[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6132041B2 - - Google Patents

Info

Publication number
JPS6132041B2
JPS6132041B2 JP14563180A JP14563180A JPS6132041B2 JP S6132041 B2 JPS6132041 B2 JP S6132041B2 JP 14563180 A JP14563180 A JP 14563180A JP 14563180 A JP14563180 A JP 14563180A JP S6132041 B2 JPS6132041 B2 JP S6132041B2
Authority
JP
Japan
Prior art keywords
liquid
spinning
specific gravity
coagulable
spinning dope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14563180A
Other languages
Japanese (ja)
Other versions
JPS5771408A (en
Inventor
Shigeo Aoyanagi
Kazuhiko Suzuki
Kazuaki Takahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP14563180A priority Critical patent/JPS5771408A/en
Publication of JPS5771408A publication Critical patent/JPS5771408A/en
Publication of JPS6132041B2 publication Critical patent/JPS6132041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 本発明は、中空糸の製造方法に関するものであ
る。詳しく述べると、人工腎臓装置等に使用され
る新規な透析用中空糸の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing hollow fibers. More specifically, the present invention relates to a method for producing a novel hollow fiber for dialysis used in artificial kidney devices and the like.

最近、浸透作用、限外過作用等を利用する人
工腎臓装置発展はめざましく、医療界において広
く使用されている。しかして、このような人工腎
臓装置においては極めて細い透析用中空糸が最も
重要な部材となつている。
In recent years, artificial kidney devices that utilize osmotic action, ultraviolet action, etc. have made remarkable progress and are widely used in the medical world. Therefore, in such an artificial kidney device, the extremely thin hollow fiber for dialysis is the most important component.

透析用中空糸の代表的なものとしては、(1)全繊
維長ならびに全周囲にわたつて数μmないし60μ
mの均一な壁厚および外径10μmないし数百μm
の均一な真円形の横断面を有し、かつ延伸配向さ
れている全繊維長にわたつて連続貫通した中空部
を有する銅アンモニアセルロース繊維よりなる中
空糸(特公昭50−40168号)、(2)断面構造において
外表面に近い構成部分が内面に近い構成部分およ
び中間部分に比べて密な多孔構造に組成されてな
る銅アンモニア再生繊維素からなる中空人造繊維
体(特公昭55−1363号)、(3)中空コアを有する銅
アンモニア再生セルロース管状の湿潤時における
電子顕微鏡的観察において、横断面ならびに縦断
面の全体が大きくとも200Å以下の微細間隙を有
する実質上均質かつ緻密な多孔構造体からなり内
外表面ともスキンレスで平滑な表面性状を有する
銅アンモニア再生セルロースからなる透析用中空
繊維(特開昭49−134920号)等がある。しかし
て、これらの中空糸はいずれも、銅アンモニアセ
レロース紡糸原液を環状紡糸孔から空気中に押出
し、その下方に自重落下させ、その際、線状に紡
出される紡糸原液の内部中央部に該紡糸原液に対
する非凝固性体を導入充填して吐出させ、それか
ら自重落下により充分に延伸したのち希硫酸溶液
中に浸漬し凝固再生を行なうことにより製造して
いる。
Typical hollow fibers for dialysis include: (1) total fiber length and circumference ranging from several μm to 60 μm;
Uniform wall thickness of m and outer diameter from 10 μm to several hundred μm
Hollow fibers made of copper ammonia cellulose fibers having a uniform perfect circular cross section and a hollow portion that extends continuously over the entire length of the stretched and oriented fibers (Japanese Patent Publication No. 40168/1989), (2) ) Hollow artificial fiber body made of copper ammonia regenerated cellulose, in which the sectional structure has a denser porous structure in which the component parts near the outer surface are closer to the inner surface and the middle part (Special Publication No. 1363 of 1983) , (3) Electron microscopic observation of a cuprammonium regenerated cellulose tube having a hollow core when wet shows that the entire cross section and longitudinal section are substantially homogeneous and dense porous structures with microscopic gaps of at most 200 Å or less. There is also a hollow fiber for dialysis made of cuprammonium regenerated cellulose (Japanese Patent Application Laid-open No. 134920/1983), which has a skinless and smooth surface on both the inner and outer surfaces. Therefore, all of these hollow fibers extrude the copper ammonia cererose spinning stock solution into the air from the annular spinning hole and let it fall under their own weight, and at that time, the internal center of the spinning stock solution that is spun linearly. It is manufactured by introducing and filling a non-coagulable material into the spinning dope and discharging it, and then sufficiently stretching it by its own gravity and then immersing it in a dilute sulfuric acid solution to perform coagulation and regeneration.

これらの中空糸を用いて人工腎臓装置等のよう
な透析装置を作るには、例えば両端部付近に人口
管および出口管をそれぞれ設けてなる管状本体
に、前記中空糸の束を挿入したのち、その両端を
ポリウレタン等の樹脂で前記管状本体の両端部と
ともにそれぞれシールすることにより行なわれ、
例えば熱交換器におけるシエル・アンド・チユー
ブ式装置に類似した構成のものとされている。
To make a dialysis device such as an artificial kidney device using these hollow fibers, for example, after inserting the bundle of hollow fibers into a tubular body having an artificial tube and an outlet tube near both ends, This is done by sealing both ends of the tubular body with a resin such as polyurethane, respectively, and
For example, it has a structure similar to a shell-and-tube type device in a heat exchanger.

