[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6137618B2 - - Google Patents

Info

Publication number
JPS6137618B2
JPS6137618B2 JP18231981A JP18231981A JPS6137618B2 JP S6137618 B2 JPS6137618 B2 JP S6137618B2 JP 18231981 A JP18231981 A JP 18231981A JP 18231981 A JP18231981 A JP 18231981A JP S6137618 B2 JPS6137618 B2 JP S6137618B2
Authority
JP
Japan
Prior art keywords
layer
electrophotographic photoreceptor
carrier
photosensitive layer
electrophotographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18231981A
Other languages
Japanese (ja)
Other versions
JPS5885438A (en
Inventor
Satoshi Goto
Akira Kinoshita
Osamu Sasaki
Kyoshi Sawada
Shinichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP18231981A priority Critical patent/JPS5885438A/en
Publication of JPS5885438A publication Critical patent/JPS5885438A/en
Publication of JPS6137618B2 publication Critical patent/JPS6137618B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0642Heterocyclic compounds containing one hetero ring being more than six-membered

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電子写真感光体、更に詳しくは、有機
光導電性化合物より成る感光層を具えて成る電子
写真感光体に関するものである。 従来電子写真感光体としては、セレン、酸化亜
塩、硫化カドミウム等の無機光導電体を主成分と
して含有する感光層を有するものが広く知られて
いる。しかしこれらは、熱安定性、耐久性、耐湿
性等の特性上必ずしも満足し得るものではなく、
あるいは更に毒性のために製造上、取扱い上にも
問題がある。 一方、有機光導電性化合物を主成分とする感光
層を有する電子写真感光体は、製造が比較的容易
であること、安価であること、取り扱いが容易で
あること、また一般にセレン感光体等に比べて熱
安定性が優れていることなどの多くの利点を有
し、近年多くの注目を集めている。斯かる有機光
導電性化合物としては、ポリ−N−ビニルカルバ
ゾールが最もよく知られており、これと、2・
4・7−トリニトロ−9−フルオレノン等のルイ
ス酸とから形成される電荷移動錯体を主成分とす
る感光層を有する電子写真感光体が既に実用化さ
れている。 一方、光導電性感光層におけるキヤリア発生機
能とキヤリア輸送機能とをそれぞれ別個の物質に
分担させるようにした積層タイプあるいは分散タ
イプの機能分離型感光層を有する電子写真感光体
が知られており、例えば無定形セレン薄層から成
るキヤリア発生層と、ポリ−N−ビニルカルバゾ
ールから成るキヤリア輸送層とを組合せた感光層
を有する電子写真感光体が実用化されている。 しかしながら、ポリ−N−ビニルカルバゾール
は可撓性に欠けるものであるため、その被膜は固
くて脆く、ひび割れや膜剥離を起こし易く、従つ
てこれを用いた電子写真感光体は耐久性が劣つた
ものとなり、又この欠点を改善するために可塑剤
を添加すると、電子写真プロセスに供したときの
残留電位が大きくなり、繰り返し使用するに従い
その残留電位が増大して次第に複写画像にカブリ
が生ずるようになる欠点を有する。 また低分子量の有機光導電性化合物は一般に被
膜形成能を有さぬため、任意の結着剤と併用され
る。従つて用いる結着剤の種類、組成比等を選択
することにより、被膜の物性、或いは電子写真特
性をある程度制御することができる点では好まし
いものであるが、結着剤に対して高い相溶性を有
する有機光導電性化合物の種類は限られており、
現実に電子写真感光体の感光層の構成に用い得る
ものは多くないのが実状である。 例えば米国特許第3189447号明細書に記載され
ている2・5−ビス(p−ジエチルアミノフニエ
ル)−1・3・4−オキサジアゾールは、電子写
真感光体の感光層の材質として通常好ましく用い
られる結着剤に対する相溶性が低いものであるた
め、これを例えばポリエステル、ポリカーボネー
トなどの結着剤と好ましい電子写真特性を得るた
めに必要とされる割合で混合して感光層を形成せ
しめると、温度50℃以上でオキサジアゾールの結
晶が析出するようになり、電荷保持力及び感度等
の電子写真特性が低下する欠点を有する。 これに対し、米国特許第3820989号明細書に記
載されているジアリールアルカン誘導体は、通常
結着剤に対する相溶性が問題とされるものではな
いが、光に対する安定性が小さいため、これを、
帯電及び露光が繰り返し行なわれる反復転写式の
電子写真感光体の感光層の構成に用いた場合に
は、当該感光層の感度が次第に低下するという欠
点を有する。 また、特開昭55−46760号公報に記載されてい
る、構造式 で示されるヒドラゾン化合物をキヤリア輸送物質
として用いて構成せしめた電子写真感光体は、感
度、残留電位特性等の点において十分満足し得る
ものではなく、その感光体を繰り返し使用するに
従い感度が次第に低下し、残留電位が増大して行
くため耐久性が劣る欠点を有する。 このように電子写真感光体を作成する上で実用
的に好ましい特性を有する有機光導電性化合物は
未だ見出されていないのが実状である。 本発明の目的は、結着剤に対する相溶性に優
れ、熱及び光に対して安定で且つキヤリア輸送能
に優れた新規な有機光導電性化合物を含有して成
る感光層を具えた電子写真感光体を提供すること
にある。 本発明の他の目的は、高感度にして残留電位の
低い電子写真感光体を提供することにある。 本発明の更に他の目的は、帯電、露光、現像、
転写工程が繰り返して行なわれる反復転写式電子
写真感光体として用いたとき、繰り返し使用によ
る疲労劣化が少なく、安定した特性を長時間に亘
つて有する耐久性の優れた電子写真感光体を提供
することにある。 本発明者らは、以上の目的を達成すべく鋭意研
究の結果、特定のジアゼピン誘導体を電子写真感
光体の感光層構成物質として用いることによりそ
の目的を達成し得ることを見出し、本発明を完成
したものである。 前記の目的は、下記一般式〔〕、〔〕又は
〔〕で示されるジアゼピン誘導体の少なくとも
1種を含有する感光層を導電性支持体上に設ける
ことによつて達成される。 (各式中、R1、R2、R3は各々置換若しくは非置換
のアリール基又は置換若しくは非置換のスチリル
基を表わし、R4は置換若しくは非置換のアルキ
ル基又は置換若しくは非置換のアリール基を表わ
す。) 即ち本発明においては、前記一般式〔〕、
〔〕、又は〔〕で示されるジアゼピン誘導体を
光導電性物質として用いて電子写真感光体の感光
層を形成せしめ、或いは前記ジアゼピン誘導体を
その優れたキヤリア輸送能に着目してキヤリア輸
送物質として用い、キヤリア発生物質と組み合せ
ることにより、キヤリアの発生と輸送とをそれぞ
れ別個の物質で行なういわゆる機能分離型感光体
の感光層を形成せしめる。そしてこのことによ
り、被膜物性に優れ、且つ繰り返し使用に供した
ときにも疲労劣化が少なく、安定した特性を発揮
し得る電子写真感光体を提供することができる。 前記一般式〔〕、〔〕及び〔〕で示され
る、本発明において有効に用いられるジアゼピン
誘導体の具体例としては、例えば以下に示す構造
式を有するものを挙げることができるが、勿論こ
れらに限定されるものではない。 以上の如きジアゼピン誘導体は、公知の方法に
より容易に合成することができる。例えば、文献
Helv.Chim.Acta.、第39巻(1956)第207頁、
Can.J.Chem.、第52巻(1974)第2798頁、又は
Acta.Chem.Scand.、第23巻(1969)第3125頁、
その他に記載されている方法を利用し、次の反応
式に従つて合成することができる。 ここで式中のR1、R2、R3及びR4は各々前記一
般式〔〕、〔〕及び〔〕について示したもの
と同じものを表わし、X-は、ClO4 -、BF4 -
PF6 -等の対イオンを表わす。 次に本発明において用いられるジアゼピン誘導
体の代表的合成方法について具体的に説明する。 合成例 1 (例示化合物〔〕−2の合成) 4−(p−ジメチルアミノフエニル)−2・6−
ジフエニルチオピリリウムパークロレート4.7g
(0.01モル)の微粉末をヒドラジン水和物(100
%)50ml中に少しづつ添加し、室温で18時間撹拌
する。生成した沈澱を濾取し、メタノールで十分
洗浄し乾燥せしめた後、アセトニトリルによつて
再結晶する。この方法における収量は3.1g(収
率84.9%)、目的物の融点は217〜218℃である。 合成例 2 (例示化合物〔〕−1の合成) 3・5・7−トリフエニル−1・2(4H)−ジ
アゼピン(例示化合物〔〕−1)3.8g(0.012
モル)、ヨードメチル120ml及び水酸化ナトリウム
5gの混合物を室温で24時間撹拌し、生成した沈
澱を濾過して除き、濾液をシリカゲルのカラムク
ロマトグラフイーにより分離精製する。この方法
における収量は2.7g(収率)67.5%)、目的物の
融点は117〜118.5℃である。 上述の如きジアゼピン誘導体は、可視領域の光
に対して殆んど感光性を有さず、このため可視光
により露光工程が行なわれ得るようにするために
は、増感処理を施すことが必要である。有機光導
電性の増感方法としては種々のものが提案されて
いるが、第1の方法として、有機染料を添加して
分光増感(色素増感)する方法がある。又第2の
方法として電荷移動錯体を形成するような物質を
添加する方法があり、この物質は、本発明におい
ては前記ジアゼピン誘導体が電子供与性物質であ
るので、電子受容性物質であることが好ましい。
本発明において前記ジアゼピン誘導体をキヤリア
輸送物質として利用する場合には、他の有機染料
若しくは顔料又は無機光導電物質等の可視光を吸
収して荷電キヤリアを発生する機能を有するキヤ
リア発生物質と組み合せて機能分離型感光体とす
ることにより、事実上の増感処理を行なうことも
できる。 以上のような増感方法は、何れも本発明におい
て用いられるジアゼピン誘導体に対して有効であ
り、種々の他の条件から適当な方法を選択すれば
よい。 増感処理を分光増感により行なう場合に用いら
れる分光増感用有機染料の代表例を挙げると次の
通りである。 (A‐1) メチルバイオレツト、クリスタルバイオレ
ツト、マラカイトグリーン等のトリフエニルメ
タン系色素 (A‐2)エリスロシン、ローズベンガル等のキサン
テン系色素 (A‐3)メチレンブルー、メチレングリーン等のチ
アジン系色素 (A‐4)カプリルブルー、メルドラブルー等のオキ
サジン系色素 (A‐5)チアシアニン、オキサシアニン等のシアニ
ン系色素 (A‐6)p−ジメチルアミノスチリルキノリン等の
スチリル系色素 (A‐7)ピリリウム塩、チアピリリウム塩、ベンゾ
ピリリウム塩、ベンゾチアピリリウム塩のピリ
リウム塩系色素 (A‐8)3・3′−ジカルバゾリルメタン系色素 又前記ジアゼピン誘導体と電荷移動錯体を形成
するものとして好ましい電子受容体としては、例
えば、2・4・7−トリニトロフルオレノン、
2・4・5・7−テトラニトロフルオレノン、ク
ロラニル、テトラシアノキシジメタン等のルイス
酸を挙げることができる。 更に機能分離型感光体を構成せしめる場合に用
いられるキヤリア発生物質としては、既述の分光
増感用有機染料として挙げた各種の色素を有効に
用いることができるが、その他には次ものがあ
る。 (B‐1)モノアゾ色素、ビスアゾ色素、トリスアゾ
色素等のアゾ系色素 (B‐2)ペリレン酸無水物、ペリレン酸イミド等の
ペリレン系色素 (B‐3)インジコ、チオインジコ等のインジコイド
系色素 (B‐4)アントラキノン、ピレンキノン、フラバン
トロン類等の多環キノン類 (B‐5)キノクリドン系色素 (B‐6)ビスベンズイダゾール系色素 (B‐7)インダンスロン系色素 (B‐8)スクエアリリウム系色素 (B‐9)金属フタロシアニン、無金属フタロシアニ
ン等のフタロシアニン系顔料 (B‐10) セレン、セレン合金 (B‐11) 硫化カドミウム、セレン化カドミウム等
の無機光導電体 (B‐12) ピリリウム塩色素、チアピリリウム塩色
素とポリカーボネートから形成される共晶錯体 以上の増感方法のほか、化学増感剤による方法
も有効に用いることができる。 本発明において用いるジアゼピン誘導体はそれ
自体では被膜形成能が無いため、種々の結着剤を
組合せて、感光層が構成される。 ここに用いられる結着剤としては、任意のもの
を用いることができるが、疎水性で且つ誘電率が
高く、電気絶縁性のフイルム形成性高分子重合体
を用いるのが好ましい。このような高分子重合体
としては、例えば次のものを挙げることができる
が、勿論、これらに限定されるものではない。 (C‐1)ポリカーボネート (C‐2)ポリエステル (C‐3)メタクリル樹脂 (C‐4)アクリル樹脂 (C‐5)ポリ塩化ビニル (C‐6)ポリ塩化ビニリデン (C‐7)ポリスチレン (C‐8)ポリビニルアセテート (C‐9)スチレン−ブタジエン共重合体 (C‐10) 塩化ビニリデン−アクリロニトリル共重
合体 (C‐11) 塩化ビニル−酢酸ビニル共重合体 (C‐12) 塩化ビニル−酢酸ビニル−無水マレイン
酸共重合体 (C‐13) シリコン樹脂 (C‐14) シリコン−アルキツド樹脂 (C‐15) フエノール−ホルムアルデヒド樹脂 (C‐16) スチレン−アルキツド樹脂 (C‐17) ポリ−N−ビニルカルバゾール これらの結着剤は単独で或いは2種以上の混合
体を用いることができる。 本発明電子写真感光体の機械的構成について説
用すると、本発明の一例においては、第1図及び
第2図に示すように、導電性支持体1上に、キヤ
リア発生物質を主成分とするキヤリア発生層2
と、既述のジアゼピン誘導体をキヤリア輸送物質
の主成分として含有するキヤリア輸送層3との積
層体より成る感光層4を設ける。第3図及び第4
図に示すように、この感光層4は導電性支持体1
上に設けた中間層5を介して設けてもよい。この
ように感光層4を二層構成としたときに最もすぐ
れた電子特性を有する電子写真感光体が得られ
る。又本発明においては、第5図及び第6図に示
すように、前記キヤリア輸送物質を主成分とする
キヤリア輸送性層6中に微粒子状のキヤリア発生
物質7を分散せしめて成る感光層4を、導電性支
持体1上に直接、或いは中間層5を介して設けて
もよい。 また、キヤリア発生物質を用いずに、前記ジア
ゼピン誘導体に増感染料或いはルイス酸等を加え
て単層の感光層を設けることによつても好ましい
結果が得られる。 ここで感光層4を二層構成としたときにキヤリ
