[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6130725A - Interferometer - Google Patents

Interferometer

Info

Publication number
JPS6130725A
JPS6130725A JP15377184A JP15377184A JPS6130725A JP S6130725 A JPS6130725 A JP S6130725A JP 15377184 A JP15377184 A JP 15377184A JP 15377184 A JP15377184 A JP 15377184A JP S6130725 A JPS6130725 A JP S6130725A
Authority
JP
Japan
Prior art keywords
beam splitter
light path
splitter
phase plates
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15377184A
Other languages
Japanese (ja)
Inventor
Hisakazu Nishisaka
西坂 久和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP15377184A priority Critical patent/JPS6130725A/en
Publication of JPS6130725A publication Critical patent/JPS6130725A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4537Devices with refractive scan

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To repeatedly change the light path length of split beam without providing a reciprocal movement mechanism, by rotating a plurality of phase plates arranged on the light path between a beam splitter and a fixed reflective mirror. CONSTITUTION:On the light path between a splitter 11 and a fixed reflective mirror 13, phase plates 14, 15 comprising a material having a refractive index higher than that of the atmosphere of the light path are arranged so that the opposed surfaces of the splitter 11 and the fixed mirror 13 are respectively made vertical to an optical axis O and the opposed surfaces of the phase plates 14, 15 are formed in parallel so as to be inclined at a predetermined angle to the optical axis O. When the phase plates 14, 15 are rotated around axes S, S', which are parallel to the optical axis O and spaced apart by a predetermined distance, by a rotary mechanism, the light path length between the splitter 11 and the fixed mirror 13 is changed continuously and periodically. By this mechanism, the reciprocal movement of on optical system is unnecessary and the light path length of beam split by the splitter can be changed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フーリエ変換赤外分光光度計に使用して最適
なマイケルソン型の干渉計に関するっ[従来技術] 第4図はフーリエ変換赤外分光方法に使用されるマイケ
ルソン型干渉計を示しており、入射赤外光IRは、ビー
ムスプリッタ1によって分割させられる。該ビームスプ
リッタ1によって反射した赤外光は固定反射鏡2によっ
て反射され、再び該ど−ムスプリッタ1に入射する。該
ビームスプリッタ1を透過した赤外光は、移動反射鏡3
によって反射され、再び該ビームスプリッタに入射する
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a Michelson-type interferometer that is optimal for use in a Fourier transform infrared spectrophotometer. 1 shows a Michelson interferometer used in external spectroscopy methods, in which incident infrared light IR is split by a beam splitter 1. The infrared light reflected by the beam splitter 1 is reflected by the fixed reflecting mirror 2 and enters the beam splitter 1 again. The infrared light transmitted through the beam splitter 1 passes through the movable reflecting mirror 3.
The beam is reflected by the beam and enters the beam splitter again.

該反射鏡2,3によって反射された赤外光は、該ど−ム
スブリッタ1上で干渉するが、該干渉光は、試料レル4
に照射された後、図示しない検出器によって検出される
。ここで、移動反射鏡3とビームスプリンタ1との間の
光路上、ビームスプリッタ1からの距離が、ビームスプ
リッタ1と固定反射鏡2どの間の距離に等しい位置を基
点Pとし、該基点Pから移動反射鏡3までの距離をXと
すると、X=Qからx=mまで移動反射鏡を移動させ、
その間、干渉光を検出すれば、x=Qのところでピーク
を有する所謂インタフェログラムが得られる。
The infrared light reflected by the reflecting mirrors 2 and 3 interferes on the sample splitter 1, but the interference light is reflected by the sample rail 4.
is detected by a detector (not shown). Here, on the optical path between the movable reflector 3 and the beam splitter 1, a position from which the distance from the beam splitter 1 is equal to the distance between the beam splitter 1 and the fixed reflector 2 is defined as a base point P, and from the base point P Letting the distance to the movable reflector 3 be X, move the movable reflector from X=Q to x=m,
If interference light is detected during this time, a so-called interferogram having a peak at x=Q can be obtained.

