JPS6131609B2 - - Google Patents
Info
- Publication number
- JPS6131609B2 JPS6131609B2 JP15922981A JP15922981A JPS6131609B2 JP S6131609 B2 JPS6131609 B2 JP S6131609B2 JP 15922981 A JP15922981 A JP 15922981A JP 15922981 A JP15922981 A JP 15922981A JP S6131609 B2 JPS6131609 B2 JP S6131609B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- layer
- anode
- unevenness
- out lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003990 capacitor Substances 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 238000007772 electroless plating Methods 0.000 claims description 4
- 229910000679 solder Inorganic materials 0.000 claims description 4
- 239000007784 solid electrolyte Substances 0.000 claims description 3
- 238000005488 sandblasting Methods 0.000 claims description 2
- 238000007610 electrostatic coating method Methods 0.000 claims 1
- 238000007747 plating Methods 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Conductive Materials (AREA)
- Primary Cells (AREA)
- Thermistors And Varistors (AREA)
Description
本発明はチツプ状固体電解コンデンサの製造方
法に関するものである。
従来、フエースボンデイングして印刷基板など
に取付けるチツプ状固体電解コンデンサは、トラ
ンスフアモールド成形により樹脂外装したものが
あつたが、寸法が大きく高価となつていた。
またトランスフアモールド成形しない裸タイプ
として、コンデンサ素子の陽極体より引き出した
導出リードにはんだ付け可能な金属端子を溶接し
たものがあつたが、寸法精度が悪く、機械的強度
も低く、印刷基板への取付けの自動化が困難であ
つた。
また、上述の製品はいずれも導出リードに金属
端子を溶接する工程があり、構造が複雑で小形化
し難い欠点があつた。
本発明は上述の欠点を解消し、小形で、容易に
かつ安価に製造することができるチツプ状固体電
解コンデンサの製造方法を提供するものである。
以下本発明を第1図〜第4図に示す実施例によ
り説明する。
まず第1図に示すように、導出リード1を有す
るタンタル、アルミニウムなどの弁作用金属から
なる角柱状、円柱状などの複数個の陽極体2の導
出リード1を給電バー3に溶接して接続し、該陽
極体2の表面に誘電体酸化皮膜4を形成し、該皮
膜上に二酸化マンガンのような半導体固体電解質
層5、カーボンおよび銀ペーストなどの陰極導電
層6を順次形成する。次に導出リード1の導出部
にエポキシなどの補強用樹脂7を塗布して硬化さ
せ、静電塗装法によりエポキシ系粉末樹脂を、陽
極体2を覆うように樹脂層8を形成する。そし
て、タンタル、アルミニウムなどの導出リード1
および陽極体2の底部に付着した樹脂層8を第2
図に示すようにエアーブラストなどにより選択的
に除去した後、残された樹脂層8を硬化する。
さらに導出リード1に付着した樹脂層8および
異物などにアルミナの粉を吹付けていわゆるサン
ドブラスト法により、この付着物を除去するとと
もに、該導出リード1の表面の誘電体酸化皮膜4
を除去し、その金属表面に凹凸1aを形成する。
次に陽極体2の底部の樹脂層8を除去した陰極側
〓〓〓〓
電極の部分に銀ペーストなどの導電層9を塗布、
硬化し、その上にさらに銀ペーストなどに鉄、銅
などの異種金属を含有した導電層10を塗布、硬
化する。この時導電層10は陽極側にも塗布、硬
化する。
次に給電バー3より導出リード1を切り離すた
めに導出リード1に刻み目を入れる。そして、ニ
ツケル、銅などのはんだ付け可能な金属からなる
無電解メツキ処理を施して上記導電層10および
表面に凹凸1a形成した導出リード上に無電解メ
ツキ層11を形成する。その後溶融はんだに接触
させてはんだ層12を形成し、エージング処理し
た後導出リード1の刻み目より折り曲げて給電バ
ーより切り離し完成する。
本発明のチツプ状固体電解コンデンサの製造方
法は以上のようにして行われる。
したがつて外部電極は溶接工程がなく金属メツ
キ層を形成しているので、外形寸法が著しく小形
になるとともに、導出リードの表面の酸化皮膜を
除去して凹凸を形成しているので、無電解メツキ
層11との接着が強固になり、取扱い中の導出リ
ードの曲りなどによりメツキ層が剥離せず、信頼
性の高いコンデンサが得られる。
表は定格3.15V、100μFのチツプ状固体タン
タル電解コンデンサのメツキ剥離試験結果を示
す。
The present invention relates to a method for manufacturing a chip-shaped solid electrolytic capacitor. Conventionally, chip-shaped solid electrolytic capacitors that are face-bonded and attached to printed circuit boards, etc. have been covered with resin by transfer molding, but these have been large in size and expensive. In addition, there was a bare type that was not transfer molded and had a solderable metal terminal welded to the lead drawn out from the anode body of the capacitor element, but the dimensional accuracy was poor, the mechanical strength was low, and the printed circuit board It was difficult to automate the installation. In addition, all of the above-mentioned products require a step of welding a metal terminal to the lead-out lead, resulting in a complicated structure and difficulty in downsizing. The present invention eliminates the above-mentioned drawbacks and provides a method for manufacturing a chip-shaped solid electrolytic capacitor that is small, easy to manufacture, and can be manufactured at low cost. The present invention will be explained below with reference to embodiments shown in FIGS. 1 to 4. First, as shown in FIG. 1, the lead-out leads 1 of a plurality of prismatic, cylindrical, etc. anode bodies 2 made of valve metal such as tantalum or aluminum and having lead-out leads 1 are welded and connected to the power supply bar 3. Then, a dielectric oxide film 4 is formed on the surface of the anode body 2, and a semiconductor solid electrolyte layer 5 such as manganese dioxide and a cathode conductive layer 6 such as carbon and silver paste are sequentially formed on the film. Next, a reinforcing resin 7 such as epoxy is applied to the lead-out portion of the lead-out lead 1 and cured, and a resin layer 8 is formed using the epoxy powder resin to cover the anode body 2 by electrostatic coating. And lead 1 made of tantalum, aluminum, etc.