ア発生層2とキヤリア輸送層3の何れを上層とす
るかは、帯電極性を正、負の何れに選ぶかによつ
て決定される。即ち、負帯電型感光層とする場合
は、キヤリア輸送層3を上層とするのが有利であ
り、これは当該キヤリア輸送層3中のジアゼピン
誘導体が正孔に対して高い輸送能を有する物質で
あるからである。 又二層構成の感光層4を構成するキキヤリア発
生層2は、導電性支持体1若しくはキヤリア輸送
層3上に直接、或いは必要に応じて接着層若しく
はバリヤー層などの中間層を設けた上に次の方法
によつて形成することができる。 (1) 真空蒸着法 (2) キヤリア発生物質を適当な溶剤に溶解した溶
液を塗布する方法 (3) キヤリア発生物質をボールミル、ホモミキサ
ー等によつて分散媒中で微細粒子状とし、必要
に応じて結着剤と混合分散して得られる分散液
を塗布する方法 このようにして形成されるキヤリア発生層2の
厚さは0.01〜5ミクロンであることが好ましく、
更に好ましくは0.05〜3ミクロンである。 又キヤリア輸送層3の厚さは必要に応じて変更
し得るが、通常5〜30ミクロンであることが好ま
しい。このキヤリア輸送層3における組成割合
は、既述のジアゼピン誘導体を主成分とするキヤ
リア輸送物質1重量部に対して結着剤を0.8〜4
重量部とすることが好ましいが、微粉状のキヤリ
ア発生物質を分散せしめた感光層4を形成する場
合は、キヤリア発生物質1重量部に対して結着剤
を5重量部以下の範囲で用いることが好ましい。
また、キヤリア発生層2を結着剤による分散型の
ものとして構成する場合には、同様にキヤリア発
生物質1重量部に対して結着剤を5重量部以下の
範囲で用いることが好ましい。 尚本発明電子写真感光体の構成に用いられる導
電性支持体1としては、金属板、又は例えば導電
性ポリマー、酸化インジウム等の導電性化合物、
若しくは例えばアルミニウム、パラジウム、金等
の金属薄層を塗布、蒸着或いはラネートして導電
性化を達成した紙、プラスチツクフイルムなどが
用いられる。結着層或いはバリヤー層などの中間
層5としては、前記結着剤として用いられる高分
子重合体の他、ゼラチン、カゼイン、澱粉、ポリ
ビニルアルコール、酢酸ビニル、エチルセルロー
ス、カルボキシメチルセルロースなどの有機高分
子物質または酸化アルミニウムなどが用いられ
る。 本発明電子写真感光体は以上のような構成であ
つて、後述する実施例からも明らかなように帯電
特性、感度特性、画像形成特性に優れており、特
に反復転写式電子写真方式に供したときにも疲労
劣化が少なく、耐久性が優れたものである。 以下本発明の実施例を具体的に説明するがこれ
により本発明の実施態様が限定されるものではな
い。 実施例 1 ポリエステルフイルム上にアルミニウム箔をラ
ミネートして成る導電性支持体上にセレンを蒸着
して厚さ0.5ミクロンのキヤリア発生層を形成し
た。次いで例示化合物〔〕−2の6重量部とポ
リカーボネート「パンライトL−1250」(帝人化
成社製)10重量部とを、1・2−ジクロロエタン
90重量部中に溶解し、この溶液を乾燥後の膜厚が
11ミクロンになるように塗布してキヤリア輸送層
を形成し、もつて本発明電子写真感光体を作製し
た。 この電子写真感光体について、静電複写紙試験
装置「SP−428型」(川口電機製作所製)を用い
てダイナミツク方式で電子写真特性を測定した。
即ち、前記感光体の感光層表面を帯電圧−6.0KV
で5秒間帯電せしめた時の表面電位VA、次いで
タングステンランプの光を感光体表面における照
度が35 luxになるように照射して表面電位VA
半分に減衰させるのに要する露光量(半減露光
量)
The present invention relates to an electrophotographic photoreceptor, and more particularly to an electrophotographic photoreceptor comprising a photosensitive layer made of an organic photoconductive compound. Conventionally, electrophotographic photoreceptors having a photosensitive layer containing as a main component an inorganic photoconductor such as selenium, subsalt oxide, or cadmium sulfide are widely known. However, these are not necessarily satisfactory in terms of properties such as thermal stability, durability, and moisture resistance.
Moreover, there are also problems in manufacturing and handling due to toxicity. On the other hand, electrophotographic photoreceptors having a photosensitive layer containing an organic photoconductive compound as a main component are relatively easy to manufacture, inexpensive, easy to handle, and generally selenium photoreceptors, etc. It has many advantages, such as superior thermal stability, and has attracted a lot of attention in recent years. Poly-N-vinylcarbazole is the most well-known such organic photoconductive compound, and 2.
Electrophotographic photoreceptors having a photosensitive layer containing as a main component a charge transfer complex formed with a Lewis acid such as 4,7-trinitro-9-fluorenone have already been put into practical use. On the other hand, electrophotographic photoreceptors are known that have a laminated type or dispersion type functionally separated photosensitive layer in which the carrier generation function and the carrier transport function in the photoconductive photosensitive layer are assigned to separate substances, respectively. For example, electrophotographic photoreceptors have been put into practical use that have a photosensitive layer that combines a carrier generation layer made of an amorphous selenium thin layer and a carrier transport layer made of poly-N-vinylcarbazole. However, since poly-N-vinylcarbazole lacks flexibility, its coating is hard and brittle and prone to cracking and peeling, and therefore electrophotographic photoreceptors using it have poor durability. Moreover, if a plasticizer is added to improve this drawback, the residual potential will increase when subjected to the electrophotographic process, and as the material is used repeatedly, the residual potential will increase and gradually fog will occur in the copied image. It has some drawbacks. Furthermore, since low molecular weight organic photoconductive compounds generally do not have film-forming ability, they are used in combination with any binder. Therefore, it is preferable in that the physical properties or electrophotographic properties of the film can be controlled to some extent by selecting the type and composition ratio of the binder used, but it is preferable that the film has high compatibility with the binder. The types of organic photoconductive compounds that have
In reality, there are not many materials that can be used in the composition of the photosensitive layer of an electrophotographic photoreceptor. For example, 2,5-bis(p-diethylaminophenyl)-1,3,4-oxadiazole described in U.S. Pat. No. 3,189,447 is usually preferably used as a material for the photosensitive layer of an electrophotographic photoreceptor. Therefore, when it is mixed with a binder such as polyester or polycarbonate in the ratio required to obtain favorable electrophotographic properties to form a photosensitive layer, At temperatures above 50°C, oxadiazole crystals begin to precipitate, resulting in a disadvantage that electrophotographic properties such as charge retention and sensitivity deteriorate. On the other hand, the diarylalkane derivatives described in U.S. Pat.
When used in the construction of a photosensitive layer of an electrophotographic photoreceptor of a repetitive transfer type in which charging and exposure are repeated, it has the disadvantage that the sensitivity of the photosensitive layer gradually decreases. In addition, the structural formula described in Japanese Patent Application Laid-Open No. 55-46760 An electrophotographic photoreceptor constructed using the hydrazone compound represented by as a carrier transport material is not fully satisfactory in terms of sensitivity, residual potential characteristics, etc., and the sensitivity gradually decreases as the photoreceptor is used repeatedly. However, since the residual potential increases, the durability is poor. The reality is that an organic photoconductive compound having practically preferable characteristics for producing an electrophotographic photoreceptor has not yet been found. An object of the present invention is to provide an electrophotographic photosensitive layer comprising a photosensitive layer containing a novel organic photoconductive compound that has excellent compatibility with a binder, is stable against heat and light, and has excellent carrier transport ability. It's about offering your body. Another object of the present invention is to provide an electrophotographic photoreceptor with high sensitivity and low residual potential. Still other objects of the present invention include charging, exposing, developing,