第5図は特開昭58−727号に記載された干渉計を示
しており、ビームスプリッタ1によって反射された光は
第1の固定反射#!L2によって反射され、該ビームス
プリッタ1を透過した光は、第2の固定反l)j鏡5に
よって反射される。該ビームスプリッタ1と固定反射鏡
5との間の光路には、一対の回転位相板6.7が配置さ
れている。該位相板6.7は、軸0.0−の回りに図中
矢印方向に回転可能に配置されており、第5図(a>の
状態から第5図(b)の状態とすることができる。
FIG. 5 shows the interferometer described in Japanese Patent Application Laid-Open No. 58-727, in which the light reflected by the beam splitter 1 is reflected by the first fixed reflection #! The light reflected by L2 and transmitted through the beam splitter 1 is reflected by the second fixed mirror 5. A pair of rotating phase plates 6.7 are arranged in the optical path between the beam splitter 1 and the fixed reflecting mirror 5. The phase plate 6.7 is rotatably arranged around the axis 0.0- in the direction of the arrow in the figure, and can be changed from the state shown in FIG. 5(a) to the state shown in FIG. 5(b). can.

第5図(a)の状態と第5図(b)の状態と比較すると
、後者においては、位相板6.7を通過する光の光路長
りが長くなり、位相板の屈折率が光路の他の雰囲気より
高いものを選択することにより、後者では、前者に比べ
て、ビームスプリッタ1と固定反射鏡5との間の実質的
な光路長を長くすることができる。従って、該一対の位
相板を対称的に回転させること、すなわち、該2枚の位
相板のなす角度θを変化させることにより、ビームスプ
リッタ1で分割された一方の光路長を連続的に変化さぼ
ることができる。この光路長の変化に伴う干渉光を検出
すれば、インクフェログラムが得られる。
Comparing the state of FIG. 5(a) and the state of FIG. 5(b), in the latter case, the optical path length of the light passing through the phase plate 6.7 becomes longer, and the refractive index of the phase plate changes along the optical path. By selecting a higher atmosphere than other atmospheres, in the latter case, the substantial optical path length between the beam splitter 1 and the fixed reflecting mirror 5 can be made longer than in the former case. Therefore, by rotating the pair of phase plates symmetrically, that is, by changing the angle θ formed by the two phase plates, the length of one optical path divided by the beam splitter 1 can be continuously changed. be able to. An ink ferrogram can be obtained by detecting the interference light that accompanies this change in optical path length.

[発明が解決しようとする問題点コ 得られたインタフェログラムについて、フーリエ変換処
理を行えば、試料の赤外吸収スペクトルを得ることがで
きるが、フーリエ変換によって正確なスペクトルを得る
ためには、第4図の構成では、移動反射鏡の移動距離を
長くする必要がある。
[Problems to be Solved by the Invention] If the obtained interferogram is subjected to Fourier transform processing, an infrared absorption spectrum of the sample can be obtained. However, in order to obtain an accurate spectrum by Fourier transform, In the configuration shown in FIG. 4, it is necessary to increase the moving distance of the movable reflecting mirror.

ところで移動反射鏡の反射面は、固定反射鏡によって反
射された赤外光と、移動反射鏡によって反射された赤外
光との干渉性を良好に維持するために、常に移動の方向
に垂直に保たれる必要がある。
By the way, the reflecting surface of the moving reflector is always perpendicular to the direction of movement in order to maintain good coherence between the infrared light reflected by the fixed reflector and the infrared light reflected by the moving reflector. needs to be preserved.

該移動距離が短い場合には、該反射面を垂直に維持する
ことは比較的容易であるものの、該距離が長くなるに従
って、反射面の垂直度の維持は加速度的に困難になる。
When the moving distance is short, it is relatively easy to maintain the reflective surface vertically; however, as the distance increases, maintaining the verticality of the reflective surface becomes increasingly difficult.

