JPS61296737A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS61296737A JPS61296737A JP13794285A JP13794285A JPS61296737A JP S61296737 A JPS61296737 A JP S61296737A JP 13794285 A JP13794285 A JP 13794285A JP 13794285 A JP13794285 A JP 13794285A JP S61296737 A JPS61296737 A JP S61296737A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- film
- groove
- element isolation
- polycrystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、半導体装置の製造方法に係り、特疋半導体基
板上の各素子間を電気的に絶縁分離するために、素子分
離領域に絶縁膜を埋め込む半導体装置の製造方法に関す
る。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, in which an insulating film is formed in an element isolation region in order to electrically isolate each element on a special semiconductor substrate. The present invention relates to a method of manufacturing a semiconductor device in which a semiconductor device is embedded.
半導体としてシリコンを用いた半導体装置、特にMO8
型半導体装置においては寄生チャネルによる絶縁不良を
なくシ、かつ、寄生容量を小さくするために、素子間の
いわゆるフィールド領域(素子分離領域)に厚い酸化膜
を形成する事が行われている。Semiconductor devices using silicon as a semiconductor, especially MO8
In semiconductor devices, a thick oxide film is formed in so-called field regions (element isolation regions) between elements in order to eliminate insulation defects due to parasitic channels and reduce parasitic capacitance.
従来、このような酸化膜を用いる素子分離法として、フ
ィールド領域のシリコン基板を一部エッチングして溝を
形成し、ここにCVD技術によりフィールド酸化膜を平
担になるように埋め込む方法が用いられている。Conventionally, as an element isolation method using such an oxide film, a method has been used in which a part of the silicon substrate in the field region is etched to form a groove, and a field oxide film is buried in the groove so as to be flat using CVD technology. ing.
従来技術を第2図を用いて簡単に説明する。第2図(a
)に示すように、比抵抗5〜50Ωα程度のPM(10
0)シリコン基板21を用意し、素子分離領域に例えば
0.6μm程度の深さの溝を形成する。The prior art will be briefly explained using FIG. 2. Figure 2 (a
), PM (10
0) A silicon substrate 21 is prepared, and a groove with a depth of, for example, about 0.6 μm is formed in the element isolation region.
次に、(b)K示すように、基板表面上溝の深さと同程
度の絶縁膜22を、例えばOVD法によって均一に堆積
する。次に、(C)に示すように表面を平担にすること
ができる表面平担化膜24を形成する。Next, as shown in (b)K, an insulating film 22 is uniformly deposited on the surface of the substrate by, for example, an OVD method to a depth comparable to that of the groove. Next, as shown in (C), a surface flattening film 24 capable of flattening the surface is formed.
平担化膜としては、例えばプラズマOVDによるシリコ
ンナイトライド膜を用いる。As the leveling film, for example, a silicon nitride film produced by plasma OVD is used.
その後、(d)に示すように、上記平担化膜24と絶縁
膜22を両者に対するエツチング速度がほぼ等しいエツ
チング条件で表面からエツチングし、素子領域上の基板
表面を露出させると、上記素子分離領域の溝は絶縁膜2
2で埋め込まれる。Thereafter, as shown in (d), the flattening film 24 and the insulating film 22 are etched from the surface under etching conditions in which the etching speed for both is approximately equal to expose the substrate surface above the element region. The groove in the area is insulating film 2
Embedded in 2.
しかし、上記従来法においては、集積度を高めるために
素子分離領域を微細し溝の幅を狭くした場合、素子分離
能力が低下するという問題がある。However, in the above-mentioned conventional method, when the element isolation region is made finer and the width of the groove is narrowed in order to increase the degree of integration, there is a problem that the element isolation ability decreases.
本発明は、上述した従来法の欠点を改良したもので、素
子分離のための溝の中に導電性膜を設け、導電性膜のシ
ールド効果により素子分離能力を高めることのできる半
導体装置の製造方法を提供することを目的とする。The present invention improves the above-mentioned drawbacks of the conventional method, and manufactures a semiconductor device in which a conductive film is provided in a groove for element isolation, and the element isolation ability can be increased by the shielding effect of the conductive film. The purpose is to provide a method.
本発明は、素子分離のために設けた溝に絶縁膜を埋め込
む際、導電性膜を所定の位置に設け、かつ、導電性膜と
半導体基板とを導通させる。この後、従来法と同様にさ
らに絶縁膜を堆積し、表面を平担化する。According to the present invention, when an insulating film is buried in a groove provided for element isolation, a conductive film is provided at a predetermined position and the conductive film and a semiconductor substrate are electrically connected. After this, an insulating film is further deposited in the same manner as in the conventional method, and the surface is flattened.