To provide an electrophotographic photoreceptor of excellent durability that exhibits stable characteristics over a long period of time and has little fatigue deterioration due to repeated use when used as a repeat transfer type electrophotographic photoreceptor in which a transfer process is repeatedly performed. It is in. As a result of intensive research to achieve the above object, the present inventors discovered that the object could be achieved by using a specific diazepine derivative as a material constituting the photosensitive layer of an electrophotographic photoreceptor, and completed the present invention. This is what I did. The above object is achieved by providing on a conductive support a photosensitive layer containing at least one diazepine derivative represented by the following general formula [], [] or []. (In each formula, R 1 , R 2 , and R 3 each represent a substituted or unsubstituted aryl group or a substituted or unsubstituted styryl group, and R 4 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. ) That is, in the present invention, the general formula [],
A diazepine derivative represented by [ ] or [ ] is used as a photoconductive substance to form a photosensitive layer of an electrophotographic photoreceptor, or the diazepine derivative is used as a carrier transport substance by focusing on its excellent carrier transport ability. , and a carrier-generating substance to form a photosensitive layer of a so-called functionally separated photoreceptor in which carrier generation and transport are performed by separate substances, respectively. As a result, it is possible to provide an electrophotographic photoreceptor that has excellent coating physical properties, exhibits little fatigue deterioration even when used repeatedly, and can exhibit stable characteristics. Specific examples of the diazepine derivatives represented by the general formulas [], [], and [] that can be effectively used in the present invention include those having the structural formulas shown below, but of course they are not limited to these. It is not something that will be done. The above diazepine derivatives can be easily synthesized by known methods. For example, literature
Helv.Chim.Acta., Volume 39 (1956), Page 207,
Can.J.Chem., Vol. 52 (1974), p. 2798, or
Acta.Chem.Scand., Vol. 23 (1969), No. 3125,
It can be synthesized according to the following reaction formula using methods described elsewhere. Here, R 1 , R 2 , R 3 and R 4 in the formula represent the same as shown for the above general formulas [], [] and [], respectively, and X - is ClO 4 - , BF 4 - ,
Represents a counterion such as PF 6 - . Next, a typical method for synthesizing the diazepine derivative used in the present invention will be specifically explained. Synthesis Example 1 (Synthesis of Exemplified Compound []-2) 4-(p-dimethylaminophenyl)-2.6-
Diphenylthiopyrylium perchlorate 4.7g
(0.01 mol) of fine powder was mixed with hydrazine hydrate (100
%) in 50 ml portions and stir at room temperature for 18 hours. The formed precipitate is collected by filtration, thoroughly washed with methanol, dried, and then recrystallized with acetonitrile. The yield in this method is 3.1 g (yield 84.9%), and the melting point of the target product is 217-218°C. Synthesis Example 2 (Synthesis of Exemplified Compound []-1) 3,5,7-triphenyl-1,2(4H)-diazepine (Exemplified Compound []-1) 3.8 g (0.012
A mixture of 120 ml of iodomethyl mol) and 5 g of sodium hydroxide is stirred at room temperature for 24 hours, the formed precipitate is removed by filtration, and the filtrate is separated and purified by silica gel column chromatography. The yield in this method is 2.7 g (yield: 67.5%), and the melting point of the target product is 117-118.5°C. Diazepine derivatives such as those mentioned above have almost no photosensitivity to light in the visible region, and therefore it is necessary to perform a sensitization treatment in order to enable the exposure process to be performed with visible light. It is. Various methods have been proposed for sensitizing organic photoconductivity, and the first method is to perform spectral sensitization (dye sensitization) by adding an organic dye. A second method is to add a substance that forms a charge transfer complex, and since the diazepine derivative is an electron-donating substance in the present invention, this substance can be an electron-accepting substance. preferable.
In the present invention, when the diazepine derivative is used as a carrier transport substance, it may be combined with a carrier generating substance having the function of absorbing visible light and generating charged carriers, such as another organic dye or pigment or an inorganic photoconductive substance. By using a functionally separated photoreceptor, a de facto sensitization process can be performed. All of the sensitization methods described above are effective for the diazepine derivative used in the present invention, and an appropriate method may be selected from various other conditions. Typical examples of organic dyes for spectral sensitization used when sensitization is carried out by spectral sensitization are as follows. (A-1) Triphenylmethane dyes such as methyl violet, crystal violet, and malachite green (A-2) Xanthene dyes such as erythrosine and rose bengal (A-3) Thiazine dyes such as methylene blue and methylene green (A-4) Oxazine dyes such as caprylic blue and Meldora blue (A-5) Cyanine dyes such as thiacyanine and oxacyanine (A-6) Styryl dyes such as p-dimethylaminostyrylquinoline (A-7 ) Pyrylium salt dyes such as pyrylium salts, thiapyrylium salts, benzopyrylium salts, and benzothiapyryllium salts (A-8) 3,3'-dicarbazolylmethane dyes, which also form charge transfer complexes with the diazepine derivatives mentioned above. Examples of preferable electron acceptors include 2,4,7-trinitrofluorenone,
Lewis acids such as 2,4,5,7-tetranitrofluorenone, chloranil, and tetracyanoxydimethane can be mentioned. Furthermore, as carrier-generating substances used when constructing a functionally separated photoreceptor, various dyes mentioned above as organic dyes for spectral sensitization can be effectively used, but in addition, there are the following: . (B-1) Azo dyes such as monoazo dyes, bisazo dyes, and trisazo dyes (B-2) Perylene dyes such as perylenic anhydride and perylenic acid imide (B-3) Indicoid dyes such as indico and thioindico ( B-4) Polycyclic quinones such as anthraquinone, pyrenequinone, and flavanthrones (B-5) Quinocridone dyes (B-6) Bisbenzidazole dyes (B-7) Indanthrone dyes (B-8 ) Squarelylium pigments (B-9) Phthalocyanine pigments such as metal phthalocyanine and non-metal phthalocyanine (B-10) Selenium and selenium alloys (B-11) Inorganic photoconductors such as cadmium sulfide and cadmium selenide (B- 12) Eutectic complex formed from pyrylium salt dye, thiapyrylium salt dye and polycarbonate In addition to the above sensitization