しかしながら、前記中空糸はいずれも壁厚が数
μmないし60μmでかつ外径が10μmないし数百
μmであるので強度的に不充分であるばかりでな
く、直線状であるためこれを束ねて透析装置の管
状本体に挿入し、その両端を本体両端とともに樹
脂でシールする場合、嵩低であるためシール部中
に均一に分散配列させることが極めて困難であ
る。したがつて、該中空糸は前記管状本体内のあ
る部分に偏つて密に存在し、他の部分は空胴とな
り、このため使用時に透析液は主としこの空胴部
を短絡流通し、本来透析液が最も流通すべきはず
の前記束状中空糸部にはその一部しか流通しない
ことになり透析効果が著しく低くなる。また、こ
のような線状中空糸を管状本体内にある程度均一
に分散配列させ得たとしても、透析液は中空糸に
沿つてその間隙を線状に流通するので、充分な混
合が起り難いという欠点があつた。
However, all of the hollow fibers have a wall thickness of several μm to 60 μm and an outer diameter of 10 μm to several hundred μm, so they are not only insufficient in strength, but also have a straight shape, so they cannot be bundled together to form a dialysis device. When inserting it into a tubular body and sealing both ends thereof with resin together with both ends of the main body, it is extremely difficult to uniformly distribute and arrange it in the sealed part because of its low bulk. Therefore, the hollow fibers are concentrated in a certain part of the tubular body, and the other part becomes a cavity. Therefore, during use, the dialysate primarily short-circuits through this cavity, causing the Only a portion of the dialysate flows through the bundled hollow fiber portion where the dialysate should flow the most, resulting in a significantly lower dialysis effect. Furthermore, even if such linear hollow fibers could be dispersed and arranged in a somewhat uniform manner within the tubular body, the dialysate flows linearly through the gaps along the hollow fibers, making it difficult for sufficient mixing to occur. There were flaws.

このような欠点を解消するために、前記直線状
中空糸を予め加撚してカールを与えることにより
該中空糸を束ねたときに嵩高とし、これにより管
状本体内の空胴形成を避け、中空糸の均一分散配
列を計つている。しかしながら、このような方法
では加撚工程、熱セツト工程等の余分の工程を必
要とするので透析装置の製造工程が複雑となり、
結局高価となるという一方透析性能も低下するな
どの欠点があつた。
In order to eliminate these drawbacks, the linear hollow fibers are twisted in advance to give them a curl, thereby making the hollow fibers bulky when bundled. A uniformly distributed arrangement of threads is being measured. However, this method requires extra steps such as a twisting step and a heat setting step, which complicates the manufacturing process of the dialysis device.
It ended up being expensive and had the drawbacks of poor dialysis performance.

さらに、前記中空糸は、いずれも銅アンモニア
セルロース紡糸原液を空気等のガス状雰囲気中に
押出して自重落下させたのちに、凝固液中に浸漬
して凝固再生して製造されるので、ガス状雰囲気
中を落下する間にアンモニアがある程度分離して
表面から凝固し始める。したがつて、得られる中
空糸はその製法によつて程度の差こそあれ、いず
れも外側表面にスキンが生成するので、内外両表
面部および内部が均質なものは得られない。この
ため、このような中空糸を透析装置に使用した場
合、内側表面部および内部と外側表面部とで生成
する微細孔の孔径が異なるので、性能が一定せず
良好な透析効果は得られ難いという欠点があつ
た。
Furthermore, the hollow fibers are manufactured by extruding the copper ammonia cellulose spinning dope into a gaseous atmosphere such as air, allowing it to fall under its own weight, and then immersing it in a coagulation solution to coagulate and regenerate it. While falling through the atmosphere, ammonia separates to some extent and begins to solidify from the surface. Therefore, the resulting hollow fibers all have skins on their outer surfaces to varying degrees depending on the manufacturing method, so it is impossible to obtain a hollow fiber that is homogeneous on both the inner and outer surfaces and inside. For this reason, when such hollow fibers are used in a dialysis device, the pore diameters of the micropores generated on the inner surface and inside and outside surfaces are different, so the performance is inconsistent and it is difficult to obtain a good dialysis effect. There was a drawback.

本発明は、前記のごとき従来品の諸欠点を解消
するためになされたもので、銅アンモニアセルロ
ース系紡糸原液に対する非凝固性液を上層に、さ
せに該非凝固性液より比重の大きい凝固性液を下
層に充填してなる二層からなる溶液の該非凝固性
液中に、前記紡糸原液を環状紡糸孔から直接押出
し、かつ該環状に押出された紡糸原液の内部中央
部に該紡糸原液に対する非凝固性液を導入充填し
て該紡糸孔より押出される線状紡糸原液の比重を
前記非凝固液の比重よりも大きく、かつ前記凝固
性液の比重より小さく調整して吐出させたのち、
前記非凝固性液と凝固性液との界面に沿つて走行
させて凝固再生を行なうことにより製造できる。
The present invention was made in order to eliminate the various drawbacks of the conventional products as described above. The spinning stock solution is directly extruded from the annular spinning hole into the non-coagulable liquid of the two-layer solution with the lower layer filled with After introducing and filling a coagulating liquid and adjusting the specific gravity of the linear spinning stock solution extruded from the spinning hole to be larger than the specific gravity of the non-coagulating liquid and smaller than the specific gravity of the coagulating liquid, and then discharging it,
It can be produced by running the liquid along the interface between the non-coagulable liquid and the coagulable liquid to perform solidification and regeneration.

つぎに、図面を参照させながら本発明をさらに
詳細に説明する。すなわち、本発明による中空糸
は、つぎのごとき方法で製造される。すなわち、
第1図に示すように、浴槽10に、下層として銅
アンモニアセルロース紡糸原液よりも比重が大き
くかつ該紡糸原液に対する凝固性液11を、また
上層として前記銅アンモニアセルロース系紡糸原
液および前記凝固性液よりも比重が小さくかつ該
紡糸原液に対する非凝固性液12を供給して二層
からなる浴液を形成させる。この上層の非凝固性
液中に直接銅アンモニアセルロース系紡糸原液を
紡糸口金装置13の還状紡糸孔(図示せず))か
ら押出し、その際、この環状に押出された紡糸原
液の内部中央部に該紡糸原液に対する非凝固性液
を導入充填して吐出させる。環状紡糸孔より押出
された線状紡糸原液14は、内部に非凝固性液を
含んだままなんら凝固することなく上層の非凝固
性液12中を下方へ進む。この場合、線状紡糸原
液14は前記非凝固性液の浮力を受けながらも、
自身は該非凝固性液12よりも比重が大きいので
沈降する。しかして、線状紡糸原液14は、下層
の凝固性液11が該線状紡糸原液14よりも比重
が大きいので、非凝固性液12と凝固性液11と
の界面15に沿つて例えば20〜50m/分、好まし
くは50〜80m/分の線速で進行し、凝固性液11
中に設けられた変向棒16により凝固性液11中
を充分通過したのち、ロール17より引上げて次
工程へ送る。
Next, the present invention will be explained in more detail with reference to the drawings. That is, the hollow fiber according to the present invention is manufactured by the following method. That is,
As shown in FIG. 1, a bath 10 is provided with a coagulating liquid 11 having a higher specific gravity than the copper ammonia cellulose spinning dope as a lower layer and with respect to the spinning dope, and a coagulating liquid 11 containing the copper ammonia cellulose spinning dope and the coagulating liquid as an upper layer. A bath solution consisting of two layers is formed by supplying a non-coagulable liquid 12 having a specific gravity smaller than that of the spinning stock solution. A cuprammonium cellulose-based spinning stock solution is directly extruded into the non-coagulable liquid in the upper layer through a circular spinning hole (not shown) of the spinneret device 13, and at this time, the internal central part of the spinning stock solution extruded in a circular shape is A non-coagulable liquid for the spinning stock solution is introduced and filled into the spinning dope and discharged. The linear spinning stock solution 14 extruded from the annular spinning hole, while containing the non-coagulable liquid inside, advances downward through the upper layer of the non-coagulable liquid 12 without coagulating at all. In this case, while the linear spinning dope 14 receives the buoyancy of the non-coagulable liquid,
Since the liquid itself has a higher specific gravity than the non-coagulable liquid 12, it settles. Therefore, since the coagulable liquid 11 in the lower layer has a higher specific gravity than the linear spinning dope 14, the linear spinning dope 14 has a density of, for example, 20~ Proceeding at a linear speed of 50 m/min, preferably 50 to 80 m/min, the solidifying liquid 11
After sufficiently passing through the coagulable liquid 11 by a deflection rod 16 provided therein, it is pulled up from the roll 17 and sent to the next process.

