water temperature.
例えば部分負荷の状態から負荷が増大する場合
は、冷水温度が上がり、制御機構(図示されてい
ない)により熱源熱量調節弁13が操作されて発
生器Gにおける加熱量が増加する。 For example, when the load increases from a partial load state, the cold water temperature rises, and the heat source heat amount control valve 13 is operated by a control mechanism (not shown) to increase the heating amount in the generator G.
これにより、冷媒蒸気発生量が増大し、蒸発器
Eに戻る冷媒液量も増大し冷媒液面が上昇し、フ
ロート41の信号によりスプレー流量が増加し、
冷媒の蒸発量が増加し、吸収器Aにての吸収能力
が増加し、溶液濃度が低下し、冷凍能力が短時間
で負荷条件の変動に対応することができる。 As a result, the amount of refrigerant vapor generated increases, the amount of refrigerant liquid returning to the evaporator E also increases, the refrigerant liquid level rises, and the spray flow rate increases due to the signal from the float 41.
The amount of evaporation of the refrigerant increases, the absorption capacity in the absorber A increases, the solution concentration decreases, and the refrigerating capacity can respond to changes in load conditions in a short time.
押し込みヘツド変動を推定する押し込みヘツド
変動要素としては、上述の例の如く、蒸発器Eの
中の冷媒液面をとらえることが最も直接的である
が、そのほか、吸収器A及び凝縮器Cの冷却水系
路の周辺の流体温度(例えば、冷却水系路中の冷
却水温度、吸収器A中の溶液温度、凝縮器C中の
冷媒温度など)、冷水系路の冷凍負荷量を示す値
(例えば冷水出口温度差、カロリメータなどによ
り算出した冷凍負荷量など)、発生器G内の圧力
や溶液温度、溶液系路中の溶液濃度など、溶液の
濃度変化に関与する要素をとらえてもよい。 As the pushing head variation factor for estimating the pushing head variation, as in the example above, the most direct way is to measure the refrigerant liquid level in the evaporator E, but in addition, the cooling of the absorber A and the condenser C Fluid temperature around the water system (e.g., cooling water temperature in the cooling water system, solution temperature in absorber A, refrigerant temperature in condenser C, etc.), values indicating the refrigerating load in the chilled water system (e.g., chilled water It is also possible to capture factors related to the change in concentration of the solution, such as the outlet temperature difference, the amount of refrigeration load calculated by a calorimeter, etc.), the pressure and solution temperature in the generator G, and the solution concentration in the solution path.
また、これらの検出値を2個以上組み合わせて
演算を行ないその演算値をとらえて信号を発する
ようにしてもよい。 Alternatively, two or more of these detected values may be combined to perform a calculation, and the calculated value may be captured to generate a signal.
例えば、一般にポンプの回転数制御を行う場合
は冷媒ポンプPMだけでなく、溶液ポンプPSの回
転数制御も同時に行う場合が多い。この場合は冷
水負荷信号等により溶液ポンプPSの回転数を制
御すると共に同一信号で冷媒ポンプPMの回転数
も制御するものである。この様に制御系を構成し
た場合に、冷媒液面が所定レベルまで低下した
時、制御信号に関係なく冷媒ポンプPMの回転数
を所定の低回転数に保つ様にする。即ち冷媒ポン
プPMの回転数を制御する信号として上記の例は
冷水負荷相当信号+冷媒液面信号の2つを組合せ
たものとなる。 For example, when controlling the rotation speed of a pump, the rotation speed of not only the refrigerant pump PM but also the solution pump PS is often controlled at the same time. In this case, the rotation speed of the solution pump PS is controlled using a chilled water load signal or the like, and the rotation speed of the refrigerant pump PM is also controlled using the same signal. When the control system is configured in this manner, when the refrigerant liquid level drops to a predetermined level, the rotational speed of the refrigerant pump PM is maintained at a predetermined low rotational speed regardless of the control signal. That is, in the above example, the signal for controlling the rotation speed of the refrigerant pump PM is a combination of the chilled water load equivalent signal and the refrigerant liquid level signal.