methods, methods using chemical sensitizers can also be effectively used. Since the diazepine derivative used in the present invention does not have the ability to form a film by itself, the photosensitive layer is constructed by combining various binders. Any binder can be used here, but it is preferable to use a film-forming polymer that is hydrophobic, has a high dielectric constant, and is electrically insulating. Examples of such high molecular weight polymers include, but are not limited to, the following. (C-1) Polycarbonate (C-2) Polyester (C-3) Methacrylic resin (C-4) Acrylic resin (C-5) Polyvinyl chloride (C-6) Polyvinylidene chloride (C-7) Polystyrene (C -8) Polyvinyl acetate (C-9) Styrene-butadiene copolymer (C-10) Vinylidene chloride-acrylonitrile copolymer (C-11) Vinyl chloride-vinyl acetate copolymer (C-12) Vinyl chloride-acetic acid Vinyl-maleic anhydride copolymer (C-13) Silicone resin (C-14) Silicone-alkyd resin (C-15) Phenol-formaldehyde resin (C-16) Styrene-alkyd resin (C-17) Poly-N -Vinylcarbazole These binders can be used alone or in a mixture of two or more. To explain the mechanical structure of the electrophotographic photoreceptor of the present invention, in one example of the present invention, as shown in FIGS. Carrier generation layer 2
and a carrier transport layer 3 containing the aforementioned diazepine derivative as a main component of the carrier transport substance. Figures 3 and 4
As shown in the figure, this photosensitive layer 4 is formed on a conductive support 1
It may be provided through an intermediate layer 5 provided above. When the photosensitive layer 4 has a two-layer structure in this manner, an electrophotographic photoreceptor having the best electronic properties can be obtained. Further, in the present invention, as shown in FIGS. 5 and 6, a photosensitive layer 4 comprising a carrier-generating substance 7 in the form of fine particles dispersed in a carrier-transporting layer 6 containing the carrier-transporting substance as a main component is provided. , may be provided directly on the conductive support 1 or via an intermediate layer 5. Preferable results can also be obtained by adding a sensitizing dye or a Lewis acid to the diazepine derivative to form a single photosensitive layer without using a carrier-generating substance. Here, when the photosensitive layer 4 has a two-layer structure, which of the carrier generation layer 2 and the carrier transport layer 3 is used as the upper layer is determined depending on whether the charging polarity is selected as positive or negative. That is, when forming a negatively charged photosensitive layer, it is advantageous to use the carrier transport layer 3 as an upper layer, since the diazepine derivative in the carrier transport layer 3 is a substance having a high transport ability for holes. Because there is. Further, the carrier generation layer 2 constituting the photosensitive layer 4 having a two-layer structure can be applied directly to the conductive support 1 or the carrier transport layer 3, or if necessary, after providing an intermediate layer such as an adhesive layer or a barrier layer. It can be formed by the following method. (1) Vacuum evaporation method (2) Method of applying a solution of a carrier-generating substance dissolved in a suitable solvent (3) A method in which the carrier-generating substance is made into fine particles in a dispersion medium using a ball mill, homomixer, etc. A method of coating a dispersion obtained by mixing and dispersing with a binder according to the method. The thickness of the carrier generation layer 2 formed in this way is preferably 0.01 to 5 microns,
More preferably, it is 0.05 to 3 microns. Further, the thickness of the carrier transport layer 3 can be changed as necessary, but it is usually preferably 5 to 30 microns. The composition ratio in this carrier transport layer 3 is 0.8 to 4 parts by weight of the binder to 1 part by weight of the carrier transport material whose main component is the diazepine derivative described above.
It is preferable to use the binder in parts by weight, but when forming the photosensitive layer 4 in which a fine powder carrier-generating substance is dispersed, the binder should be used in an amount of 5 parts by weight or less per 1 part by weight of the carrier-generating substance. is preferred.
Further, when the carrier generation layer 2 is configured as a dispersed layer using a binder, it is preferable to use the binder in an amount of 5 parts by weight or less per 1 part by weight of the carrier generation substance. The conductive support 1 used in the construction of the electrophotographic photoreceptor of the present invention may include a metal plate, a conductive polymer, a conductive compound such as indium oxide, etc.
Alternatively, paper, plastic film, etc., which have been made conductive by coating, vapor depositing, or laminating a thin layer of metal such as aluminum, palladium, or gold, may be used. The intermediate layer 5 such as a binding layer or barrier layer may be made of an organic polymer such as gelatin, casein, starch, polyvinyl alcohol, vinyl acetate, ethyl cellulose, or carboxymethyl cellulose, in addition to the polymer used as the binder. Alternatively, aluminum oxide or the like is used. The electrophotographic photoreceptor of the present invention has the above-described structure, and as is clear from the examples described later, it has excellent charging characteristics, sensitivity characteristics, and image forming characteristics, and is particularly suitable for repeated transfer electrophotography. It also shows little fatigue deterioration and excellent durability. Examples of the present invention will be specifically described below, but the embodiments of the present invention are not limited thereto. Example 1 Selenium was evaporated onto a conductive support consisting of a polyester film laminated with aluminum foil to form a carrier generating layer with a thickness of 0.5 microns. Next, 6 parts by weight of Exemplified Compound []-2 and 10 parts by weight of polycarbonate "Panlite L-1250" (manufactured by Teijin Kasei) were added to 1,2-dichloroethane.
90 parts by weight, and the film thickness after drying this solution is
A carrier transport layer was formed by coating to a thickness of 11 microns, and an electrophotographic photoreceptor of the present invention was prepared. The electrophotographic properties of this electrophotographic photoreceptor were measured by a dynamic method using an electrostatic copying paper tester "SP-428 model" (manufactured by Kawaguchi Electric Seisakusho).
That is, the surface of the photosensitive layer of the photoreceptor was charged with a voltage of -6.0KV.
The surface potential V A when charged for 5 seconds at exposure amount)