しかして、線状紡糸原液14は、前記界面15
を通過する間に第2図に示すように、その大部分
は凝固性液11中に漬り、一部分は非凝固性液1
2中に漬る。このため凝固性液11に接している
部分3は外表面から速やかに凝固するが、非凝固
性液12に接している部分14は凝固しないこと
になり、体積収縮が少なくなる。しかし、実際に
は、この部分4は凝固性液11に全く接触しない
わけではなく、凝固性液11と接触している部分
3の凝固による体積収縮と非凝固性液12と接触
しいる部分4の体積収縮との差により線状紡糸原
液14は撚りを生じてゆるやかなスパイラルを形
成する。このため前記非凝固性液12と接触して
いる部分4も凝固性液11と接触して最終的には
完全に凝固することになる。
Therefore, the linear spinning dope 14 has the above-mentioned interface 15
As shown in FIG.
Soak in 2. Therefore, the portion 3 that is in contact with the coagulable liquid 11 is quickly solidified from the outer surface, but the portion 14 that is in contact with the non-coagulable liquid 12 is not solidified, resulting in less volumetric shrinkage. However, in reality, this portion 4 does not come into contact with the coagulable liquid 11 at all, and the volume shrinkage due to solidification of the portion 3 that is in contact with the coagulable liquid 11 and the portion 4 that is in contact with the non-coagulable liquid 12 occur. Due to the difference in volumetric shrinkage, the linear spinning dope 14 twists to form a gentle spiral. Therefore, the portion 4 that is in contact with the non-coagulable liquid 12 also comes into contact with the coagulable liquid 11 and is finally completely coagulated.

このように、前記突条部4の全周囲に対する長
さlの割合および他の部分3の壁厚d1に対するこ
の部分4の壁厚d3の倍率は、凝固性液11と非凝
固性液12に対する線状紡糸原液14の接触割合
および進行速度によるので、各々の比重および進
行速度を適宜選定することにより任意の割合のも
のを得ることができる。しかしながら長さlが全
周囲に対して10%未満では強度および撚りが不充
分であり、一方40%を越えると透析性能が不均一
になる恐れがある。またd3/d1が1.3未満では補
強効果および撚りが不充分であり、一方3倍を越
えると透析性能が不均一になる。
In this way, the ratio of the length l to the entire circumference of the protrusion 4 and the ratio of the wall thickness d 3 of this portion 4 to the wall thickness d 1 of the other portion 3 are determined based on the coagulable liquid 11 and the non-coagulable liquid. Since it depends on the contact ratio of the linear spinning dope 14 to 12 and the advancing speed, any ratio can be obtained by appropriately selecting each specific gravity and advancing speed. However, if the length l is less than 10% of the total circumference, the strength and twist will be insufficient, while if it exceeds 40%, the dialysis performance may become uneven. Further, if d 3 /d 1 is less than 1.3, the reinforcing effect and twisting will be insufficient, while if it exceeds 3 times, the dialysis performance will become uneven.

なお、線状紡糸原液の進行距離を充分にとる場
合には、必ずしも変向棒を用いて凝固性液11中
に特に浸漬する必要はなく、第3図に示すように
変向棒18を用いてあるいは用いずに直接引き上
げてもよい。
Note that if the linear spinning stock solution is to travel a sufficient distance, it is not necessarily necessary to use a diversion rod to immerse it in the coagulating liquid 11; instead, as shown in FIG. It may be pulled up directly with or without using it.

このようにして得られる中空糸は、例えば第4
図に示すように、全繊維長にわたつて連続貫通し
た中空部1を有する銅アンモニアセルロース系繊
維よりなる中空糸2において、全繊維長にわたつ
て壁部3の壁厚d1が1〜0μm、好ましくは3〜
5μmであり、かつ外径d2が50〜1000μm、好ま
しくは200〜700μmであり、さらに全周囲のう
ち、その10〜40%、好ましくは20〜35%の部分l
が前記壁厚d1の1.3〜3倍、好ましくは1.5〜2.5倍
の厚みd3を有して突条部4を形成してなるもので
ある。すなわち、壁厚d1の壁部3はほぼ均一な厚
みを有し、一方、壁厚d3の突条部4は前記壁部3
に対する補強構造となつてるのである。しかし
て、この中空糸2は、やや波打つた形で僅かにス
パイラル状を呈している。
The hollow fibers obtained in this way are, for example,
As shown in the figure, in a hollow fiber 2 made of copper ammonia cellulose fiber having a hollow portion 1 continuously extending through the entire fiber length, the wall thickness d 1 of the wall portion 3 is 1 to 0 μm over the entire fiber length. , preferably 3~
5 μm, and has an outer diameter d 2 of 50 to 1000 μm, preferably 200 to 700 μm, and further 10 to 40%, preferably 20 to 35% of the total circumference.
The protrusion portion 4 is formed to have a thickness d 3 that is 1.3 to 3 times, preferably 1.5 to 2.5 times, the wall thickness d 1 . That is, the wall 3 having a wall thickness d 1 has a substantially uniform thickness, while the protrusion 4 having a wall thickness d 3 has a substantially uniform thickness.
It serves as a reinforcing structure for Therefore, the hollow fibers 2 have a slightly undulating and slightly spiral shape.