本発明によれば、素子分離のためて設けた溝の中に基板
に接地した導電性膜があることで、シールド効果(電気
力線が導電性膜に終端し、溝底部の半導体基板に終端し
にくくなる)により、素子分離能力が高まる。従って、
集積回路の信頼性を高めることができる。According to the present invention, since there is a conductive film grounded to the substrate in the groove provided for element isolation, a shielding effect (electric lines of force terminate at the conductive film and terminate at the semiconductor substrate at the bottom of the groove) ), which improves device isolation capability. Therefore,
The reliability of integrated circuits can be improved.
第1図(a)は、本発明によシ製造され起生導体装置の
一1例を示す平面図であシ、同図(b)、 (C)は、
それぞれX−X’ 、 Y−Y’での断面図である。素
子分離のための溝の中に導電性膜3が埋め込まれている
。FIG. 1(a) is a plan view showing one example of a generating conductor device manufactured according to the present invention, and FIG. 1(b) and (C) are
They are sectional views taken along lines X-X' and Y-Y', respectively. A conductive film 3 is embedded in the trench for element isolation.
本発明の一実施例について、以下第3図を用いて説明す
る。An embodiment of the present invention will be described below with reference to FIG.
同図に於いて、(a)〜(e)は第1図のx−x’断面
、〔a′〕〜(e′)は第1図のY−Y’断面を示して
いる。In the figure, (a) to (e) show the xx' cross section in FIG. 1, and [a'] to (e') show the YY' cross section in FIG. 1.
第3図(a)に示すように、比抵抗5〜50Ωα程度の
P型(100)シリコン基板31を用意し、レジストを
パターニングして素子分離領域のエツチング用のマスク
とし、反応性イオンエツチングで素子分離領域に例えば
深さ0.6μmの溝を形成する。As shown in FIG. 3(a), a P-type (100) silicon substrate 31 with a resistivity of about 5 to 50 Ωα is prepared, a resist is patterned to use it as a mask for etching the element isolation region, and reactive ion etching is performed. A trench with a depth of, for example, 0.6 μm is formed in the element isolation region.
次に、第3図[有])に示すように、全面に第1の絶縁
膜と、して、例えばプラズマOVD Sin、 gE3
2を0.2μm堆積する。Next, as shown in FIG.
2 to a thickness of 0.2 μm.
次に、前記プラズマ0VDSiO,膜32をパターニン
グし、第3図(b′)に示すように、所定の部分で基板
31を露出させる。Next, the plasma 0VDSiO film 32 is patterned to expose the substrate 31 at a predetermined portion, as shown in FIG. 3(b').
次に、第3図(C)に示すように、導電性膜として例え
ば燐をドープした多結晶シリコン膜33をエッチパック
によシ前記溝内に残置させる。っまシ多結晶シリコン膜
33を全面に、例えば0.3μm堆積し、次にレジスト
を堆積し表面を平担化し、次に前記多結晶シリコン膜3
3と前記レジストを両者に対するエツチング速度がほぼ
等しいエツチング条件で表面からRIEによりエツチン
グし、前記多結晶シリコン膜33を溝内にのみ、例えば
、0.3μm残置させる。この時、(0−Y)に示すよ
うに1前述の工程で基板31を露出させた部分では基板
31と多結晶シリコン膜33とでオーミック接触が得ら
れ、多結晶シリコン族33は基板31に接地される。Next, as shown in FIG. 3C, a polycrystalline silicon film 33 doped with phosphorus, for example, as a conductive film is left in the groove using an etch pack. A polycrystalline silicon film 33 is deposited on the entire surface, for example, with a thickness of 0.3 μm, then a resist is deposited to flatten the surface, and then the polycrystalline silicon film 3
3 and the resist are etched from the surface by RIE under etching conditions in which the etching rates for both are substantially equal, leaving the polycrystalline silicon film 33, for example, 0.3 .mu.m thick only in the groove. At this time, as shown in (0-Y), ohmic contact is obtained between the substrate 31 and the polycrystalline silicon film 33 in the part where the substrate 31 was exposed in the step 1 above, and the polycrystalline silicon group 33 is attached to the substrate 31. Grounded.
次に、第3図(d)に示すように、第2の絶縁膜として
、例えば0VDSiOt膜34を全面て2μm堆積し、
表面を平担化する。Next, as shown in FIG. 3(d), as a second insulating film, for example, a 0VDSiOt film 34 is deposited to a thickness of 2 μm over the entire surface.
Flatten the surface.
次に、RIBによυ素子形成領域のシリコン基板表面が
露出するまでエツチングすれば、第3図(e)に示すよ
うに、基板全体にわたつて平担化できる。その後、素子
形成領域には通常のMO8型半導体装置製造工程と同様
にして、ゲート酸化膜、ソース、ドレイン拡散層を形成
してトランジスタを作成する。Next, by etching with RIB until the surface of the silicon substrate in the υ element formation region is exposed, the entire substrate can be flattened as shown in FIG. 3(e). Thereafter, a gate oxide film, source and drain diffusion layers are formed in the element formation region to form a transistor in the same manner as in a normal MO8 type semiconductor device manufacturing process.
