JPS6133060B2 - - Google Patents
Info
- Publication number
- JPS6133060B2 JPS6133060B2 JP55109174A JP10917480A JPS6133060B2 JP S6133060 B2 JPS6133060 B2 JP S6133060B2 JP 55109174 A JP55109174 A JP 55109174A JP 10917480 A JP10917480 A JP 10917480A JP S6133060 B2 JPS6133060 B2 JP S6133060B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- dip galvanizing
- temperature
- strip
- galvanizing bath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005246 galvanizing Methods 0.000 claims description 64
- 238000000034 method Methods 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 11
- 239000007789 gas Substances 0.000 description 36
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 21
- 229910052725 zinc Inorganic materials 0.000 description 18
- 239000011701 zinc Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000001816 cooling Methods 0.000 description 10
- 238000007747 plating Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 6
- 238000005192 partition Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000010583 slow cooling Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0034—Details related to elements immersed in bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0034—Details related to elements immersed in bath
- C23C2/00342—Moving elements, e.g. pumps or mixers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0034—Details related to elements immersed in bath
- C23C2/00342—Moving elements, e.g. pumps or mixers
- C23C2/00344—Means for moving substrates, e.g. immersed rollers or immersed bearings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
- C23C2/004—Snouts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/325—Processes or devices for cleaning the bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
- C23C2/52—Controlling or regulating the coating processes with means for measuring or sensing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
- C23C2/52—Controlling or regulating the coating processes with means for measuring or sensing
- C23C2/522—Temperature of the bath
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating With Molten Metal (AREA)
Description
【発明の詳細な説明】
この発明は、ストリツプの連続溶融亜鉛メツキ
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION This invention relates to a continuous hot dip galvanizing process for strip.
従来、ストリツプの連続溶融亜鉛メツキは、次
のように行なわれていた。 Conventionally, continuous hot-dip galvanizing of strips was carried out as follows.
即ち、加熱、均熱帯で720℃程度に加熱したス
トリツプは、第1冷却帯で600〜650℃程度に冷却
され、徐冷帯に入り、ここで徐々に冷却されて、
溶融亜鉛メツキ浴槽の直前まで来る。ストリツプ
は、溶融亜鉛メツキ浴槽の直前で、ジエツトクー
ラーによつてほぼ溶融亜鉛メツキ浴の温度450〜
470℃まで冷却された後、溶融亜鉛メツキ浴槽内
に入り、ここで亜鉛メツキされる。亜鉛メツキさ
れたストリツプは、シンクロールを経て、溶融亜
鉛メツキ浴槽を出るが、この直後に、気体絞りノ
ズルからの高温気体により、付着亜鉛量が所定の
量に調整され、この後、次工程に移動する。 That is, the strip heated to about 720°C in the heating and soaking zone is cooled to about 600 to 650°C in the first cooling zone, enters the slow cooling zone, and is gradually cooled there.
You will come right in front of the hot-dip galvanized bathtub. Just before the hot-dip galvanizing bath, the strip is cooled by a jet cooler to approximately the temperature of the hot-dip galvanizing bath, 450 to 450°C.
After cooling to 470°C, it enters a hot-dip galvanizing bath where it is galvanized. The galvanized strip passes through a sink roll and leaves the hot-dip galvanizing bath. Immediately after this, the amount of zinc deposited is adjusted to a predetermined amount by high-temperature gas from a gas restriction nozzle, after which it is transferred to the next process. Moving.
徐冷後、溶融亜鉛メツキ浴槽に入る直前に、ス
トリツプを溶融亜鉛メツキ浴の温度とほぼ同等に
冷却するのは、ストリツプを冷却しないで、その
まま溶融亜鉛メツキ浴に入れると、次の問題が生
じるからである。 After slow cooling, the strip is cooled to approximately the same temperature as the hot-dip galvanizing bath immediately before entering the hot-dip galvanizing bath.If the strip is placed directly into the hot-dip galvanizing bath without cooling, the following problems will occur. It is from.
溶融亜鉛メツキ浴の温度が異常に上昇し、ド
ロスの発生が非常に多くなる。 The temperature of the hot-dip galvanizing bath rises abnormally, and a large amount of dross is generated.
シンクロール、気体絞りロール等が亜鉛によ
つて侵食され、これらの寿命が低下する。 Sinking rolls, gas squeezing rolls, etc. are corroded by zinc, reducing their service life.
ドロスの発生が非常に多くなることから、ド
ロスのストリツプへの付着、かみ込み等が生
じ、ストリツプの品質が低下する。 Since a large amount of dross is generated, the dross adheres to the strip, gets caught, etc., and the quality of the strip deteriorates.