セルロースとしては、種々のものが使用できる
が、一例を挙げると、例えば平均重合度500〜
2500のものが好ましく使用される。しかして、銅
アンモニアセルロース溶液は常法により調製され
る。例えば、まずアンモニア水、塩基性硫酸銅水
溶液および水を混合して銅アンモニア水溶液を調
製し、これに酸化防止剤(例えば亜硫酸ナトリウ
ム)を加え、ついで原料セルロースを投入して撹
拌溶解を行ない、さらに水酸化ナトリウム水溶液
を添加して未溶解セルロースを完全に溶解させて
銅アンモニアセルロース溶液を得る。この銅アン
モニアセルロース溶液には、さらに透過性能制御
剤を混合して配位結合させてもよい。
Various types of cellulose can be used, but one example is a cellulose with an average degree of polymerization of 500 to 500.
2500 is preferably used. Thus, the cuprammonium cellulose solution is prepared by a conventional method. For example, first, aqueous ammonia, a basic aqueous copper sulfate solution, and water are mixed to prepare an aqueous cupric ammonia solution, an antioxidant (e.g., sodium sulfite) is added to this, then raw cellulose is added and dissolved with stirring, and then An aqueous sodium hydroxide solution is added to completely dissolve undissolved cellulose to obtain a cuprammonium cellulose solution. This cuprammonium cellulose solution may further be mixed with a permeation performance controlling agent for coordination bonding.

透過性能制舌御剤としては、例えば構成単量体
位中に10〜70当量%、好ましくは15〜50当量%の
カルボキシル基を含有する数平分子量500〜
200000、好ましくは1000〜100000を有する重合体
ないし共重合体のアンモニウム塩またはアルカリ
金属塩がある。このような重合体としては種々あ
るが、一例を挙げると、例えばアクリル酸、メタ
クリル酸等のカルボキシル基含有不飽和単量体と
他の共重合性単量体との共重合体やポリアクリロ
ニトリルの部分加水分解生成物がある。しかし
て、共重合性単量体としては、メチルアクリレー
ト、エチルアクリレート、イソプロピルアクリレ
ート、ブチルアクリレート、ヘキシルアクリレー
ト、ラウリルアクリレート等のアルキルアクリレ
ート、メチルメタクリレート、エチルメタクリレ
ート、ブチルメタクリレート等のアルキルメタク
リレート、アクリルアミド、メタクリルアミド、
アクリロニトリル、メタクリロニトリル、ヒドロ
キシアルキルアクリレート(またはメタクリレー
ト)、ジアルキルアミノアクリレート(またはメ
タクリレート)、酢酸ビニル、スチレン、塩化ビ
ニル等があり、特にアルキルアクリ・レートおよ
びアルキルメタクリレートが好ましい。したがつ
て、最も好ましい共重合体は、アクリル酸―アル
キルアクリレート(またはメタクリレート)共重
合体、メタクリル酸―アルキルアクリレート(ま
たはメタクリレート)共重合体、ポリアルキルア
クリレート(またはメタクリレート)の部分加水
分解生成物である。これらの透過性能制御剤は、
セルロース100重量部に対し、通常1〜40重量
部、好ましくは2〜30重量部、最も好ましくは3
〜15重量部使用される。例えば、この透過性能制
御剤をアンモニアセルロース溶液中に混合溶解さ
せ、8〜30℃、好ましくは14〜25℃の温度で20〜
120分間、好ましくは60〜100分間撹拌して前記銅
アンモニアセルロースに配位結合させることによ
り紡糸原液を得る。
As the permeation performance controlling agent, for example, it contains 10 to 70 equivalent %, preferably 15 to 50 equivalent % of carboxyl groups in the constituent monomer positions, and has a number average molecular weight of 500 to 500.
200,000, preferably from 1,000 to 100,000. There are various types of such polymers, but examples include copolymers of carboxyl group-containing unsaturated monomers such as acrylic acid and methacrylic acid with other copolymerizable monomers, and polyacrylonitrile. There are partial hydrolysis products. Therefore, as copolymerizable monomers, alkyl acrylates such as methyl acrylate, ethyl acrylate, isopropyl acrylate, butyl acrylate, hexyl acrylate, lauryl acrylate, alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, acrylamide, methacrylate, etc. Amide,
Examples include acrylonitrile, methacrylonitrile, hydroxyalkyl acrylate (or methacrylate), dialkylaminoacrylate (or methacrylate), vinyl acetate, styrene, vinyl chloride, etc., and alkyl acrylate and alkyl methacrylate are particularly preferred. Therefore, the most preferred copolymers are acrylic acid-alkyl acrylate (or methacrylate) copolymers, methacrylic acid-alkyl acrylate (or methacrylate) copolymers, and partial hydrolysis products of polyalkyl acrylates (or methacrylates). It is. These permeability control agents are
Usually 1 to 40 parts by weight, preferably 2 to 30 parts by weight, most preferably 3 parts by weight, per 100 parts by weight of cellulose.
~15 parts by weight are used. For example, this permeability control agent is mixed and dissolved in an ammonia cellulose solution, and the temperature is 8 to 30°C, preferably 14 to 25°C.
A spinning stock solution is obtained by stirring for 120 minutes, preferably 60 to 100 minutes, to coordinate the copper ammonia cellulose.

このような紡糸原液は、通常比重が1.05〜1.15
であり、好ましくは1.06〜1.10である。しかしな
がら、後述するように紡糸孔から押出される線状
紡糸原液の内部には非凝固性液が充填されている
ので、通常は紡糸原液より比重は小さく、1.00〜
1.08であり、好ましくは1.01〜1.04である。
Such spinning dope usually has a specific gravity of 1.05 to 1.15.
and preferably 1.06 to 1.10. However, as will be described later, the inside of the linear spinning dope extruded from the spinning hole is filled with a non-coagulable liquid, so the specific gravity is usually lower than that of the spinning dope, with a specific gravity of 1.00 to 1.00.
1.08, preferably 1.01 to 1.04.