【式】並びに30 lux・secの露光 量で露光した後の表面電位(残留電位)VRをそ
れぞれ求めた。 また同様の測定を100回繰り返して行なつた。
結果は第1表に示す通りである。
[Formula] and the surface potential (residual potential) V R after exposure with an exposure amount of 30 lux·sec were determined. In addition, similar measurements were repeated 100 times.
The results are shown in Table 1.

【表】 この表から明かなように、本発明電子写真感光
体は、100回目の測定においても各特性の変化は
極めて小さく、安定した特性が得られる。 比較例 1 キヤリア輸送物質として、例示化合物〔〕−
2の代りに、構造式 で示されるN−フエニルカルバゾールを用いたほ
かは実施例1と同様にして比較用電子写真感光体
を作成し、同様の測定を行なつた。結果は第2表
に示す通りである。
[Table] As is clear from this table, the electrophotographic photoreceptor of the present invention exhibits extremely small changes in each characteristic even after the 100th measurement, and stable characteristics can be obtained. Comparative Example 1 Exemplary compound []-
Instead of 2, the structural formula A comparative electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that N-phenylcarbazole represented by was used, and the same measurements were performed. The results are shown in Table 2.

【表】 この比較用電子写真感光体はその特性が著しく
劣つたものであり、電子写真感光体として到底実
用に供し得るものではなく、そのために測定は1
回のみで中止した。 実施例 2 ポリエステルフイルムにアルミニウム箔をラミ
ネートして成る導電性支持体上に塩化ビニル−酢
酸ビニル−無水マレイン酸共重合体「エスレツク
MF−10」(積水化学社製)より成る厚さ0.05ミク
ロンの中間層を設け、その上に、ジブロモアント
アントロン「モノライトレツド2Y」C.I.No.59300
I.C.I.社製)を蒸着して厚さ0.5ミクロンのキヤリ
ア発生層を形成した。次いで例示化合物〔〕−
11の6重量部とポリカーボネート「パンライトL
−1250」(帝人化成社製)10重量部とを1・2−
ジクロロエタン90重量部中に溶解し、この溶液を
乾燥後の膜厚が11ミクロンになるように塗布して
キヤリア輸送層を形成し、もつて本発明電子写真
感光体を作製した。 この電子写真感光体について実施例1と同様の
測定を行なつた。結果は第3表に示す通りであ
る。
[Table] This comparative electrophotographic photoreceptor has extremely inferior characteristics and cannot be used for practical use as an electrophotographic photoreceptor.
It was canceled after only one session. Example 2 Vinyl chloride-vinyl acetate-maleic anhydride copolymer ``Eslec'' was deposited on a conductive support consisting of a polyester film laminated with aluminum foil.
MF-10'' (manufactured by Sekisui Chemical Co., Ltd.) with a thickness of 0.05 microns, and on top of that, dibromoanthrone ``Monolite Red 2Y'' CI No. 59300.
(manufactured by ICI) was vapor-deposited to form a carrier generation layer with a thickness of 0.5 micron. Next, exemplified compound []-
6 parts by weight of 11 and polycarbonate "Panlite L"
-1250" (manufactured by Teijin Chemicals) 10 parts by weight and 1.2-
A carrier transport layer was formed by dissolving this solution in 90 parts by weight of dichloroethane and applying this solution to a film thickness of 11 microns after drying, thereby producing an electrophotographic photoreceptor of the present invention. The same measurements as in Example 1 were performed on this electrophotographic photoreceptor. The results are shown in Table 3.