第5図は、冷却水温度を温度検出器43にて検
出し、制御機構42の操作により、冷媒ポンプ
PMの速度制御を行なう実施例を示す。温度検出
器43の代りに温度検出器44を用いて吸収器A
内の溶液温度を検出してもよい。冷却水温度が低
下すると、溶液温が低下し、吸収能力が増し、溶
液濃度が低下し、発器E内の冷媒液面は低下す
る。 In FIG. 5, the temperature of the cooling water is detected by the temperature detector 43, and the refrigerant pump is controlled by the operation of the control mechanism 42.
An example of controlling the speed of PM will be shown. Absorber A using temperature sensor 44 instead of temperature sensor 43
The temperature of the solution inside the container may also be detected. When the cooling water temperature decreases, the solution temperature decreases, the absorption capacity increases, the solution concentration decreases, and the refrigerant liquid level in the generator E decreases.
従つて、本実施例の場合、冷却水温度又は溶液
温度が設定値より低下したら、冷媒ポンプPMの
速度を低下せしめるように制御する。 Therefore, in this embodiment, when the cooling water temperature or solution temperature falls below a set value, the speed of the refrigerant pump PM is controlled to be reduced.
以上の実施例において、押し込みヘツドが低下
した場合に冷媒ポンプPMの回転数を低下せしめ
ることは、必要NPSHを低下せしめるので、この
点においてもキヤビテーシヨン防止に効果がある
ので、流量低減を行ない蒸発量低減により得られ
る押し込みヘツドの回復と相まつて有効なキヤビ
テーシヨン防止がなされる。また、流量制御が冷
媒ポンプPMの回転数制御で行なわれるので、無
駄な動力の消費を防ぐことができる。 In the above embodiment, reducing the rotational speed of the refrigerant pump PM when the pushing head decreases reduces the required NPSH, which is also effective in preventing cavitation. Coupled with the recovery of the pushing head obtained by the reduction, effective cavitation prevention is achieved. Furthermore, since the flow rate is controlled by controlling the rotational speed of the refrigerant pump PM, unnecessary power consumption can be prevented.
本発明は、吸収器、発生器、凝縮器、蒸発器、
溶液熱交換器、溶液ポンプ、冷媒ポンプ及びこれ
らを接続する溶液経路、冷媒経路を備えて冷凍サ
イクルを形成する吸収冷凍機において、前記冷媒
ポンプの押し込みヘツドの変動を押し込みヘツド
変動要素を検出することによつて検知する押し込
みヘツド検知機構と、該押し込みヘツド検知機構
からの信号を受けて前記冷媒ポンプの回転数を制
御して冷媒流量を調節する冷媒ポンプ制御機構を
備えていることにより、負荷変動や冷却水温度の
変動があつても、蒸発器内の冷媒液面を確保し、
かつ回転数の低下に対応して必要NPSHが低下す
るのでキヤビテーシヨンを防止して冷媒ポンプの
安定した連続運転を行なわしめ、また変動に対す
る応答性が優れており、しかも、冷房負荷減少時
などにおいても冷媒ポンプ駆動の無駄な動力の消
費が防がれる吸収冷凍機を提供することができ、
実用上、省エネルギ上極めて大なる効果を有する
ものである。 The present invention provides absorbers, generators, condensers, evaporators,
In an absorption refrigerator that includes a solution heat exchanger, a solution pump, a refrigerant pump, and a solution path and a refrigerant path connecting these to form a refrigeration cycle, detecting fluctuations in the pushing head of the refrigerant pump. A push-in head detection mechanism detects the push-in head by the push-in head detection mechanism, and a refrigerant pump control mechanism receives the signal from the push-in head detection mechanism to control the rotation speed of the refrigerant pump to adjust the refrigerant flow rate. Even if there are fluctuations in the cooling water temperature, the refrigerant level in the evaporator is maintained,
In addition, the required NPSH decreases in response to a decrease in rotational speed, preventing cavitation and ensuring stable continuous operation of the refrigerant pump.It also has excellent responsiveness to fluctuations, and even when the cooling load is reduced. It is possible to provide an absorption refrigerator that prevents wasteful power consumption when driving a refrigerant pump,
This has an extremely large effect in terms of practical use and energy saving.