又、該距離を長くするためには、移動反射鏡を支持する
軸受けや駆動機構が、必然的に大型となり、干渉計自体
も大型とならざるを得ない。又、実際の装7置では、移
動反射13は往復移動させられるが、その際、かなりの
質量の反射鏡を停止2反転させるエネルギが必要となり
、高速での反射鏡の往復移動は困難となる。
Furthermore, in order to increase the distance, the bearing and drive mechanism that support the movable reflecting mirror must necessarily become large, and the interferometer itself must also become large. In addition, in the actual device 7, the movable reflector 13 is moved back and forth, but in this case, energy is required to stop and reverse the reflector, which has a considerable mass, making it difficult to move the reflector back and forth at high speed. .

第5図の構成では、回転機構によって光路長を変化させ
るようにしている。その結果、回転位相板6.7の軸受
は、直線摺動軸受に比べて精度の良いものが作り易く、
又、光路長は回転角θによって変化するが、このθを大
きくしても、軸受製作上の困難さが増すことはない。更
に、固定反射鏡5へ入射する光は、単に位相板を透過し
た光であるため、該位相板6,7の回転軸精度が悪くと
も、該固定反射鏡への光の入射角度は変化せず、測定に
影響を及ぼすことが少ない。しかしながら、この第5図
の構成でも、θを大きくすると、位相板6,7がビーム
スプリッタ1.固定反射鏡5に接近するので、この位相
板6,7は往復回転させられ、該位相板の停止2反転に
大きなエネルギが必要となる。
In the configuration shown in FIG. 5, the optical path length is changed by a rotation mechanism. As a result, it is easier to manufacture bearings for the rotating phase plate 6.7 with better precision than linear sliding bearings.
Further, although the optical path length changes depending on the rotation angle θ, increasing this θ does not increase the difficulty in manufacturing the bearing. Furthermore, since the light incident on the fixed reflector 5 is simply the light that has passed through the phase plate, even if the rotational axis accuracy of the phase plates 6 and 7 is poor, the angle of incidence of the light on the fixed reflector will not change. and has little effect on measurements. However, even in the configuration shown in FIG. 5, when θ is increased, the phase plates 6 and 7 become the beam splitter 1. Since the fixed reflector 5 is approached, the phase plates 6 and 7 are rotated back and forth, and large amounts of energy are required to stop and reverse the phase plates.

従って、本発明の主目的は、往復移動機構を設ける必要
なく、ビームスプリッタによって分割された一方の光路
の長さを繰返し変化させることのできる干渉計を提供す
ることである。
Therefore, a main object of the present invention is to provide an interferometer that can repeatedly change the length of one optical path divided by a beam splitter without the need for a reciprocating mechanism.

[問題点を解決するための手段] 本発明に基づく干渉計は、光をビームスプリッタによっ
て2種の光に分割し、該分割された夫々の光を第1と第
2の反射鏡によって反射させ、該反射された光を該ビー
ムスプリッタ上にて干渉させるように構成した干渉計に
おいて、該ビームスプリッタと一方の固定反射鏡との間
の光路上に、該光路の雰囲気と屈折率が異なった材料で
形成された複数の板状部材を回転可能に配置し、該複数
の板状部拐の夫々が対向する面を互いに平行に形成し、
該ビームスプリッタと対向する板状部材の面と該一方の
固定反射鏡と対向する板状部材の面とを平行に形成した
ことを特徴としている。
[Means for Solving the Problems] The interferometer based on the present invention splits light into two types of light by a beam splitter, and reflects each of the split lights by first and second reflecting mirrors. , in an interferometer configured to cause the reflected light to interfere on the beam splitter, an optical path between the beam splitter and one fixed reflecting mirror has a different atmosphere and refractive index. A plurality of plate-like members made of a material are rotatably arranged, and opposing surfaces of each of the plurality of plate-like members are parallel to each other,
It is characterized in that the surface of the plate-like member facing the beam splitter and the surface of the plate-like member facing the one fixed reflecting mirror are formed parallel to each other.