また、上記気体絞りノズルからストリツプに噴
射する高温気体は、ガス発生炉から供給される。
ガス発生炉は、ブロアーによつて常温の空気を吸
引し、これを加圧してガス発生炉内のバーナーの
燃焼ガスと混合して、高温気体を作る。この気体
の温度は、ストリツプへの亜鉛の付着量、ストリ
ツプの移動速度等によつて、最適な温度に制御さ
れる。上記バーナーの燃料としては、コークス炉
ガス(COG)、LPG、灯油等が使用される。 Further, the high temperature gas injected from the gas throttle nozzle to the strip is supplied from a gas generating furnace.
A gas generator uses a blower to draw in room temperature air, pressurizes it, and mixes it with combustion gas from a burner inside the gas generator to create high-temperature gas. The temperature of this gas is controlled to an optimum temperature depending on the amount of zinc deposited on the strip, the moving speed of the strip, etc. As the fuel for the burner, coke oven gas (COG), LPG, kerosene, etc. are used.
ところが、上記従来の連続溶融亜鉛メツキ法に
は、次の問題がある。 However, the conventional continuous hot-dip galvanizing method described above has the following problems.
溶融亜鉛メツキ浴に侵入する場合のストリツ
プの温度が制限されるために、溶融亜鉛メツキ
浴槽前の第1冷却帯以降のストリツプの温度が
低下し、例えば、NOF(無酸化炉)方式の場
合、ストリツプの還元力が低下する。一般に、
ストリツプの還元力は、450〜650℃の範囲でス
トリツプの温度が高い程、又、水素濃度が高い
程有利である。 Since the temperature of the strip when entering the hot-dip galvanizing bath is limited, the temperature of the strip after the first cooling zone before the hot-dip galvanizing bath is reduced, e.g. in the case of NOF (non-oxidizing furnace) method. The reducing power of the strip decreases. in general,
Regarding the reducing power of the strip, the higher the temperature of the strip within the range of 450 to 650°C and the higher the hydrogen concentration, the more advantageous it is.
ストリツプの還元力低下の問題として、次の
問題がある。 There are the following problems with the reduction in the reducing power of the strip.
ストリツプの還元帯が長くなる。 The reduction zone of the strip becomes longer.
温度低下分の還元力不足を補うために、雰
囲気ガスの水素濃度を非常に高くする必要が
ある。 In order to compensate for the lack of reducing power due to the temperature drop, it is necessary to make the hydrogen concentration of the atmospheric gas extremely high.
第1冷却帯、最終冷却帯は、ジエツトクーラ
ー方式であるので、水、電力を多量に消費し、
ランニングコストが大となる。 The first cooling zone and the final cooling zone are jet coolers, which consume large amounts of water and electricity.
Running costs are high.
ストリツプは、溶融亜鉛メツキ浴に入る前
に、溶融亜鉛メツキ浴の温度と同等の温度に冷
却されるが、この冷却によるストリツプの正確
な温度がつかめず、溶融亜鉛メツキ浴の温度制
御が良行に行なわれないので、メツキ不良が起
りやすく、ドロスの発生量も増す。 Before entering the hot-dip galvanizing bath, the strip is cooled to a temperature equivalent to that of the hot-dip galvanizing bath, but the exact temperature of the strip due to this cooling is not known and the temperature control of the hot-dip galvanizing bath is not effective. Since this is not done, plating defects are likely to occur and the amount of dross generated increases.
低周波誘導加熱器(インダクター)を設け、
これにより、亜鉛の溶解を行なつているので、
電力の消費量が大きい。 A low frequency induction heater (inductor) is installed,
This dissolves the zinc, so
Power consumption is large.
ストリツプの有する顕熱は、利用されること
なく、ジエツトクーラーによつて除去される。 The sensible heat of the strip is not utilized and is removed by the jet cooler.
ガス発生炉内のバーナーの燃料に費用がかか
る。 Fuel for the burner in the gas generator is expensive.