銅アンモニアセルロースに対する凝固性液は、
前記線状紡糸原液の嵩比重よりもその比重が大き
く、通常1.03〜1.31であり、好ましくは1.05〜
1.18である。一例を挙げると、例えば濃度5〜40
%、好ましくは8〜25%の硫酸水溶液、濃度5〜
50%、好ましくは10〜30%の硝酸水溶液、濃度6
〜47%、好ましくは9〜30%のリン酸等がある。
The coagulating liquid for copper ammonia cellulose is
Its specific gravity is higher than the bulk specific gravity of the linear spinning dope, usually 1.03 to 1.31, preferably 1.05 to 1.31.
It is 1.18. To give an example, for example, a concentration of 5 to 40
%, preferably 8-25% sulfuric acid aqueous solution, concentration 5-25%
50%, preferably 10-30% nitric acid aqueous solution, concentration 6
-47%, preferably 9-30% phosphoric acid, etc.

上層として用いられる銅アンモニアセルロース
に対する非凝固性液は、前記線状紡糸原液の嵩比
重よりもその比重が小さく、かつ前記凝固性液と
混和しないものであり、その比重は通常0.71より
小さく、好ましくは0.69より小さい。一例を挙げ
ると、例えばn―ヘキサン、n―ヘプタン、n―
オクタン、n―デカン、n―ドデカン、流動パラ
フイン、軽油、灯油、ベンゼン、トルエン、キシ
レン、スチレン、パークロルエチレン、トリクロ
ルエチレン等がある。また線状紡糸原液中に紡出
される非凝固性液の選択は、中空糸の中空部の維
持あるいは中空糸壁面の凹凸の有無に大きく影響
する。すなわち、中空糸の乾燥時に中空部に充填
されている非凝固性液が膜を透して急激に外部に
出ると、中空部内は減圧となり中空潰れを発生さ
せ、あるいは内壁に凹凸を生じる。そして、用い
られる非凝固性液は乾燥時に透過性の低い液体が
選ばれる。好適な非凝固性液しては、上記のごと
きのものがある。
The non-coagulable liquid for cuprammonium cellulose used as the upper layer has a specific gravity smaller than the bulk specific gravity of the linear spinning dope and is immiscible with the coagulable liquid, and its specific gravity is usually less than 0.71, preferably is less than 0.69. For example, n-hexane, n-heptane, n-
Examples include octane, n-decane, n-dodecane, liquid paraffin, light oil, kerosene, benzene, toluene, xylene, styrene, perchlorethylene, trichlorethylene, etc. Furthermore, the selection of the non-coagulable liquid to be spun into the linear spinning dope greatly influences the maintenance of the hollow portion of the hollow fiber and the presence or absence of irregularities on the wall surface of the hollow fiber. That is, when the non-coagulable liquid filled in the hollow fiber passes through the membrane and suddenly exits to the outside when the hollow fiber is dried, the pressure inside the hollow becomes reduced, causing hollow collapse or unevenness on the inner wall. The non-coagulating liquid used is selected to have low permeability during drying. Suitable non-coagulating liquids include those described above.

このようにして凝固再生された中空糸は、水洗
を行なつて付着している凝固性液を除去したの
ち、必要により該中空糸に残存している銅を除去
するために脱銅処理を施し、ついで水洗される。
脱銅処理は、通常濃度3〜30%の希硫酸溶液ある
いは硝酸溶液に浸漬して行なわれる。しかして、
紡糸原液が前記のごとき透過性能制御剤を含有し
ている場合には、この中空糸は強アルカリ水溶液
中に浸漬して該制御剤を除去し、これにより使用
した重合体の分子量に相当する微細孔が中空糸の
管壁に形成される。
The hollow fibers that have been coagulated and regenerated in this way are washed with water to remove the adhering coagulating liquid, and then, if necessary, subjected to decopper treatment to remove copper remaining in the hollow fibers. , then washed with water.
Copper removal treatment is usually carried out by immersion in a dilute sulfuric acid solution or nitric acid solution with a concentration of 3 to 30%. However,
When the spinning stock solution contains a permeation performance controlling agent as described above, the hollow fibers are immersed in a strong alkaline aqueous solution to remove the controlling agent, thereby forming fine particles corresponding to the molecular weight of the polymer used. Holes are formed in the tube wall of the hollow fiber.

前記水洗後のまたは透過性能制御剤除去後の中
空糸は、さらに必要により5〜100℃、好ましく
は50〜80℃の温水で処理するか、または1〜10重
量%、好ましくは2〜15重量%濃度のグリセリン
水溶液を用いて可塑化して、なお残存している
銅、硫酸第二銅、硫酸水素銅、中低分子量セルロ
ース等を除去し、ついで乾燥したのち巻取りを行
なつて所望の中空糸を得る。
The hollow fibers after washing with water or after removing the permeability control agent may be further treated with warm water at 5 to 100°C, preferably 50 to 80°C, or 1 to 10% by weight, preferably 2 to 15% by weight. % concentration of glycerin aqueous solution to remove remaining copper, cupric sulfate, copper hydrogen sulfate, medium-low molecular weight cellulose, etc., and then dried and wound to form the desired hollow. get thread.

強アルカリとしては、水酸化ナトリウム、水酸
化カリウム、水酸化リチウム、水酸化アンモニウ
ム等があり、濃度0.1〜20%、好ましくは1〜15
%の水溶液として用いられる。
Examples of strong alkalis include sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonium hydroxide, etc., with a concentration of 0.1 to 20%, preferably 1 to 15%.
% aqueous solution.