[実施例] 以下、本発明の実施例を添附図面に基づいて詳述する。[Example] Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は、本発明の一実施例を示しており、入射光IR
はビームスプリッタ11によって2光束に分割される。
FIG. 1 shows an embodiment of the present invention, in which the incident light IR
is split into two beams by the beam splitter 11.

該ビームスプリッタ11によって反射された光は、第1
の固定反射#R12によって反射され、該ビーム哄プリ
ッタ11に再入射する。
The light reflected by the beam splitter 11 is
It is reflected by the fixed reflection #R12 and re-enters the beam splitter 11.

該ビームスプリッタ11を透過した光は、第2の固定反
射鏡13に入射して反射され、該ビームスプリッタ11
に再入射する。該ビームスプリッタに再入射した2種の
光は干渉され、干渉光ILは図示しない試料セルに照射
される。該ビームスプリッタ11と第2の固定反射鏡1
3との間の光路上には、2枚の位相板14.15が配置
されている。該位相板14.15は、光路の雰囲気より
高い屈折率の材料で形成されている。該位相板14のど
−ムスプリッタ11と対向する面と位相板15の固定反
射鏡13と対向する面は光軸に対して垂直に形成され、
該位相板14.15の対向する面は、光軸に対して所定
の角度傾いて平行に形成されている。更に、該位相板1
4.15は、図示しない回転機構によって、光軸Oに平
行で所定距離離れた軸s、s”の回りに回転させられる
The light that has passed through the beam splitter 11 is incident on the second fixed reflecting mirror 13 and reflected, and the light passes through the beam splitter 11.
to be re-injected. The two types of light re-entering the beam splitter are interfered with each other, and the interference light IL is irradiated onto a sample cell (not shown). The beam splitter 11 and the second fixed reflecting mirror 1
Two phase plates 14 and 15 are arranged on the optical path between the two phase plates 14 and 3. The phase plates 14 and 15 are made of a material having a higher refractive index than the atmosphere in the optical path. The surface of the phase plate 14 facing the throat splitter 11 and the surface of the phase plate 15 facing the fixed reflecting mirror 13 are formed perpendicular to the optical axis,
Opposing surfaces of the phase plates 14 and 15 are formed parallel to and inclined at a predetermined angle with respect to the optical axis. Furthermore, the phase plate 1
4.15 is rotated around axes s, s'' parallel to the optical axis O and separated by a predetermined distance by a rotation mechanism (not shown).

第2図(a)〜(d)は、第1図の位相板14゜15を
夫々軸s、s′の回り回転させ1〔状態を示しており、
(a)は、第1図と同じ状態、(b)。
2(a) to 2(d) show the state in which the phase plates 14 and 15 of FIG. 1 are rotated around the axes s and s', respectively.
(a) is the same state as in FIG. 1, (b).

(C)、(d)は夫々、(a)から位相板14゜15を
90°、180” 、270°回転させた状態を示し−
Cいる。この第2図から明らかな如く、位相板14.1
5を通る光路の長さしは、第2図(a)の状態で最も短
く、(C)の状態で、最も長くされ、(b)、(d)の
状態は、夫々その中間の長さとされる。該長さLの変化
は、実質的にビームスプリッタ11と固定反射鏡13と
の間の光路長の変化に対応するため、該2枚の位相板1
4.15の回転によって、該光路長を連続的且つ周期的
に変化させることができる。尚、位相板14.15の対
向する面は、光軸に対して同じ角度に形成されているた
め、2枚の位相板14.15を透過した光が固定反射鏡
13に入射する角度は、該位相板が回転しても変化する
ことはない。
(C) and (d) show the states in which the phase plate 14°15 is rotated 90°, 180", and 270° from (a), respectively.
There is C. As is clear from FIG. 2, the phase plate 14.1
The length of the optical path passing through 5 is the shortest in the state shown in FIG. be done. Since the change in the length L substantially corresponds to the change in the optical path length between the beam splitter 11 and the fixed reflecting mirror 13, the two phase plates 1
By means of a rotation of 4.15, the optical path length can be varied continuously and periodically. Note that since the opposing surfaces of the phase plates 14.15 are formed at the same angle with respect to the optical axis, the angle at which the light transmitted through the two phase plates 14.15 enters the fixed reflecting mirror 13 is as follows. It does not change even if the phase plate rotates.