【表】 またこの電子写真感光体を電子写真複写機「U
−Bix2000R」(小西六写真工業社製)に装着し複
写テストを行なつたところ、原画に忠実でコント
ラストが高く、階調性にも優れた複写画像が得ら
れ、複写を5000回行なつたときにも、初期と同様
に良好な複写画像が得られた。 更にこの5000回の複写を経た電子写真感光体に
ついて、実施例1と同様の測定を行なつたとこ
ろ、第4表に示す結果が得られた。
[Table] This electrophotographic photoreceptor was also used in the electrophotographic copying machine "U".
-Bix2000R (manufactured by Konishi Roku Photo Industry Co., Ltd.) and conducted a copying test, we were able to obtain a copy image that was faithful to the original, had high contrast, and excellent gradation, and was copied 5,000 times. In some cases, good copy images were obtained as in the initial stage. Furthermore, measurements similar to those in Example 1 were performed on the electrophotographic photoreceptor that had been copied 5,000 times, and the results shown in Table 4 were obtained.

【表】 比較例 2 キヤリア輸送物質として、例示化合物〔〕−
11の代りに、構造式 で示されるトリアジン誘導体を用いたほかは、実
施例2と同様にして比較用電子写真感光体を作製
した。 この比較用電子写真感光体について実施例1と
同様の測定を行なつたところ、第5表に示す結果
が得られた。
[Table] Comparative Example 2 Exemplary compounds []- as carrier transport substances
11 instead of structural formula A comparative electrophotographic photoreceptor was produced in the same manner as in Example 2, except that the triazine derivative represented by was used. When the same measurements as in Example 1 were performed on this comparative electrophotographic photoreceptor, the results shown in Table 5 were obtained.