第1図は従来例のフロー図、第2図及び第3図
は従来例と本発明の実施例との溶液サイクルの比
較線図、第4図及び第5図は本発明のそれぞれ異
なる実施例の吸収器及び蒸発器付近のフロー図で
ある。
A……吸収器、G……発生器、C……凝縮器、
E……蒸発器、X……溶液熱交換器、PS……溶
液ポンプ、PM……冷媒ポンプ。1……配管、2
……配管、3……配管、4……配管、5……配
管、6……スプレー管、7……オーバーフロー
管、8……配管、9……配管、10……スプレー
管、11……配管、12……加熱管、13……熱
源熱量調節弁、14……冷却水ポンプ、15……
配管、16……冷却水管、17……配管、18…
…冷却水管、19……配管、20……冷水管、2
1……配管、22……配管、41……フロート、
42……制御機構、43,44……温度検出器。
Figure 1 is a flow diagram of the conventional example, Figures 2 and 3 are comparison diagrams of solution cycles between the conventional example and the embodiment of the present invention, and Figures 4 and 5 are different embodiments of the present invention. FIG. 2 is a flow diagram of the vicinity of the absorber and evaporator. A...absorber, G...generator, C...condenser,
E...Evaporator, X...Solution heat exchanger, PS...Solution pump, PM...Refrigerant pump. 1...Piping, 2
...Piping, 3...Piping, 4...Piping, 5...Piping, 6...Spray pipe, 7...Overflow pipe, 8...Piping, 9...Piping, 10...Spray pipe, 11... Piping, 12...Heating pipe, 13...Heat source heat amount control valve, 14...Cooling water pump, 15...
Piping, 16... Cooling water pipe, 17... Piping, 18...
...Cooling water pipe, 19...Piping, 20...Cold water pipe, 2
1...Piping, 22...Piping, 41...Float,
42...Control mechanism, 43, 44...Temperature detector.
Claims (1)
換器、溶液ポンプ、冷媒ポンプ及びこれらを接続
する溶液経路、冷媒経路を備えて冷凍サイクルを
形成する吸収冷凍機において、前記冷媒ポンプの
押し込みヘツドの変動を押し込み変動要素を検出
することによつて検知する押し込みヘツド検知機
構と、該押し込みヘツド検知機構からの信号を受
けて前記冷媒ポンプの回転数を制御して冷媒流量
を調節する冷媒ポンプ制御機構を備えていること
を特徴とする吸収冷凍機。 2 前記押し込みヘツド変動要素の検出が、前記
蒸発器内の冷媒液面の検出である特許請求の範囲
第1項記載の吸収冷凍機。 3 前記押し込みヘツド変動要素の検出が、前記
吸収器及び凝縮器の冷却水系路の周辺の流体温度
の検出である特許請求の範囲第1項記載の吸収冷
凍機。 4 前記冷却水系路の周辺の流体が、前記冷却水
系路中の冷却水である特許請求の範囲第3項記載
の吸収冷凍機。 5 前記冷却水系路の周辺の流体が、前記吸収器
の中の溶液である特許請求の範囲第3項記載の吸
収冷凍機。 6 前記冷却水系路の周辺の流体が、前記凝縮器
の中の冷媒である特許請求の範囲第3項記載の吸
収冷凍機。 7 前記押し込みヘツド変動要素の検出が、前記
蒸発器に組み合わされた冷水系路の冷凍負荷量の
検出である特許請求の範囲第1項記載の吸収冷凍
機。 8 前記冷凍負荷量の検出が、前記冷水系路の冷
水出口温度の検出にて行なわれる特許請求の範囲
第7項記載の吸収冷凍機。 9 前記押し込みヘツド変動要素の検出が、前記
蒸発器内の冷媒液面の検出、前記吸収器及び凝縮
器の冷却水系路の周辺の流体温度の検出、又は前
記蒸発器に組み合わされた冷水系路の冷凍負荷量
の検出のうち少なくとも二つの検出が行なわれ、
それらの検出値を所定の方式により演算した演算
値により検出が行なわれる特許請求の範囲第1項
記載の吸収冷凍機。[Claims] 1. An absorption refrigerating machine comprising an absorber, a generator, a condenser, an evaporator, a solution heat exchanger, a solution pump, a refrigerant pump, and a solution path and a refrigerant path connecting these to form a refrigeration cycle. a push-in head detection mechanism that detects fluctuations in the push-in head of the refrigerant pump by detecting push-fluctuation elements; and a push-in head detection mechanism that controls the rotational speed of the refrigerant pump in response to a signal from the push-in head detection mechanism. An absorption refrigerator characterized by being equipped with a refrigerant pump control mechanism that adjusts the flow rate of refrigerant. 2. The absorption refrigerating machine according to claim 1, wherein the detection of the pushing head variation element is the detection of a refrigerant liquid level in the evaporator. 3. The absorption refrigerating machine according to claim 1, wherein the detection of the pushing head variation element is the detection of fluid temperature around a cooling water system path of the absorber and condenser. 4. The absorption refrigerator according to claim 3, wherein the fluid around the cooling water system path is cooling water in the cooling water system path. 5. The absorption refrigerator according to claim 3, wherein the fluid around the cooling water system path is a solution in the absorber. 