尚、上述した実施例では、位相板を光軸に平行な軸の回
りに回転させるように構成したが、該位相板を光軸と所
定の角度傾いた軸の回りに回転させるようにしても良い
。又、ビームスプリッタと一方の固定反射鏡との間の光
路上に配置する位相板の数は2枚に限らず、3枚以上で
あっても良い。
In the above embodiment, the phase plate is configured to rotate around an axis parallel to the optical axis, but the phase plate may also be rotated around an axis tilted at a predetermined angle with respect to the optical axis. good. Further, the number of phase plates disposed on the optical path between the beam splitter and one of the fixed reflecting mirrors is not limited to two, but may be three or more.

その場合、固定反I)I鏡に入射する光の入射角を常に
一定とするため、ビームスプリッタと対向する位相板の
面と、固定反射鏡に対向する位相板の面とを平行とする
と共に、位相板同志の対向する面は、平行とする必要が
ある。第3図は、3枚の位相板20,21.22を用い
た場合の構成の一例を示している。該3枚の位相板20
,21.22は、夫々回転軸s、s’ 、s”の回りに
回転可能に配置されている。
In that case, in order to always keep the incident angle of light incident on the fixed mirror constant, the surface of the phase plate facing the beam splitter and the surface of the phase plate facing the fixed reflecting mirror should be parallel. , the opposing surfaces of the phase plates must be parallel. FIG. 3 shows an example of a configuration using three phase plates 20, 21, and 22. The three phase plates 20
, 21, 22 are arranged rotatably around rotation axes s, s', s'', respectively.

[効果] 以上詳述した如く、本発明に基づく干渉計は、ビームス
プリッタと固定反射鏡との間の光路上に複数枚の位相板
を配置し、該位相板を回転させるように構成しているた
め、従来の回転駆動方式の利点を全て備えており、更に
、該光学系を連続して同一方向に回転させることによっ
て、光学系の往復移動の必要なく、ビームスプリッタに
よって分割された光の光路長を繰返し変化させることが
できる。従って、光路長を変化させる駆動機構を簡単 なものとすることができる。
[Effects] As detailed above, the interferometer according to the present invention is configured such that a plurality of phase plates are arranged on the optical path between the beam splitter and the fixed reflecting mirror, and the phase plates are rotated. It has all the advantages of the conventional rotary drive method, and furthermore, by continuously rotating the optical system in the same direction, the light split by the beam splitter can be transmitted without the need for reciprocating the optical system. The optical path length can be changed repeatedly. Therefore, the drive mechanism for changing the optical path length can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は、第1図
の位相板が回転した状態を示す図、第3図は本発明の他
の実施例を示す図、第4図、第5図は、従来の干渉計を
示す図である。 11・・・ビームスプリッタ 12.13・・・固定反射鏡 14.15・・・位相板
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing a state in which the phase plate of FIG. 1 is rotated, FIG. 3 is a diagram showing another embodiment of the present invention, and FIG. FIG. 5 is a diagram showing a conventional interferometer. 11...Beam splitter 12.13...Fixed reflecting mirror 14.15...Phase plate

Claims (1)