この実施例によれば、素子分離のために設けた溝の中に
基板に接地した導電性の多結晶シリコン膜33があるこ
とで、シールド効果にょシ素子分離能力を向上させるこ
とができる。According to this embodiment, since the conductive polycrystalline silicon film 33 grounded to the substrate is present in the groove provided for element isolation, the shielding effect and element isolation ability can be improved.
第1図は、本発明の素子分離法を説明する説明図、第2
図は、従来の素子分離法を説明する工程断面図、第3図
は、本発明の一実施例を説明する工程断面図である。
図に於いて、
1、・・21.31・・・シリコン基板、2,22.3
2・・・OVD 8i0. g、4.24.34 =−
OVD Sing 膜。
代理人弁理士 則 近 憲 佑 (ほか1名)@ 1
図
第 2 図
第3図FIG. 1 is an explanatory diagram for explaining the element isolation method of the present invention, and FIG.
The figure is a cross-sectional view of a process for explaining a conventional element isolation method, and FIG. 3 is a cross-sectional view of a process for explaining an embodiment of the present invention. In the figure, 1,...21.31...Silicon substrate, 2,22.3
2...OVD 8i0. g, 4.24.34 =-
OVD Sing film. Representative Patent Attorney Noriyuki Chika (and 1 other person) @ 1
Figure 2 Figure 3
Claims (1)
る工程と、この溝の中央部に細い溝を残して第1の絶縁
膜を形成する工程と、前記第1の絶縁膜をパターニング
し前記半導体基板を露出する工程と、前記溝中央部の細
い溝に導電性膜を埋め込み、かつ、前記露出させた半導
体基板と前記導電性膜とを導通させる工程と、第2の絶
縁膜を前記溝の中央部に埋め込み基板全体にわたって表
面をほぼ平担化する工程と、前記素子分離領域外の基板
上に素子を形成する工程とを備えたことを特徴とする半
導体装置の製造方法。A step of etching an element isolation region of a semiconductor substrate to form a groove, a step of forming a first insulating film by leaving a narrow groove in the center of the groove, and a step of patterning the first insulating film to form a groove in the semiconductor substrate. a step of exposing the substrate; a step of embedding a conductive film in the narrow groove at the center of the groove; and a step of making the exposed semiconductor substrate and the conductive film conductive; and a second insulating film in the groove. 1. A method of manufacturing a semiconductor device, comprising the steps of: making the surface substantially flat over the entire substrate buried in the center; and forming an element on the substrate outside the element isolation region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13794285A JPS61296737A (en) | 1985-06-26 | 1985-06-26 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13794285A JPS61296737A (en) | 1985-06-26 | 1985-06-26 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61296737A true JPS61296737A (en) | 1986-12-27 |
Family
ID=15210304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13794285A Pending JPS61296737A (en) | 1985-06-26 | 1985-06-26 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61296737A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100420842B1 (en) * | 1999-12-09 | 2004-03-02 | 엔이씨 일렉트로닉스 코포레이션 | Method for manufacturing semiconductor integrated circuit device |
-
1985
- 1985-06-26 JP JP13794285A patent/JPS61296737A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100420842B1 (en) * | 1999-12-09 | 2004-03-02 | 엔이씨 일렉트로닉스 코포레이션 | Method for manufacturing semiconductor integrated circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4746963A (en) | Isolation regions formed by locos followed with groove etch and refill | |
JP2791260B2 (en) | Method for manufacturing semiconductor device | |
JPS6072268A (en) | Method of producing bipolar transistor structure | |
JPS6232630A (en) | Formation of contact plug | |
JPS6348180B2 (en) | ||
JP3006425B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH08293543A (en) | Semiconductor device and manufacture thereof | |
US5395789A (en) | Integrated circuit with self-aligned isolation | |
JPH08236629A (en) | Integrated circuit structure and its preparation | |
JPS5958838A (en) | Semiconductor device | |
US4504333A (en) | Method of making field oxide regions | |
JPS61296737A (en) | Manufacture of semiconductor device | |
JPH0563073A (en) | Semiconductor integrated circuit and manufacture thereof | |
JP2767104B2 (en) | Method for manufacturing semiconductor device | |
JP3231311B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JPH05343413A (en) | Bipolar transistor and manufacture thereof | |
JP2855981B2 (en) | Method for manufacturing semiconductor device | |
JPS621243A (en) | Manufacture of semiconductor device | |
JP2531680B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3595092B2 (en) | Method for manufacturing semiconductor device | |
JPH03177072A (en) | Semiconductor device and its manufacture | |
JPS59178773A (en) | Manufacture of semiconductor device | |
JPH0595048A (en) | Manufacture of semiconductor integrated circuit device | |
JPS60206150A (en) | Manufacture of semiconductor device | |
JP2993039B2 (en) | Active layer stacked device |