6. The absorption refrigerator according to claim 3, wherein the fluid around the cooling water system path is a refrigerant in the condenser. 7. The absorption refrigerating machine according to claim 1, wherein the detection of the pushing head variation element is the detection of a refrigerating load amount of a chilled water system line combined with the evaporator. 8. The absorption refrigerating machine according to claim 7, wherein the detection of the refrigeration load amount is performed by detecting the cold water outlet temperature of the cold water system path. 9. Detection of the pushing head variation element includes detection of a refrigerant liquid level in the evaporator, detection of fluid temperature around a cooling water system path of the absorber and condenser, or detection of a cooling water system path combined with the evaporator. At least two of the detections of the refrigeration load amount are performed,
2. The absorption refrigerator according to claim 1, wherein the detection is performed using a calculated value obtained by calculating these detected values using a predetermined method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13731779A JPS5661556A (en) | 1979-10-24 | 1979-10-24 | Absorption refrigerating machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13731779A JPS5661556A (en) | 1979-10-24 | 1979-10-24 | Absorption refrigerating machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5661556A JPS5661556A (en) | 1981-05-27 |
JPS6138786B2 true JPS6138786B2 (en) | 1986-08-30 |
Family
ID=15195849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13731779A Granted JPS5661556A (en) | 1979-10-24 | 1979-10-24 | Absorption refrigerating machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5661556A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63129262A (en) * | 1986-11-19 | 1988-06-01 | 三洋電機株式会社 | Controller for absorption refrigerator |
-
1979
- 1979-10-24 JP JP13731779A patent/JPS5661556A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5661556A (en) | 1981-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4551233B2 (en) | Absorption-type refrigerator control method and absorption-type refrigerator installation for controlling cooling water temperature in conjunction with cooling load control operation | |
JPS6138786B2 (en) | ||
US6009714A (en) | Controller for absorption cold or hot water generating machine | |
JPS62186178A (en) | Absorption refrigerator | |
JP2858922B2 (en) | Absorption chiller / heater controller | |
JPH03221760A (en) | Method and apparatus for controlling refrigerant flow in heat pump air conditioner | |
JPH07198224A (en) | Absorption type refrigerating machine | |
JPH0447226B2 (en) | ||
JPH0416694B2 (en) | ||
JPS6115985B2 (en) | ||
JPS6316018B2 (en) | ||
JP3182233B2 (en) | Operation control method in absorption refrigerator | |
JPS5840104B2 (en) | absorption refrigerator | |
JP2956362B2 (en) | Absorption refrigerator | |
JPH0320671B2 (en) | ||
JPH0243105B2 (en) | ||
JP3147767B2 (en) | Absorption heat pump | |
JPS6113551B2 (en) | ||
JPH0356861Y2 (en) | ||
JPS61159060A (en) | Double effect absorption refrigerator | |
JPH0670537B2 (en) | Heat source steam flow controller for absorption refrigerator | |
JP2002005538A (en) | Absorptive freezer and cooling water flow rate control method | |
JP2906834B2 (en) | Absorption refrigerator | |
JPS6157537B2 (en) | ||
JP3203039B2 (en) | Absorption refrigerator |