【表】 以上の結果から明かなように、実施例2に係る
本発明電子写真感光体は、電荷保持力、感度、残
留電位の諸特性並びに繰り返し使用したときの安
定性において極めて優れているのに対し、比較例
2に係る比較用電子写真感光体は、感度が極めて
低く、繰り返し使用したときの安定性も劣つてお
り、殆ど実用に供し得ないものである。 実施例 3〜10 キヤリア輸送物質として、例示化合物〔〕−
4、〔〕−8、〔〕−2、〔〕−12、〔〕−16

〔〕−8、〔〕−12及び〔〕−13をそれぞれ用
いたほかは実施例2と同様にして合計8種の本発
明電子写真感光体を作製し、その各々について実
施例1と同様にして初期特性を測定した。結果は
第6表に示す通りである。
[Table] As is clear from the above results, the electrophotographic photoreceptor of the present invention according to Example 2 is extremely excellent in charge retention, sensitivity, residual potential, and stability when repeatedly used. On the other hand, the comparative electrophotographic photoreceptor according to Comparative Example 2 has extremely low sensitivity and poor stability when repeatedly used, so that it can hardly be put to practical use. Examples 3 to 10 Exemplary compounds []- as carrier transport substances
4, []-8, []-2, []-12, []-16
,
A total of 8 types of electrophotographic photoreceptors of the present invention were prepared in the same manner as in Example 2, except that []-8, []-12, and []-13 were respectively used, and each of them was prepared in the same manner as in Example 1. The initial characteristics were measured. The results are shown in Table 6.

【表】 実施例 11 実施例2において用いた、中間層を設けて成る
導電性支持体上に、構造式 で表わされるビスアゾ顔料1重量部を、エチレン
ジアミンとn−ブチルアミンとテトラヒドロフラ
ンとを1.2:1.0:2.2の割合で混合した混合溶剤
140重量部中に溶解し、得られた溶液を乾燥後の
膜厚が0.3ミクロンになるように塗布してキヤリ
ア発生層を形成し、次いで例示化合物〔〕−11
の6重量部とメタクリル樹脂「アクリペツト」
(三菱レーヨン社製)10重量部とを1・2−ジク
ロロエタン重量部中に溶解した塗布液を乾燥後の
膜厚が12ミクロンになるように塗布してキヤリア
輸送層を形成し、以つて本発明電子写真感光体を
作製した。 この電子写真感光体について実施例1と同様に
してその初期特性の測定を行なつたところ、VA
=−1074(V)、
[Table] Example 11 On the conductive support provided with the intermediate layer used in Example 2, the structural formula A mixed solvent prepared by mixing 1 part by weight of the bisazo pigment represented by ethylenediamine, n-butylamine, and tetrahydrofuran in a ratio of 1.2:1.0:2.2.
140 parts by weight, and the resulting solution was coated to form a carrier generation layer so that the film thickness after drying was 0.3 microns, and then exemplified compound []-11
6 parts by weight of methacrylic resin "Acrypet"
(Manufactured by Mitsubishi Rayon Co., Ltd.) A coating solution prepared by dissolving 10 parts by weight of 1,2-dichloroethane in parts by weight of 1,2-dichloroethane was applied to a film thickness of 12 microns after drying to form a carrier transport layer. An inventive electrophotographic photoreceptor was produced. When the initial characteristics of this electrophotographic photoreceptor were measured in the same manner as in Example 1, it was found that V A
=-1074(V),

【式】VR =0(V)であつた。 またこの電子写真感光体について実施例2にお
けると同様の複写テストを行なつたところ、原画
に忠実でコントラストが高く、階調性に優れた複
写画像が得られ、複写を5000回繰り返したときに
も初期と同様の優れた複写画像が得られた。 実施例 12 実施例2において用いた、中間層を設けて成る
導電性支持体上に、N・N′−ジメチル−ペリレ
ン−3・4・9・10−テトラカルボン酸ジイミド
「パリオゲンマルーン3920」(C.I.No.71130
BASF社製)を蒸着して厚さ0.4ミクロンのキヤ
リア発生層を形成した。次いで例示化合物〔〕
−7の6重量部とポリエステル「バイロン200」
(東洋紡績社製)10重量部とを1・2−ジクロロ
エタン90重量部中に溶解し、この溶液を乾燥後の
膜厚が13ミクロンになるように塗布してキヤリア
輸送層を形成し、もつて本発明写真感光体を作製
した。 この電子写真感光体について実施例1における
と同様に初期特性の測定を行なつたところ、VA
=−1190(V)、
[Formula] V R =0 (V). Furthermore, when a copying test similar to that in Example 2 was conducted on this electrophotographic photoreceptor, a copied image faithful to the original image, with high contrast, and excellent gradation was obtained, and when copying was repeated 5000 times, Also, excellent copy images similar to those obtained in the initial stage were obtained. Example 12 N·N′-dimethyl-perylene-3,4,9,10-tetracarboxylic acid diimide “Paliogen Maroon 3920” was deposited on the conductive support provided with the intermediate layer used in Example 2. (CINo.71130
(manufactured by BASF) was vapor-deposited to form a carrier generation layer with a thickness of 0.4 microns. Next, exemplified compounds []
-6 parts by weight of 7 and polyester “Byron 200”
(manufactured by Toyobo Co., Ltd.) in 90 parts by weight of 1,2-dichloroethane, and this solution was applied to form a carrier transport layer so that the film thickness after drying was 13 microns. A photographic photoreceptor of the present invention was prepared. When the initial characteristics of this electrophotographic photoreceptor were measured in the same manner as in Example 1, it was found that V A
=-1190(V),

【式】VR =−8(V)であつた。 またこの電子写真感光体について、実施例2に
おけると同様の複写テストを行なつたところ、複
写回数が5000回に達してもなお良好な複写画像が
得られた。 実施例 13 キヤリア発生物質として、構造式 で示されるビスアゾ顔料を用いたほかは実施例11
と同様にして本発明電子写真感光体を作製し、実
施例1と同様にしてその初期特性の測定を行なつ
たところ、VA=−1022〔V)、
[Formula] V R =-8 (V). Further, when a copying test similar to that in Example 2 was conducted on this electrophotographic photoreceptor, good copied images were still obtained even after the number of copies reached 5000 times. Example 13 As a carrier generating substance, the structural formula Example 11 except that the bisazo pigment shown in was used.
An electrophotographic photoreceptor of the present invention was prepared in the same manner as in Example 1, and its initial characteristics were measured in the same manner as in Example 1. As a result, V A =-1022 [V),