以上述べたように、本発明による中空糸の製造
方法は、銅アンモニアセルロース系紡糸原液に対
する非凝固性液を上層に、さらに該非凝固性液よ
り比重の大きい凝固性液を下層に充填してなる二
層からなる溶液の該非凝固性液中に、前記紡糸原
液を環状紡糸孔から直接押出し、かつ該環状に押
出された紡糸原液の内部中央部に該紡糸原液に対
する非凝固性液を導入充填して該紡糸孔より押出
される線状紡糸原液の比重を前記非凝固性液の比
重より大きく、かつ前記凝固性液の比重より小さ
く調整して吐出させたのち、前記非凝固性液と凝
固性液との界面に沿つて走行させて凝固再生を行
なうことにより行なわれるものであるから、前記
のごとき突条を生成するばかりでなく、該突条生
成に基づく凝固速度の差により収縮差を生じ、こ
れがために撚りないしカールを生じ、前記のごと
き効果を生じる。また、紡糸原液は空気等のガス
状雰囲気中に紡出されるとなく、非凝固性液中に
直接紡出して行なわれるので、従来法のようにガ
ス状雰囲気通過時のアンモニアの揮散はなく、こ
のため得られる中空糸は内外両面および内部にお
いて完全に均一のものが得られる。
As described above, the method for producing hollow fibers according to the present invention comprises filling the upper layer with a non-coagulable liquid relative to the copper ammonia cellulose-based spinning dope, and further filling the lower layer with a coagulating liquid having a higher specific gravity than the non-coagulating liquid. The spinning dope is directly extruded from the annular spinning hole into the non-coagulable liquid of the two-layer solution, and the non-coagulable liquid corresponding to the spinning dope is introduced and filled into the center of the annularly extruded spinning dope. After adjusting the specific gravity of the linear spinning dope to be extruded from the spinning hole to be larger than the specific gravity of the non-coagulable liquid and smaller than the specific gravity of the coagulable liquid and discharge it, the non-coagulable liquid and the coagulable liquid are Since this is carried out by coagulation and regeneration by running along the interface with the liquid, it not only generates the above-mentioned protrusions, but also causes a difference in shrinkage due to the difference in solidification rate due to the formation of the protrusions. , which causes twisting or curling, producing the effect described above. In addition, since the spinning stock solution is not spun into a gaseous atmosphere such as air but directly into a non-coagulable liquid, there is no volatilization of ammonia when passing through a gaseous atmosphere as in conventional methods. Therefore, the hollow fibers obtained are completely uniform on both the inside and outside surfaces and inside.

つぎに、実施例を挙げて本発明をさらに詳細に
説明する。なお、下記実施例においてパーセント
は、特にことわらない限りすべて重量による。
Next, the present invention will be explained in more detail by giving Examples. In addition, in the following examples, all percentages are by weight unless otherwise specified.

実施例 1 28%アンモニア水溶液514mlおよび塩基性硫酸
銅864gを1200mlの水に懸濁させて銅アンモニア
水溶液を調製し、これに10%亜硫酸ナトリウム水
溶液2725mlを添加した。この溶液に重合度約1000
(±100)のコツトンリンターパルプ1900gを投入
して撹拌溶解を行ない、ついで10%水酸化ナトリ
ウム水溶液1600mlを添加して銅アンモニアセルロ
ース水溶液(比重1.08)を調製して紡糸原液とし
た。
Example 1 A cupric ammonia aqueous solution was prepared by suspending 514 ml of a 28% ammonia aqueous solution and 864 g of basic copper sulfate in 1200 ml of water, and 2725 ml of a 10% sodium sulfite aqueous solution was added thereto. This solution has a degree of polymerization of approximately 1000.
1900 g of cotton linter pulp (±100) was added and dissolved with stirring, and then 1600 ml of a 10% aqueous sodium hydroxide solution was added to prepare an aqueous cuprammonium cellulose solution (specific gravity 1.08), which was used as a spinning stock solution.

一方、第2図に示すような装置を用いて、溶槽
10の下層に凝固性液として20%硝酸(比重
1.12)を供給し、上層としてn―ヘプタン(比重
0.68)を供給した。前記紡糸原液を、環状紡糸孔
を装着した紡糸口金装置13に導き、2Kg/cm2
窒素圧で紡糸孔より前記上層のn―ヘプタン中に
直接吐出させた。紡糸孔の孔径は3.8mmであり、
紡糸原液の吐出量は13.7ml/minとした。一方、
紡糸口金装置に装着した非凝固性液の導入管より
ミリスチン酸イソプロピル(比重0.854)を導入
し、紡糸原液に内包させて吐出させた。上記導入
管の管径は、1.2mmであり、ミリスチン酸イソプ
ロピルの吐出量は4.22ml/minとした。ついで、
吐出原液(非凝固性液を内包する線状紡糸原液)
14(比重1.025)をn―ヘプタン中に沈降させ、
さらにn―ヘプタンと硫酸水溶液との界面を走行
させた。このときの両液の液温は20℃であり、ま
た走行線速度は80m/minであり、走行距離は2
mあつた。この浴槽から引上げたのち、20%硫酸
浴で(浴長約4m)脱銅を行なつたのち、巻取カ
セに巻取つた。カセに巻取つた糸条はタンクに入
れ、これに温水を注入したのち30℃に加温して10
時間洗つた。さらにアルカリ洗浄を行い、続いて
8%グリセリン水溶液でグリセリン処理後、得ら
れた糸条を120℃±10℃に保たれたトンネル式乾
燥炉(長さ5mm)中を10m/minの走行速度で走
行させて乾燥して中空糸を得た。
On the other hand, using a device as shown in Figure 2, 20% nitric acid (specific gravity
1.12) and n-heptane (specific gravity
0.68). The spinning dope was introduced into a spinneret device 13 equipped with an annular spinning hole, and directly discharged from the spinning hole into the upper layer of n-heptane under a nitrogen pressure of 2 kg/cm 2 . The diameter of the spinning hole is 3.8mm,
The discharge rate of the spinning dope was 13.7 ml/min. on the other hand,
Isopropyl myristate (specific gravity 0.854) was introduced from a non-coagulable liquid introduction tube attached to the spinneret device, encapsulated in the spinning dope, and discharged. The diameter of the introduction tube was 1.2 mm, and the discharge rate of isopropyl myristate was 4.22 ml/min. Then,
Discharge stock solution (linear spinning stock solution containing non-coagulable liquid)
14 (specific gravity 1.025) was precipitated in n-heptane,
Furthermore, the interface between n-heptane and sulfuric acid aqueous solution was run. At this time, the temperature of both liquids was 20℃, the running linear speed was 80m/min, and the running distance was 2.
It was hot. After taking it out of the bath, it was decoppered in a 20% sulfuric acid bath (bath length approximately 4 m) and then wound onto a winding case. The yarn wound into a skein is placed in a tank, filled with hot water, heated to 30℃, and then heated to 10℃.
I washed the time. After further alkaline washing and subsequent glycerin treatment with an 8% glycerin aqueous solution, the resulting yarn was passed through a tunnel drying oven (length 5 mm) maintained at 120°C ± 10°C at a running speed of 10 m/min. It was run and dried to obtain a hollow fiber.