この発明は、上述の従来の溶融亜鉛メツキ法の
有する問題点を解決するためになされたものであ
つて、
ストリツプを連続的に溶融亜鉛メツキ浴に侵入
させて、前記ストリツプに連続的に亜鉛メツキを
施こす連続溶融亜鉛メツキ法において、
前記ストリツプを前記溶融亜鉛メツキ浴の温度
にまで冷却せずに、高温のまま前記溶融亜鉛メツ
キ浴に侵入させ、前記ストリツプの有する顕熱を
溶融亜鉛メツキ浴の亜鉛の溶解に利用する一方、
前記溶融亜鉛メツキ浴の有する熱によつて、前記
溶融亜鉛メツキ浴の浴槽本体の壁体内に埋込まれ
たパイプ内の流体を加熱し、この加熱流体を、気
体絞りノズルから前記ストリツプの表面に向けて
噴射される流体の加熱に利用し、更に、前記パイ
プ内の流体の流量を調整することによつて、前記
溶融亜鉛メツキ浴の温度を所定温度に調整するこ
とに特徴を有する。 The present invention has been made to solve the problems of the conventional hot-dip galvanizing method described above, and is to continuously apply galvanizing to the strip by continuously introducing the strip into a hot-dip galvanizing bath. In the continuous hot-dip galvanizing method, the strip is allowed to enter the hot-dip galvanizing bath at a high temperature without being cooled to the temperature of the hot-dip galvanizing bath, and the sensible heat of the strip is transferred to the hot-dip galvanizing bath. While it is used for dissolving zinc,
The heat of the hot-dip galvanizing bath heats a fluid in a pipe embedded in the wall of the bathtub body of the hot-dip galvanizing bath, and this heated fluid is directed from a gas restriction nozzle to the surface of the strip. The hot-dip galvanizing bath is characterized in that the temperature of the hot-dip galvanizing bath is adjusted to a predetermined temperature by using the fluid to heat the fluid injected toward the hot-dip galvanizing bath and by adjusting the flow rate of the fluid in the pipe.
この発明にかかる方法の1態様を図面を参照し
ながら説明する。 One embodiment of the method according to the present invention will be explained with reference to the drawings.
第1図は、この方法にかかる方法の1態様を示
す説明図、第2図は、第1図のA−A線断面図で
ある。 FIG. 1 is an explanatory diagram showing one aspect of this method, and FIG. 2 is a sectional view taken along the line A--A in FIG. 1.
第1図において、1は、底壁が傾斜したメツキ
槽2と、反応槽3とから構成された溶融亜鉛メツ
キ浴の浴槽本体、4は、下部に開口5を有し、上
部両側に溶融亜鉛の通路6が形成された、メツキ
槽2と反応槽3とを分離する仕切板、7は、メツ
キ槽2内に設置されたシンクロール、8は、シン
クロール7上部に設置された絞りロール、9は、
仕切壁4の上部両側に形成された溶融亜鉛の通路
6に上下動自在に取付けられた仕切板、10は、
反応槽3内の溶融亜鉛メツキ浴を撹拌する撹拌
機、11は、反応槽3の壁体に設置されたインダ
クター、12は、反応槽3の溶融亜鉛メツキ浴内
に挿入された温度計、13は、溶融亜鉛メツキ浴
の浴槽本体1の耐火物で構成される壁体内に4系
統に埋設配管されたパイプ、14は、4系統のパ
イプ13に夫々設けられた空気供給チヤンバー、
15は、4系統のパイプ13内の空気を集合する
集合空気チヤンバー、16は、空気供給チヤンバ
ー14にダンパー17を介して接続された空気供
給用導管、18は、空気供給用導管16に取付け
られた吸込フイルター、19は、集合空気チヤン
バー15に、導管20を介して接続されたガス発
生炉、21は、導管20に設置されたブロワー、
22は、導管20に取付けられた、温度計12か
らの検出温度信号によつて、ブロワー21入側の
加熱空気量を調整する流量制御弁、23は、ブロ
ワー21の出側の導管20に取付けられた流量計
24の流量検出信号によつて、ブロワー21入側
に空気を供給し、加熱空気量を調整する流量制御
弁、25は、流量制御弁23の空気吸込側に取付
けられた吸込フイルター、26は、ガス発生炉1
9に設けられたバーナー、27は、バーナー26
に設けられた燃料流量調整弁、28は、ガス発生
炉19内の空気温度を測定する温度計、29は、
絞りロール8の直上に設置された気体絞りノズ
ル、そして、30は、ガス発生炉19内の高温空
気を気体絞りノズル29に供給する導管である。 In FIG. 1, 1 is a bathtub body of a hot-dip galvanizing bath consisting of a plating tank 2 with an inclined bottom wall and a reaction tank 3; 4 has an opening 5 in the lower part, and molten galvanized metal is coated on both sides of the upper part; 7 is a sink roll installed in the plating tank 2; 8 is a squeeze roll installed on the top of the sink roll 7; 9 is
A partition plate 10 is vertically movably attached to the molten zinc passage 6 formed on both sides of the upper part of the partition wall 4.