【特許請求の範囲】[Claims] 光をビームスプリッタによって2種の光に分割し、該分
割された夫々の光を第1と第2の反射鏡によって反射さ
せ、該反射された光を該ビームスプリッタ上にて干渉さ
せるように構成した干渉計において、該ビームスプリッ
タと一方の固定反射鏡との間の光路上に、該光路の雰囲
気と屈折率が異なった材料で形成された複数の板状部材
を回転可能に配置し、該複数の板状部材の夫々が対向す
る面を互いに平行に形成し、該ビームスプリッタと対向
する板状部材の面と、該一方の固定反射鏡と対向する板
状部材の面とを平行に形成した干渉計。
The light is split into two types of light by a beam splitter, each of the split lights is reflected by a first and second reflecting mirror, and the reflected lights are caused to interfere on the beam splitter. In this interferometer, a plurality of plate-like members made of materials having different refractive indexes from the atmosphere of the optical path are rotatably arranged on the optical path between the beam splitter and one of the fixed reflecting mirrors. The opposing surfaces of each of the plurality of plate-like members are formed parallel to each other, and the surface of the plate-like member facing the beam splitter and the surface of the plate-like member facing the one fixed reflecting mirror are formed parallel to each other. interferometer.
JP15377184A 1984-07-24 1984-07-24 Interferometer Pending JPS6130725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15377184A JPS6130725A (en) 1984-07-24 1984-07-24 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15377184A JPS6130725A (en) 1984-07-24 1984-07-24 Interferometer

Publications (1)

Publication Number Publication Date
JPS6130725A true JPS6130725A (en) 1986-02-13

Family

ID=15569777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15377184A Pending JPS6130725A (en) 1984-07-24 1984-07-24 Interferometer

Country Status (1)

Country Link
JP (1) JPS6130725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128798A (en) * 1991-02-07 1992-07-07 International Business Machines Corporation Addressable wedge etalon filter
JP2014521087A (en) * 2011-07-14 2014-08-25 ファロ テクノロジーズ インコーポレーテッド Scanner with phase and pitch adjustment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128798A (en) * 1991-02-07 1992-07-07 International Business Machines Corporation Addressable wedge etalon filter
JP2014521087A (en) * 2011-07-14 2014-08-25 ファロ テクノロジーズ インコーポレーテッド Scanner with phase and pitch adjustment

Similar Documents

Publication Publication Date Title
US4652130A (en) Method of and arrangement for an interferometer
US4684255A (en) Interferometric optical path difference scanners and FT spectrophotometers incorporating them
US5583638A (en) Angular michelson interferometer and optical wavemeter based on a rotating periscope
CN104713649B (en) A kind of Fourier transform spectrometer, interferometer
US9557221B1 (en) Interferometer for Fourier transform infrared spectrometry
US4329055A (en) Interferometer apparatus for measuring the wavelengths of optical radiation
KR20000023721A (en) An interferometer
US5196902A (en) Two-beam interferometer apparatus and method, and spectrometer utilizing the same
US20060238769A1 (en) Tilt compensated interferometers
US5457529A (en) Rotating mirror interferometer
JPS6130725A (en) Interferometer
JPS6130724A (en) Interferometer
CN106018344A (en) Miniaturized Fourier spectrometer based on linear reciprocation lead screw
JPS60157027A (en) Interferometer by michelson principle
JPS6130723A (en) Interferometer
Tank Pathlength alteration in an interferometer by rotation of a retroreflector
US4179219A (en) Revolving mirror scanning interferometer
US3194109A (en) Interferometric device for determining deviations from planar motion
CN114136442B (en) Interferometer based on continuous rotation and working method thereof
JPS631221Y2 (en)
JPH081398B2 (en) Rotary interferometer
JPS59164926A (en) Interference spectrometer
JP3753812B2 (en) Rotating interferometer
JP3309537B2 (en) Fourier transform spectrophotometer
JPS63241306A (en) Interferometer