このようにして得られた中空糸は、第5図に示
すように外径200μm、壁厚12μm、全周囲のう
ち約30%の部分が前記壁厚の約1.6倍の厚みを有
する突条を形成しており、若干のカール性を有
し、かつ内外両表面部および内部にわたつて均質
なスキンレスのものであつた。また、その引張強
度10Kg/mm2であつた。
As shown in Figure 5, the hollow fiber thus obtained has an outer diameter of 200 μm, a wall thickness of 12 μm, and approximately 30% of the entire circumference has protrusions that are approximately 1.6 times the wall thickness. It had a slight curling property, and was uniform and skinless over both the inner and outer surfaces and the inside. Moreover, its tensile strength was 10 Kg/mm 2 .

このようにして得られた中空糸を用いて(膜面
積1.0m2)、分子量既知の指標物質〔尿素
(BUN):分子量60、リン酸イオン:分子量95、
クレアチニン:分子量113、ビタミンB12:分子量
1355およびイヌリン:分子量5200〕についてダイ
ヤリザンス試験を行なつたところ、第1表の結果
が得られた。なお、このときの透析液は水であ
り、その流量(QD)は500ml/minである。ま
た、イヌリン、ビタミンB12、クレアチン、尿
素、PO4 --等の指標物質を含む代用血液の流量
(QB)は200ml/minである。UFRは4.6ml/mm
Hg・hrであつた。
Using the hollow fiber thus obtained (membrane area: 1.0 m 2 ), an indicator substance with a known molecular weight [urea (BUN): molecular weight 60, phosphate ion: molecular weight 95,
Creatinine: molecular weight 113, vitamin B 12 : molecular weight
1355 and inulin: molecular weight 5200], the results shown in Table 1 were obtained. Note that the dialysate at this time was water, and its flow rate (Q D ) was 500 ml/min. Further, the flow rate (Q B ) of the blood substitute containing indicator substances such as inulin, vitamin B 12 , creatine, urea, and PO 4 -- is 200 ml/min. UFR is 4.6ml/mm
I had Hg/hr.

また、この中空糸の束を筒状本体に挿入して製
造した透析装置は、前記中空糸が本体内に均一に
分散しており、また透析液通過時に短絡流通は全
くみられなかつた。
Further, in a dialysis device manufactured by inserting this bundle of hollow fibers into a cylindrical main body, the hollow fibers were uniformly dispersed within the main body, and no short circuit was observed during the passage of the dialysate.

実施例 2 実施例1の紡糸原液に17.8当量%のカルボキシ
ル基を有する数平均分子量約50000のアクリル酸
―メチルメタクリレート共重合体のアンモニウム
塩155gを添加して冷却しながら約25℃の温度で
60分間撹拌下に反応させ、さらに熱成を行なつて
紡糸原液を得た。
Example 2 155 g of an ammonium salt of an acrylic acid-methyl methacrylate copolymer having a number average molecular weight of about 50,000 and having 17.8 equivalent % of carboxyl groups was added to the spinning stock solution of Example 1, and the mixture was heated at a temperature of about 25° C. while cooling.
The mixture was reacted for 60 minutes with stirring, and then thermally formed to obtain a spinning stock solution.

このようにして得られた紡糸原液を、実施例1
と同様な方法により紡糸して再生凝固させたの
ち、得られた糸条を、5%硫酸水溶液を満たした
脱銅浴に浴長10mで走行させた。ついで水洗した
のち、4%水酸化ナトリウムを満たしたアルカリ
浴に浴長20mで走行させることにより前記共重合
体塩を除去し、ついで水洗し、巻取つた。このと
きの処理速度は10m/minであつた。カセに巻取
つた糸条は実施例1と同様の方法で温水処理した
のち、乾燥を行なつて中空糸を得た。
The spinning stock solution thus obtained was prepared in Example 1.
After spinning and regenerating coagulation in the same manner as above, the obtained yarn was run in a copper removal bath filled with a 5% aqueous sulfuric acid solution at a bath length of 10 m. After washing with water, the copolymer salt was removed by running it in an alkaline bath filled with 4% sodium hydroxide at a bath length of 20 m, followed by washing with water and winding. The processing speed at this time was 10 m/min. The thread wound around the skein was treated with hot water in the same manner as in Example 1, and then dried to obtain a hollow fiber.

このようにして得られた中空糸は、第6図に示
すように外径200μm、壁厚11μm、全周囲のう
ち約25%の部分が前記壁厚の約1.4倍の厚みを有
する突条を形成しており、若干のカール性を有
し、かつ内外表面部および内部にわたつて均質な
スキンレスのものであつた。また、その引張強度
9.5Kg/mm2であつた。
As shown in Figure 6, the hollow fiber thus obtained has an outer diameter of 200 μm, a wall thickness of 11 μm, and approximately 25% of the entire circumference has protrusions that are approximately 1.4 times the wall thickness. It had a slight curling property, and was uniform and skinless over the inner and outer surfaces and inside. Also, its tensile strength
It was 9.5Kg/ mm2 .