A stirrer for stirring the molten galvanizing bath in the reaction tank 3, 11 an inductor installed on the wall of the reaction tank 3, 12 a thermometer inserted into the molten galvanizing bath in the reaction tank 3, 13 14 is an air supply chamber installed in each of the four pipes 13;
15 is a collective air chamber that collects the air in the four pipes 13; 16 is an air supply conduit connected to the air supply chamber 14 via a damper 17; and 18 is attached to the air supply conduit 16. 19 is a gas generating furnace connected to the collective air chamber 15 via a conduit 20; 21 is a blower installed in the conduit 20;
22 is a flow control valve that is attached to the conduit 20 and adjusts the amount of heated air on the inlet side of the blower 21 based on the detected temperature signal from the thermometer 12; 23 is attached to the conduit 20 on the outlet side of the blower 21; 25 is a suction filter attached to the air suction side of the flow control valve 23. , 26 is the gas generating furnace 1
9 is a burner provided, 27 is a burner 26
28 is a thermometer for measuring the air temperature inside the gas generating furnace 19; 29 is a fuel flow rate regulating valve provided in
A gas throttle nozzle is installed directly above the throttle roll 8, and 30 is a conduit that supplies high-temperature air in the gas generating furnace 19 to the gas throttle nozzle 29.
ストリツプ31は、加熱帯、均熱帯(何れも図
示せず)で720℃程度に加熱され、第1冷却帯の
ジエツトクーラー(何れも図示せず)で550〜600
℃程度に冷却された後、徐冷帯(図示せず)を通
つて、溶融亜鉛メツキ浴の浴槽本体1前の最終冷
却帯32で冷却されることなく、600℃前後の温
度で、溶融亜鉛メツキ浴の浴槽本体1内に侵入
し、溶融亜鉛にストリツプ31の有する熱量を供
給し、シンクロール7、絞りロール8を経て、気
体絞りノズル29で気体絞りされて、460℃程度
の温度となつて、次工程に移動する。反応槽3内
の溶融亜鉛メツキ浴は、撹拌機10により撹拌さ
れ、反応槽3底部のドロスと亜鉛インゴツト33
に含有させたアルミニウムとの反応を促進させ
る。撹拌により溶融亜鉛メツキ浴は図中矢印方向
に循環し、溶融亜鉛メツキ浴の温度は均一とな
り、発生ドロスは、反応槽3上部で除去される。 The strip 31 is heated to about 720°C in a heating zone and soaking zone (none of which are shown), and heated to about 550 to 600°C in a jet cooler (none of which is shown) in a first cooling zone.
After being cooled to about 600°C, the molten zinc passes through an annealing zone (not shown) and reaches the final cooling zone 32 in front of the bathtub body 1 of the hot-dip galvanizing bath at a temperature of about 600°C. It enters the bathtub body 1 of the plating bath, supplies the heat of the strip 31 to the molten zinc, passes through the sink roll 7 and the squeezing roll 8, and is squeezed by the gas squeezing nozzle 29, reaching a temperature of about 460°C. and move on to the next process. The hot-dip galvanizing bath in the reaction tank 3 is stirred by the stirrer 10, and the dross and zinc ingots 33 at the bottom of the reaction tank 3 are stirred.
promotes the reaction with aluminum contained in By stirring, the hot-dip galvanizing bath circulates in the direction of the arrow in the figure, the temperature of the hot-dip galvanizing bath becomes uniform, and the generated dross is removed at the upper part of the reaction tank 3.
溶融亜鉛メツキ浴の浴槽本体1内の溶融亜鉛
は、メツキ槽2内に連続的に侵入する高温ストリ
ツプ31の有する顕熱によつて、インダクター1
1を停止させても溶融状態を維持し、しかも、反
応槽3内に投入された亜鉛インゴツト33を溶解
させる。 The molten zinc in the bathtub body 1 of the hot-dip galvanizing bath is heated by the inductor 1 due to the sensible heat of the high-temperature strip 31 that continuously enters the galvanizing bath 2.
Even when the zinc ingot 1 is stopped, the molten state is maintained, and moreover, the zinc ingot 33 put into the reaction tank 3 is melted.