And the resin layer 8 attached to the bottom of the anode body 2 is
As shown in the figure, after being selectively removed by air blasting or the like, the remaining resin layer 8 is cured. Further, alumina powder is sprayed onto the resin layer 8 and foreign matter adhering to the lead-out lead 1 to remove the deposit by a so-called sandblasting method, and the dielectric oxide film 4 on the surface of the lead-out lead 1 is removed.
is removed, and unevenness 1a is formed on the metal surface.
Next, the cathode side after removing the resin layer 8 at the bottom of the anode body 2
Applying a conductive layer 9 such as silver paste to the electrode part,
After hardening, a conductive layer 10 containing dissimilar metals such as iron and copper in silver paste is further applied and hardened. At this time, the conductive layer 10 is also applied to the anode side and hardened. Next, in order to separate the lead-out lead 1 from the power supply bar 3, a notch is made in the lead-out lead 1. Then, an electroless plating process made of a solderable metal such as nickel or copper is performed to form an electroless plating layer 11 on the conductive layer 10 and the lead-out lead whose surface has the unevenness 1a. Thereafter, a solder layer 12 is formed by contacting with molten solder, and after aging treatment, the lead-out lead 1 is bent from the notch and separated from the power supply bar to complete the process. The method for manufacturing a chip-shaped solid electrolytic capacitor of the present invention is carried out as described above. Therefore, since the external electrode does not require a welding process and a metal plating layer is formed, the external dimensions are significantly smaller, and the oxide film on the surface of the lead-out lead is removed to form unevenness, so it is electroless. The adhesion with the plating layer 11 becomes strong, and the plating layer does not peel off due to bending of the lead-out lead during handling, so that a highly reliable capacitor can be obtained. The table shows the plating peeling test results for a chip solid tantalum electrolytic capacitor with a rating of 3.15V and 100μF.
【表】
試験条件
導出リードの先端を固定し、コンデンサ本体を
任意の方向に30゜曲げた後元に戻す。さらに対角
線上の逆方向に30゜曲げた後元に戻す。このサイ
クルを1回実施する。
第5図は上述と同定格のチツプ状固体タンタル
電解コンデンサを印刷基板に取付けて125℃の軽
減電圧印加の負荷寿命試験を行なつた結果を示
す。
上記従来品は本発明の実施例において導出リー
ドの表面に凹凸を形成する工程を有しないもので
ある。
表および第5図から明らかのように、本発明品
は従来品に比し漏れ電流特性および損失のバラツ
キも少く、著しく安定していることが実証され
た。
叙上のように本発明の製造方法により製造され
たチツプ状固体電解コンデンサは、小形で電極が
極めて強固に接続され、信頼性の面においても極
めて有利となり、工業的ならびに実用的価値の大
なるものである。[Table] Test conditions Fix the tip of the lead out, bend the capacitor body 30 degrees in any direction, and then return it to its original position. Then bend it diagonally in the opposite direction by 30 degrees and then return it to its original position. This cycle is performed once. Fig. 5 shows the results of a load life test with a reduced voltage applied at 125°C using a chip-shaped solid tantalum electrolytic capacitor with the same rating as above, mounted on a printed circuit board. The conventional product described above does not include the step of forming irregularities on the surface of the lead-out lead in the embodiment of the present invention. As is clear from the table and FIG. 5, the product of the present invention has less variation in leakage current characteristics and loss than the conventional product, proving that it is extremely stable. As mentioned above, the chip-shaped solid electrolytic capacitor manufactured by the manufacturing method of the present invention is small, has electrodes connected extremely firmly, is extremely advantageous in terms of reliability, and has great industrial and practical value. It is something.