このようにして得られた中空糸について、実施
例1と同様の方法によりダイヤリザンス試験を行
なつたたところ、良好な結果が得られた。また、
この中空糸の束を筒状本体に挿入して製造した透
析装置は、前記中空糸が本体内に均一に分散して
おり、また透析液通過時に短絡流通は全くみられ
なかつた。
A dialysance test was conducted on the hollow fiber thus obtained in the same manner as in Example 1, and good results were obtained. Also,
In a dialysis device manufactured by inserting this bundle of hollow fibers into a cylindrical body, the hollow fibers were uniformly dispersed within the body, and no short circuit was observed during the passage of the dialysate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を行なうための装置の概略
図、第2図は本発明による中空糸の生成原理を説
明するための断面図、第3図は他の装置の概略
図、第4図は本発明方法により得られる中空糸の
概略構造を示す部分斜視図であり、また第5〜6
図は本発明方法により得られた中空糸の顕微鏡写
真である。 1…中空部、2…中空糸、3…壁部、4…突条
部、10…浴槽、11…凝固性液、12…非凝固
性液、13…紡糸口金装置、14…線状紡糸原
液。
Fig. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention, Fig. 2 is a sectional view for explaining the principle of producing hollow fibers according to the invention, Fig. 3 is a schematic diagram of another apparatus, and Fig. 4 FIG. 5 is a partial perspective view showing the schematic structure of a hollow fiber obtained by the method of the present invention;
The figure is a micrograph of hollow fibers obtained by the method of the present invention. DESCRIPTION OF SYMBOLS 1... Hollow part, 2... Hollow fiber, 3... Wall part, 4... Projection part, 10... Bathtub, 11... Coagulating liquid, 12... Non-coagulating liquid, 13... Spinneret device, 14... Linear spinning dope .

Claims (1)

【特許請求の範囲】 1 銅アンモニアセルロース系紡糸原液に対する
非凝固性液を上層に、さらに該非凝固性液より比
重の大きい凝固性液を下層に充填してなる二層か
らなる浴液の該非凝固性液中に、前記紡糸原液を
環状紡糸孔から直接押出し、かつ該環状に押出さ
れた紡糸原液の内部中央に該紡糸原液に対する非
凝固性液を導入充填して該紡糸孔より押出される
線状紡糸原液の比重を前記非凝固性液の比重より
大きく、かつ前記凝固性液の比重より小さく調整
して吐出させたのち、前記非凝固性液と凝固性液
との界面に沿つて走行させて凝固再生を行なうこ
とを特徴とする透析用中空糸の製造方法。 2 紡糸原液は透過性能制御剤を含有してなる特
許請求の範囲第1項に記載の方法。
[Scope of Claims] 1. The non-coagulation of a bath liquid consisting of two layers, the upper layer being filled with a non-coagulating liquid for the copper ammonia cellulose-based spinning dope, and the lower layer being filled with a coagulating liquid having a higher specific gravity than the non-coagulating liquid. A line extruded from the spinning hole by directly extruding the spinning dope through the annular spinning hole, and introducing and filling a non-coagulable liquid with respect to the spinning dope into the center of the annularly extruded spinning dope. After adjusting the specific gravity of the shaped spinning stock solution to be larger than the specific gravity of the non-coagulable liquid and smaller than the specific gravity of the coagulable liquid and discharge it, the solution is made to travel along the interface between the non-coagulable liquid and the coagulable liquid. 1. A method for producing a hollow fiber for dialysis, characterized by performing coagulation and regeneration. 2. The method according to claim 1, wherein the spinning stock solution contains a permeation performance controlling agent.
JP14563180A 1980-10-20 1980-10-20 Preparation of hollow fiber Granted JPS5771408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14563180A JPS5771408A (en) 1980-10-20 1980-10-20 Preparation of hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14563180A JPS5771408A (en) 1980-10-20 1980-10-20 Preparation of hollow fiber

Publications (2)

Publication Number Publication Date
JPS5771408A JPS5771408A (en) 1982-05-04
JPS6132041B2 true JPS6132041B2 (en) 1986-07-24

Family

ID=15389466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14563180A Granted JPS5771408A (en) 1980-10-20 1980-10-20 Preparation of hollow fiber

Country Status (1)

Country Link
JP (1) JPS5771408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123849U (en) * 1990-03-28 1991-12-16
JPH0635148U (en) * 1992-10-14 1994-05-10 株式会社中央製作所 Tube squeezer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263531A (en) * 1988-05-30 1990-03-02 Terumo Corp Production of hollow fiber membrane
US5084349A (en) * 1988-09-07 1992-01-28 Terumo Kabushiki Kaisha Hollow cellulose fibers, method for making, and fluid processing apparatus using same
ATE327034T1 (en) * 1996-12-25 2006-06-15 Asahi Kasei Medical Co Ltd METHOD FOR PRODUCING A HOLLOW FIBER MEMBRANE, HOLLOW FIBER MEMBRANE AND HOLLOW FIBER DIALYZER
EP0923955B1 (en) 1997-12-17 2008-06-18 Asahi Kasei Kuraray Medical Co., Ltd. Manufacturing method of artificial organ, hollow fiber membrane, and dialyzer of hollow fiber membrane type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123849U (en) * 1990-03-28 1991-12-16
JPH0635148U (en) * 1992-10-14 1994-05-10 株式会社中央製作所 Tube squeezer

Also Published As

Publication number Publication date
JPS5771408A (en) 1982-05-04

Similar Documents

Publication Publication Date Title
US3888771A (en) Hollow fibers of cuprammonium cellulose and a process of the manufacture of same
JPS5860010A (en) Hollow fiber and dialytic membrane consisting of said hollow fiber
DE3588092T2 (en) Blood treatment device
US4444716A (en) Method for manufacture of hollow fiber
US4291096A (en) Non-uniform cross-sectional area hollow fibers
JPS6132041B2 (en)
JP2006506537A (en) Apparatus and method for forming materials
JPS6132042B2 (en)
JPS6256764B2 (en)
JPS6132043B2 (en)
JPS6051363B2 (en) Semipermeable composite membrane
JPS6122042B2 (en)
US4380520A (en) Process for producing hollow fibres having a uniform wall thickness and a non-uniform cross-sectional area
JPS5930122B2 (en) Hollow fiber cellulose dialysis membrane and its manufacturing method
JPS6118404A (en) Hollow yarn membrane and its preparation
JPS6039404B2 (en) Hollow fibrous membrane and its manufacturing method
JPS59166208A (en) Manufacture of gas separating membrane
JPH059803A (en) Method for forming yarn, hollow yarn, flat foil and hose-like foil and apparatus for them
JPH06200407A (en) Hollow yarn and its production
JPH03174228A (en) Tubular film and its manufacture
JPS6028925B2 (en) Hollow fiber manufacturing method
JPS6028924B2 (en) Spinning dope composition for hollow fiber production
US5130065A (en) Method of preparing polyacrylonitrile hollow threads with asymmetric pore structure
JPS60215809A (en) Production of hollow fiber
JPS6339264Y2 (en)