溶融亜鉛メツキ浴の浴槽本体1の壁体内に埋設
配管されたパイプ13内には、空気供給チヤンバ
ー14から常温の空気が供給されるが、この空気
は、溶融亜鉛メツキ浴により250〜300℃に加熱さ
れ、集合空気チヤンバー15から、ブロワー21
によつて、1.2〜1.5Kg/cm2に加圧され、その大部
分がガス発生炉19に直接供給され、1部がバー
ナー26に供給される。ガス発生炉19に供給さ
れた加熱空気は、バーナー26の燃焼ガスと混合
されて、導管30を通つて、気体絞りノズル29
に供給される。 Room-temperature air is supplied from an air supply chamber 14 into the pipe 13 buried in the wall of the bathtub body 1 of the hot-dip galvanized bath, but this air is heated to 250 to 300°C by the hot-dip galvanized bath. From the heated collective air chamber 15, the blower 21
The gas is pressurized to 1.2 to 1.5 Kg/cm 2 , most of which is directly supplied to the gas generating furnace 19 and a portion of which is supplied to the burner 26 . The heated air supplied to the gas generating furnace 19 is mixed with the combustion gas of the burner 26 and passed through the conduit 30 to the gas throttle nozzle 29.
is supplied to
溶融亜鉛メツキ浴の温度が高くなると、前述の
ように、多量ドロスの発生、シンクロール7、絞
りロール8等の亜鉛による侵蝕が厳しくなり、一
方、溶融亜鉛メツキ浴の温度が低くなると、溶融
亜鉛の粘度が高くなり、不均一メツキの原因とな
る等の問題が生じる。更に、溶融亜鉛メツキ浴の
温度が低くなり、423℃以下になると溶融亜鉛の
凝固が始まる。従つて、溶融亜鉛メツキ浴の温度
は、450〜470℃の範囲に維持する必要がある。 As mentioned above, when the temperature of the hot-dip galvanizing bath becomes high, a large amount of dross is generated and corrosion of the sink roll 7, squeeze roll 8, etc. by zinc becomes severe.On the other hand, when the temperature of the hot-dip galvanizing bath becomes low, the molten zinc The viscosity of the plating increases, causing problems such as non-uniform plating. Furthermore, when the temperature of the hot-dip galvanizing bath decreases to 423° C. or lower, solidification of the molten zinc begins. Therefore, the temperature of the hot dip galvanizing bath needs to be maintained in the range of 450-470°C.
この発明では、高温ストリツプをそのまま溶融
亜鉛メツキ浴の中に侵入させているので、溶融亜
鉛メツキ浴の温度調整はきわめて重要な問題とな
る。 In this invention, since the hot strip is directly inserted into the hot dip galvanizing bath, temperature control of the hot dip galvanizing bath is a very important issue.
この発明では、溶融亜鉛メツキ浴の温度を上記
範囲に常に維持するために、次の方法をとつてい
る。即ち、反応槽3内の溶融亜鉛メツキ浴の温度
を温度計12によつて測定し、この測定温度信号
に基づいて、流量制御弁22を調整し、これによ
つて、ブロワー21により、集合空気チヤンバー
15から、ガス発生炉19内に供給される加熱空
気量を調整する。即ち、流量制御弁22によつ
て、ブロワー21への加熱空気の吸込量が調整さ
れると、各空気供給チヤンバー14に供給される
常温の空気量も調整されるので、パイプ13内を
流れる空気と溶融亜鉛との熱交換が調整され、こ
の結果、溶融亜鉛メツキ浴の温度を所定温度に容
易に維持することができる。 In this invention, the following method is used to constantly maintain the temperature of the hot dip galvanizing bath within the above range. That is, the temperature of the hot-dip galvanizing bath in the reaction tank 3 is measured by the thermometer 12, and the flow rate control valve 22 is adjusted based on this measured temperature signal. The amount of heated air supplied from the chamber 15 into the gas generating furnace 19 is adjusted. That is, when the amount of heated air sucked into the blower 21 is adjusted by the flow control valve 22, the amount of room temperature air supplied to each air supply chamber 14 is also adjusted, so that the air flowing inside the pipe 13 is adjusted. The heat exchange between the hot-dip galvanizing bath and the molten zinc is regulated, so that the temperature of the hot-dip galvanizing bath can be easily maintained at a predetermined temperature.