第1図〜第4図は本発明の一実施例のチツプ状
固体電解コンデンサの製造過程の説明図、第5図
は本発明の製造方法により得られた試料(本発明
品)と従来品とを比較したチツプ状固体電解コン
デンサの負荷寿命試験で、イは損失−時間特性
図、ロは漏れ電流−時間特性図である。
1:導出リード、1a:凹凸、2:陽極体、
4:誘電体酸化皮膜、5:固体電解質層、6:陰
極部導電層、8:樹脂層、9,10:導電層、1
1:無電解メツキ層、12:はんだ層。
〓〓〓〓
Figures 1 to 4 are explanatory diagrams of the manufacturing process of a chip-shaped solid electrolytic capacitor according to an embodiment of the present invention, and Figure 5 shows a sample obtained by the manufacturing method of the present invention (product of the present invention) and a conventional product. A is a loss-time characteristic diagram, and B is a leakage current-time characteristic diagram. 1: lead-out lead, 1a: unevenness, 2: anode body,
4: dielectric oxide film, 5: solid electrolyte layer, 6: cathode conductive layer, 8: resin layer, 9, 10: conductive layer, 1
1: Electroless plating layer, 12: Solder layer. 〓〓〓〓
Claims (1)
極体2表面に誘電体酸化被膜4を形成し、該被膜
上に固体電解質層5、陰極導電層6を形成し、静
電塗装法などにより上記陽極体を覆うように樹脂
層8を形成した後、サンドブラスト法などにより
導出リード1に付着した樹脂層8を除去するとと
もに、該導出リード1の表面に凹凸1aを形成
し、上記陰極導電層6上に導電層9,10を形成
し、上記凹凸1aおよび導電層9,10上に無電
解メツキ層11およびはんだ層12を順次形成し
陽極電極部および陰極電極部を構成したことを特
徴とするチツプ状固体電解コンデンサの製造方
法。1 A dielectric oxide film 4 is formed on the surface of an anode body 2 made of a valve metal having a lead-out lead 1, a solid electrolyte layer 5 and a cathode conductive layer 6 are formed on the film, and the anode is coated by an electrostatic coating method or the like. After forming the resin layer 8 so as to cover the body, the resin layer 8 attached to the lead-out lead 1 is removed by sandblasting or the like, and the unevenness 1a is formed on the surface of the lead-out lead 1. A chip characterized in that conductive layers 9 and 10 are formed on the surface, and an electroless plating layer 11 and a solder layer 12 are sequentially formed on the unevenness 1a and the conductive layers 9 and 10 to constitute an anode electrode section and a cathode electrode section. A method for manufacturing solid electrolytic capacitors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15922981A JPS5860523A (en) | 1981-10-05 | 1981-10-05 | Chip-shaped solid electrolytic condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15922981A JPS5860523A (en) | 1981-10-05 | 1981-10-05 | Chip-shaped solid electrolytic condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5860523A JPS5860523A (en) | 1983-04-11 |
JPS6131609B2 true JPS6131609B2 (en) | 1986-07-21 |
Family
ID=15689154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15922981A Granted JPS5860523A (en) | 1981-10-05 | 1981-10-05 | Chip-shaped solid electrolytic condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5860523A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002198261A (en) * | 2000-12-27 | 2002-07-12 | Seiko Epson Corp | Chip type aluminum solid electrolytic capacitor and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6571625B2 (en) * | 2016-11-02 | 2019-09-04 | トヨタ自動車株式会社 | Fuel tank |
-
1981
- 1981-10-05 JP JP15922981A patent/JPS5860523A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002198261A (en) * | 2000-12-27 | 2002-07-12 | Seiko Epson Corp | Chip type aluminum solid electrolytic capacitor and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS5860523A (en) | 1983-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4093972A (en) | Anode termination means for an electrical device component | |
US5036434A (en) | Chip-type solid electrolytic capacitor and method of manufacturing the same | |
EP0470563A1 (en) | Chip-type solid electrolytic capacitors | |
US4164005A (en) | Solid electrolyte capacitor, solderable terminations therefor and method for making | |
JPS6131609B2 (en) | ||
JPS6132808B2 (en) | ||
JPH0126526B2 (en) | ||
JPS6132807B2 (en) | ||
JPS6032348B2 (en) | Manufacturing method for electronic components | |
JPH0126528B2 (en) | ||
JP2845010B2 (en) | Solid electrolytic capacitors | |
JP2748548B2 (en) | Chip type solid electrolytic capacitor | |
JP3168584B2 (en) | Solid electrolytic capacitors | |
JPH0225230Y2 (en) | ||
JPH0260208B2 (en) | ||
JPH0126527B2 (en) | ||
JP2993152B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH02256221A (en) | Manufacture of chip-type solid state electrolytic capacitor | |
KR100620514B1 (en) | Tab terminal for electronic component | |
JPS6225879Y2 (en) | ||
JPS6325697B2 (en) | ||
JP3033647B2 (en) | Fused solid electrolytic capacitor and method of manufacturing the same | |
JP3196783B2 (en) | Manufacturing method of chip type solid electrolytic capacitor | |
KR810002375Y1 (en) | Solid electrolytic capitors | |
JPH0456310A (en) | Manufacture of solid electrolytic capacitor |