【式】VR=−5(V)で あつた。 実施例 14 ポリエステルフイルムにアルミニウム箔をラミ
ネートした導電性支持体上に、ポリエステル「バ
イロン200」(東洋紡績社製)より成る厚さ0.1ミ
クロンの中間層を設け、4−(p−ジメチルアミ
ノフエニル)−2・6−ジフエニルチオピリリウ
ムパークロレート1重量部をジクロロメタン130
重量部中に溶解した上、更にポリカーボネート
「ユーピロンS−1000」(三菱ガス化学社製)10重
量部と例示化合物〔〕−14の6重量部とを加え
て溶解し十分撹拌して得られた塗布液を、前記中
間層上に乾燥後の膜厚が12ミクロンになるように
塗布して感光層を形成し、以つて本発明電子写真
感光体を作製した。 この電子写真感光体について実施例1と同様に
して測定を行なつた。結果は第7表に示す通りで
ある。
[Formula] V R =-5 (V). Example 14 A 0.1 micron thick intermediate layer made of polyester "Vylon 200" (manufactured by Toyobo Co., Ltd.) was provided on a conductive support made of polyester film laminated with aluminum foil, and 4-(p-dimethylaminophenyl )-2,6-diphenylthiopyrylium perchlorate 1 part by weight dichloromethane 130%
10 parts by weight of polycarbonate "Iupilon S-1000" (manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 6 parts by weight of exemplified compound []-14 were added and dissolved, followed by thorough stirring. A photosensitive layer was formed by coating the coating liquid on the intermediate layer so that the film thickness after drying was 12 microns, thereby producing an electrophotographic photoreceptor of the present invention. Measurements were performed on this electrophotographic photoreceptor in the same manner as in Example 1. The results are shown in Table 7.

【表】 以上の結果から明かなように、本発明電子写真
感光体は、電荷保持力、感度、残留電位等の諸特
性に優れ、且つ繰り返し使用したときの安定性も
極めて優れたものである。
[Table] As is clear from the above results, the electrophotographic photoreceptor of the present invention has excellent properties such as charge retention, sensitivity, and residual potential, and is also extremely stable when used repeatedly. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は各々本発明電子写真感光体の
機械的構成例についての説明図である。 1……導電性支持体、2……キヤリア発生層、
3……キヤリア輸送層、4……感光層、5……中
間層、6……キヤリア輸送性層、7……キヤリア
発生物質。
FIGS. 1 to 6 are explanatory diagrams of mechanical configuration examples of the electrophotographic photoreceptor of the present invention, respectively. 1... Conductive support, 2... Carrier generation layer,
3...Carrier transport layer, 4...Photosensitive layer, 5...Intermediate layer, 6...Carrier transport layer, 7...Carrier generating substance.

Claims (1)

【特許請求の範囲】 1 導電性支持体と、この導電性支持体上に設け
た感光層とを具え、前記感光層が、下記一般式
〔〕、〔〕又は〔〕で示されるジアゼピン誘
導体の少なくとも一種を含有することを特徴とす
る電子写真感光体。 (各式中、R1、R2、R3は各々置換若しくは非置換
のアリール基又は置換若しくは非置換のスチリル
基を表わし、R4は置換若しくは非置換のアルキ
ル基又は置換若しくは非置換のアリール基を表わ
す。) 2 前記ジアゼピン誘導体を含有する層がキヤリ
ア輸送層を構成し、前記感光層はこのキヤリア輸
送層とキヤリア発生層との積層体によつて構成さ
れている特許請求の範囲第1項記載の電子写真感
光体。 3 前記ジアゼピン誘導体を含有する層がキヤリ
ア発生物質を含有し、この層により前記感光層が
構成されている特許請求の範囲第1項記載の電子
写真感光体。
[Scope of Claims] 1 Comprising an electrically conductive support and a photosensitive layer provided on the electrically conductive support, the photosensitive layer comprising a diazepine derivative represented by the following general formula [], [] or []. An electrophotographic photoreceptor characterized by containing at least one type of photoreceptor. (In each formula, R 1 , R 2 , and R 3 each represent a substituted or unsubstituted aryl group or a substituted or unsubstituted styryl group, and R 4 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. 2. The layer containing the diazepine derivative constitutes a carrier transport layer, and the photosensitive layer is constituted by a laminate of the carrier transport layer and the carrier generation layer. The electrophotographic photoreceptor described in . 3. The electrophotographic photoreceptor according to claim 1, wherein the layer containing the diazepine derivative contains a carrier generating substance, and the photosensitive layer is constituted by this layer.
JP18231981A 1981-11-16 1981-11-16 Electrophotographic receptor Granted JPS5885438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18231981A JPS5885438A (en) 1981-11-16 1981-11-16 Electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18231981A JPS5885438A (en) 1981-11-16 1981-11-16 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS5885438A JPS5885438A (en) 1983-05-21
JPS6137618B2 true JPS6137618B2 (en) 1986-08-25

Family

ID=16116221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18231981A Granted JPS5885438A (en) 1981-11-16 1981-11-16 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS5885438A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151881A (en) * 1986-12-16 1988-06-24 Furuno Electric Co Ltd Phase demodulator
JPH02202119A (en) * 1988-12-02 1990-08-10 Motorola Inc Frequency tracking system
JPH07273556A (en) * 1994-04-01 1995-10-20 Nec Corp Fm demodulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151881A (en) * 1986-12-16 1988-06-24 Furuno Electric Co Ltd Phase demodulator
JPH02202119A (en) * 1988-12-02 1990-08-10 Motorola Inc Frequency tracking system
JPH07273556A (en) * 1994-04-01 1995-10-20 Nec Corp Fm demodulator

Also Published As

Publication number Publication date
JPS5885438A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
US4415641A (en) Electrophotographic light-sensitive element
US4448868A (en) Electrophotographic photoreceptor with hydrazone derivative
JPH0331255B2 (en)
JPS6058469B2 (en) electrophotographic photoreceptor
JPS6028342B2 (en) electrophotographic photoreceptor
JPS6262343B2 (en)
JPH0241021B2 (en)
JPS6034101B2 (en) electrophotographic photoreceptor
JPS6341053B2 (en)
JP2699429B2 (en) Photoconductor
JPH01195455A (en) Photosensitive body
JP2737205B2 (en) Photoconductor
JPS6137618B2 (en)
JPS6139661B2 (en)
JPS6135546B2 (en)
JP2595530B2 (en) Photoconductor
JPH0713741B2 (en) Electrophotographic photoreceptor
JP2600285B2 (en) Photoconductor
JPS6137619B2 (en)
JPH01263657A (en) Electrophotographic sensitive body
JPH01155358A (en) Photosensitive body
JPS6034100B2 (en) electrophotographic photoreceptor
JP2593087B2 (en) Electrophotographic photoreceptor
JP2757462B2 (en) Photoconductor
JP2595527B2 (en) Photoconductor