気体絞りノズル29からストリツプ31に噴射
する高温空気の風量及び温度は、ストリツプ31
の移動速度等によつて異なるが、風量はほぼ4000
〜6000Nm3/H、温度は常温から800℃程度までで
ある。この発明では、パイプ13に供給される空
気量を調整することによつて溶融亜鉛メツキ浴の
温度を調整しているので、ガス発生炉19から気
体絞りノズル29に供給される高温空気量も変動
する。このために、ガス発生炉19で必要とする
空気量が不足する場合には、ブロワー21の出側
の空気量を流量計24で測定し、この測定結果に
基づいて、流量制御弁23を調整し、流量制御弁
23から不足の空気をブロワー21の入側に供給
する。一方、ガス発生炉19内の空気の温度は、
温度計28で測定し、この測定結果に基づいてバ
ーナー26の燃料流量調整弁27を調整すること
によつて、所定の温度に維持される。 The flow rate and temperature of the high-temperature air injected from the gas throttle nozzle 29 to the strip 31 are
The air volume is approximately 4000, although it varies depending on the moving speed etc.
~6000Nm 3 /H, and the temperature ranges from room temperature to about 800℃. In this invention, the temperature of the hot-dip galvanizing bath is adjusted by adjusting the amount of air supplied to the pipe 13, so the amount of high-temperature air supplied from the gas generating furnace 19 to the gas throttle nozzle 29 also fluctuates. do. For this reason, if the amount of air required by the gas generating furnace 19 is insufficient, the amount of air on the outlet side of the blower 21 is measured with a flow meter 24, and the flow control valve 23 is adjusted based on the measurement result. Then, the insufficient air is supplied from the flow control valve 23 to the inlet side of the blower 21. On the other hand, the temperature of the air inside the gas generating furnace 19 is
The temperature is maintained at a predetermined level by measuring with a thermometer 28 and adjusting the fuel flow rate regulating valve 27 of the burner 26 based on the measurement result.
次に、第1図及び第2図に示した連続溶融亜鉛
メツキ装置を用いて、高温ストリツプを溶融亜鉛
メツキ浴の中に侵入させた場合、パイプ内の空気
の温度をどの程度上昇させることができたかにつ
いて説明する。 Next, if we use the continuous hot-dip galvanizing equipment shown in Figures 1 and 2 and insert a high-temperature strip into the hot-dip galvanizing bath, how much will the temperature of the air inside the pipe rise? Explain how it worked.
下記条件により操業した。即ち、
ストリツプの生産能率:30T/H、
亜鉛溶解量:3.5T/H、
ストリツプの溶融亜鉛メツキ浴への侵入温度:
650℃、
溶融亜鉛メツキ浴の温度:450℃、
パイプ内の加熱空気量:4000Nm3/H。 It was operated under the following conditions. That is, strip production efficiency: 30T/H, zinc dissolution amount: 3.5T/H, temperature at which the strip enters the hot-dip galvanizing bath:
650℃, temperature of hot-dip galvanizing bath: 450℃, amount of heated air in the pipe: 4000Nm 3 /H.
この条件で、溶融亜鉛メツキ浴への入熱Q1を
計算すると、Q1≒90万Kcal/Hとなり、一方、出
熱は、亜鉛の溶解熱≒29万Kcal/H、パイプ内の
加熱空気量≒60万Kcal/H、熱損失≒11万Kcal/H
となつた。 Under these conditions, the heat input Q 1 to the hot-dip galvanizing bath is calculated as Q 1 ≒ 900,000 Kcal/H, while the heat output is the heat of dissolution of zinc ≒ 290,000 Kcal/H, and the heated air in the pipe. Amount ≒ 600,000 Kcal/H, heat loss ≒ 110,000 Kcal/H
It became.
従つて、上記60万Kcal/Hがパイプ内の4000N
m3/Hの空気の加熱に用いられることから、結
局、パイプ内の4000Nm3/Hの空気を480℃程度に
温度上昇させることができることがわかつた。 Therefore, the above 600,000 Kcal/H is 4000N in the pipe.
Since it is used to heat air of m 3 /H, it was found that it was possible to raise the temperature of the air of 4000Nm 3 /H in the pipe to about 480°C.
以上説明した態様は、パイプに流体として空気
を供給し、これを溶融亜鉛メツキ浴の有する熱で
加熱して、この加熱空気を気体絞りノズルに供給
する場合であるが、パイプに供給する流体として
水を用いても良い。流体として空気を用いた場合
の加熱空気の使用場所としては、気体絞りノズル
以外に、ストリツプの化成処理用ドライヤー、ガ
ルバニール炉用燃焼空気等がある。一方、流体と
して水を用いた場合には、ストリツプ洗浄用温水
として使用できる。 The embodiment described above is a case in which air is supplied as a fluid to a pipe, heated by the heat of a hot-dip galvanizing bath, and this heated air is supplied to a gas throttle nozzle. Water may also be used. When air is used as the fluid, the heated air can be used in, in addition to the gas throttle nozzle, dryers for chemical conversion treatment of strips, combustion air for galvanic furnaces, and the like. On the other hand, when water is used as the fluid, it can be used as hot water for strip cleaning.
この発明によれば、次のようなきわめて有用な
効果がもたらされる。 According to this invention, the following extremely useful effects are brought about.
ストリツプの有する顕熱を有効利用でき、省
エネルギー効果がきわめて大きい、即ち、
亜鉛の溶解に用する電力原単位の大巾削
減、
ガス発生炉の燃料原単位の大巾削減、
徐冷帯のヒーター電力使用量の削減。 The sensible heat of the strip can be used effectively, and the energy-saving effect is extremely large, i.e., the electricity consumption rate for melting zinc is greatly reduced, the fuel consumption rate of the gas generating furnace is greatly reduced, and the heater power for the slow cooling zone is greatly reduced. Reduce usage.
高温のストリツプをそのまま溶融亜鉛メツキ
浴に侵入されるので、ジエツトクーラーが不要
となり、しかも炉長を短縮できる。 Since the hot strip enters the hot-dip galvanizing bath as it is, a jet cooler is not required and the furnace length can be shortened.
溶融亜鉛メツキ浴の温度調整が容易に行なわ
れるので、溶融亜鉛によるシンクロール等の装
置の侵蝕が減少し、しかも、ドロスの発生が減
少するので、ストリツプの品質、歩留が向上す
る。 Since the temperature of the hot-dip galvanizing bath can be easily controlled, corrosion of equipment such as sink rolls by molten zinc is reduced, and the generation of dross is also reduced, resulting in improved strip quality and yield.
第1図は、この発明にかかる方法の1態様を示
す説明図、第2図は、第1図のA−A線断面図で
ある。
1……浴槽本体、2……メツキ槽、3……反応
槽、4……仕切壁、5……開口、6……通路、7
……シンクロール、8……絞りロール、9……仕
切板、10……撹拌機、11……インダクター、
12……温度計、13……パイプ、14……空気
供給チヤンバー、15……集合空気チヤンバー、
16……導管、17……ダンパー、18……吸込
フイルター、19……ガス発生炉、20……導
管、21……ブロワー、22……流量制御弁、2
3……流量制御弁、24……流量計、25……吸
込フイルター、26……バーナー、27……燃料
流量調整弁、28……温度計、29……気体絞り
ノズル、30……導管、31……ストリツプ、3
2……最終冷却帯、33……亜鉛インゴツト。
FIG. 1 is an explanatory diagram showing one embodiment of the method according to the present invention, and FIG. 2 is a sectional view taken along the line A-A in FIG. 1. 1... Bathtub body, 2... Plating tank, 3... Reaction tank, 4... Partition wall, 5... Opening, 6... Passage, 7
... sink roll, 8 ... squeezing roll, 9 ... partition plate, 10 ... stirrer, 11 ... inductor,
12...Thermometer, 13...Pipe, 14...Air supply chamber, 15...Collecting air chamber,
16... Conduit, 17... Damper, 18... Suction filter, 19... Gas generating furnace, 20... Conduit, 21... Blower, 22... Flow rate control valve, 2
3... Flow rate control valve, 24... Flow meter, 25... Suction filter, 26... Burner, 27... Fuel flow rate adjustment valve, 28... Thermometer, 29... Gas throttle nozzle, 30... Conduit, 31...Strip, 3
2... Final cooling zone, 33... Zinc ingot.
Claims (1)
入させて、前記ストリツプに連続的に亜鉛メツキ
を施こす連続溶融亜鉛メツキ法において、 前記ストリツプを前記溶融亜鉛メツキ溶の温度
にまで冷却せずに、高温のまま前記溶融亜鉛メツ
キ浴に侵入させ、前記ストリツプの有する顕熱を
溶融亜鉛メツキ浴の亜鉛の溶解に利用する一方、
前記溶融亜鉛メツキ浴の有する熱によつて、前記
溶融亜鉛メツキ浴の浴槽本体の壁体内に埋込まれ
たパイプ内の流体を加熱し、この加熱流体を、気
体絞りノズルから前記ストリツプの表面に向けて
噴射される流体の加熱に利用し、更に、前記パイ
プ内の流体の流量を調整することによつて、前記
溶融亜鉛メツキ浴の温度を所定温度に調整するこ
とを特徴とするストリツプの連続溶融亜鉛メツキ
法。[Scope of Claims] 1. A continuous hot-dip galvanizing method in which a strip is continuously introduced into a hot-dip galvanizing bath and the strip is continuously galvanized, the strip being heated to the temperature of the hot-dip galvanizing bath. The strip is allowed to enter the hot-dip galvanizing bath at a high temperature without being cooled to a temperature of 100.degree.
The heat of the hot-dip galvanizing bath heats a fluid in a pipe embedded in the wall of the bathtub body of the hot-dip galvanizing bath, and this heated fluid is directed from a gas restriction nozzle to the surface of the strip. A series of strips, characterized in that the temperature of the hot-dip galvanizing bath is adjusted to a predetermined temperature by adjusting the flow rate of the fluid in the pipe. Hot dip galvanizing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10917480A JPS5735671A (en) | 1980-08-11 | 1980-08-11 | Continuously galvanizing method for strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10917480A JPS5735671A (en) | 1980-08-11 | 1980-08-11 | Continuously galvanizing method for strip |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5735671A JPS5735671A (en) | 1982-02-26 |
JPS6133060B2 true JPS6133060B2 (en) | 1986-07-31 |
Family
ID=14503523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10917480A Granted JPS5735671A (en) | 1980-08-11 | 1980-08-11 | Continuously galvanizing method for strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5735671A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2654749B1 (en) * | 1989-11-21 | 1994-03-25 | Sollac | PROCESS AND DEVICE FOR PURIFYING A HOT-TIME LIQUID METAL BATH FROM A STEEL STRIP. |
AU2008350134B2 (en) * | 2008-02-08 | 2014-01-30 | Primetals Technologies France SAS | Plant for the hardened galvanisation of a steel strip |
CN101939461B (en) | 2008-02-08 | 2013-01-02 | 西门子Vai金属科技有限公司 | Method for the hardened galvanisation of a steel strip |
WO2010055212A1 (en) * | 2008-11-14 | 2010-05-20 | Siemens Vai Metals Technologies Sas | Method and device for measuring a chemical composition of a liquid metal suitable for coating a steel strip |
JP5649181B2 (en) * | 2011-08-09 | 2015-01-07 | Jfeスチール株式会社 | Hot-dip Zn-Al alloy-plated steel sheet with excellent corrosion resistance and method for producing the same |
-
1980
- 1980-08-11 JP JP10917480A patent/JPS5735671A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5735671A (en) | 1982-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1246338A (en) | Method and apparatus for heating a strip of metallic material in a continuous annealing furnace | |
CN105834382B (en) | A kind of molten steel feed system for being used to prepare amorphous band | |
JPS6133060B2 (en) | ||
CN101284325A (en) | Network bringing type brazing furnace | |
CN211620585U (en) | Novel hot-galvanize shrend cooling water circulation device | |
CN100577823C (en) | Heat treatment furnace with built-in euthermic gas generation device | |
CN104404422A (en) | Preheating-type upwardly-heating steel wire zinc-plating furnace | |
CN208688248U (en) | A kind of energy-efficient molten aluminum circulation double chamber furance | |
CN207176046U (en) | A kind of hot-galvanized cauldron for automating circulation zinc liquid | |
CN106191729A (en) | A kind of device reducing the formation of continuous hot-dipping galvanizing zinc of zinc pot slag | |
CN201305622Y (en) | Energy saving device for efficiently utilizing residual heat in hot-dip galvanizing process | |
CN205635736U (en) | Contain plumbous material side -blown reducing furnace | |
CN112813250A (en) | Water-cooled temperature control device and method for furnace top roller chamber of direct-fired furnace | |
CN222007967U (en) | A galvanized wire processing preheating device | |
CN213086071U (en) | Galvanizing tank | |
CN205635893U (en) | Carbon fiber continuous production activation furnace | |
CN206269583U (en) | Salt bath furnace | |
CN214172953U (en) | Rapid cooling device of heat treatment furnace | |
CN209512487U (en) | Steel production palletizing shaft furnace ontology cooling water circulation utilization apparatus | |
CN220817760U (en) | High-salt-content waste water incinerator | |
CN113774235B (en) | Method and device for intermittently and continuously extracting crystallized magnesium in Pidgeon magnesium smelting | |
CN215440769U (en) | Cast aluminum water insulation sleeve of metering pump of lyocell fiber spinning machine | |
JP2002088457A (en) | Galvanizing apparatus | |
JPH0238918Y2 (en) | ||
CN210656982U (en) | Energy-concerving and environment-protective silicomanganese alloy sediment shrend processing apparatus |