[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61283178A - Photoconductive type semiconductor photodetector - Google Patents

Photoconductive type semiconductor photodetector

Info

Publication number
JPS61283178A
JPS61283178A JP60125427A JP12542785A JPS61283178A JP S61283178 A JPS61283178 A JP S61283178A JP 60125427 A JP60125427 A JP 60125427A JP 12542785 A JP12542785 A JP 12542785A JP S61283178 A JPS61283178 A JP S61283178A
Authority
JP
Japan
Prior art keywords
type
layer
region
forbidden band
band width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60125427A
Other languages
Japanese (ja)
Inventor
Kenshin Taguchi
田口 剣申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60125427A priority Critical patent/JPS61283178A/en
Publication of JPS61283178A publication Critical patent/JPS61283178A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/1124Devices with PN homojunction gate
    • H01L31/1126Devices with PN homojunction gate the device being a field-effect phototransistor

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a high speed response by forming a P-N junction in a semiconductor layer having large similar forbidden band width, and depleting by the application of reverse bias over a photoabsorbing layer having small forbidden band width. CONSTITUTION:An N-type AlInAs layers 2 of approx. 0.5mum, an N<-> type AlInAs layer 3 of 0.3mum are formed by epitaxially growing method on an N<-> type InP substrate 1, and an N<-> type InGaAs layer 4 of approx. 2mum and an N<-> type InP layer 5 of approx. 1.5mum thick are formed. With an SiO2 film as a selectively diffused mask on the wafer thus obtained, and Zn is diffused to form a P<+> type InP region 6. After an AuGe alloy is, for example, deposited, the region except the prescribed region is removed, and heat treated at high temperature. Thus, an N<+> type region 7 is formed, lead removing electrodes 8, 8' are then formed to form a photoconductive type photodetector.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信あるいは光情報処理等に用いる光検出器
としての光導電型半導体受光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photoconductive semiconductor light-receiving element as a photodetector used in optical communication, optical information processing, etc.

〔従来の技術〕[Conventional technology]

半導体受光素子は長距離大容量あるいは光情報処理用等
の光通信システムにおける光検出器として重要なもので
あシ、光源としての半導体レーザあるいは発光ダイオー
ドと共にその研究、開発が進められている。この様な受
光素子として化合物半導体を用いた光導電型半導体受光
素子が比較的簡便な方法によシ得°られ、かつ高速、高
感度の可能性を有する点から注目されてきてお9、既存
のアバランシ・フォトダイオード、あるかはフォトダイ
オードと並んで優れた特性の実現が望まれている。
Semiconductor photodetectors are important as photodetectors in optical communication systems for long-distance, large-capacity or optical information processing, and their research and development are progressing along with semiconductor lasers or light-emitting diodes as light sources. Photoconductive semiconductor light-receiving devices using compound semiconductors have attracted attention because they can be obtained by a relatively simple method and have the potential for high speed and high sensitivity9. Avalanche photodiodes, or even photodiodes, are expected to have excellent characteristics.

従来、高速応答を得るために、2次元電子ガスを利用し
た光導電型半導体受光素子として、第3図に示す構造の
報告例がある〔アプライド・フィジクス・レター(Ap
pl −Phys 、Lett 、、43[3)e I
 August1983 ) 〕。この例では、n−I
nGaAs13 f光吸収層とし、InGaAs13と
n−AtInAs12,14の接合による伝導体不連続
に起因した低濃度InGaAs13層中の谷の領域に、
光励起されたキャリアの内篭子を空間的に閉じ込める事
によりドナーイオン等による散乱のない電子の高移動度
を利用している。この様にして得られた素子は、立上り
時間80p!11!+(+、半値全幅250psecの
光応答特性を示したと報告しているが、正孔の遅いドリ
フト速度に規定されたn secオーダーの遅い光応答
が長いテールとして見られた。
Conventionally, in order to obtain high-speed response, there has been a report on the structure shown in Figure 3 as a photoconductive type semiconductor light-receiving element that utilizes two-dimensional electron gas [Applied Physics Letters (Ap.
pl-Phys, Lett,, 43[3)e I
August 1983)]. In this example, n-I
nGaAs13 f light absorption layer, in the valley region in the low concentration InGaAs13 layer caused by conductor discontinuity due to the junction of InGaAs13 and n-AtInAs12,14,
By spatially confining the inner cage of photoexcited carriers, the high mobility of electrons without scattering by donor ions etc. is utilized. The device thus obtained has a rise time of 80p! 11! +(+, reported to exhibit a photoresponse characteristic with a full width at half maximum of 250 psec, but a slow photoresponse on the order of n sec determined by the slow drift velocity of holes was observed as a long tail.

図中11は半絶縁性InP基板、15はn”−Galn
As、16は電極である。
In the figure, 11 is a semi-insulating InP substrate, 15 is an n”-Galn
As, 16 is an electrode.

この様なパルス応答の立下がりの劣化、即ち、遅い正孔
の影響を除く目的で第4図に示す様な構造の光導電型半
導体受光素子も報告されている〔アプライド・フィジク
ス・レター(Appl、Phys。
A photoconductive semiconductor light-receiving element with a structure as shown in Fig. 4 has also been reported for the purpose of eliminating such deterioration in the fall of the pulse response, that is, the influence of slow holes [Applied Physics Letters]. , Phys.

Lett0m43QJ−15Deasmber 198
3 ) ”l。この例ではGaAs23ヲ光吸収層とし
、 n−GaAs 24とn−AtGaAa25との接
合によってn−GaA+s 24中に生ずる2次元電子
ガスを利用している。p−GaAs基板21ヲダートと
し、逆バイアスを加えることによシ正孔t−ff−)か
ら取り出して、ソース・ドレイン間を流れる光電流に寄
与させないことにより、遅い成分のない80p sea
程度の立ち下がシ時間が得られていると報告している。
Lett0m43QJ-15Deasmber 198
3) "l. In this example, GaAs 23 is used as a light absorption layer, and two-dimensional electron gas generated in n-GaA+s 24 by joining n-GaAs 24 and n-AtGaAa 25 is used. P-GaAs substrate 21 is used as a light absorption layer. By applying a reverse bias, the holes are taken out from the holes (t-ff-) and do not contribute to the photocurrent flowing between the source and drain, resulting in an 80 p sea without slow components.
It has been reported that a certain amount of time has been obtained for the downtime.

図中22はp −GaAs 、 26はn −GaAm
 。
In the figure, 22 is p-GaAs, 26 is n-GaAm
.

27はf−)電極、28は電極である。27 is an f-) electrode, and 28 is an electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この様なダートによる遅い成分の取り出
しは、光−電気信号変換効率の低下の上に成立しており
、高い信号/雑音比が求められる光通信システム等の光
検出器としては必ずしも適していない。
However, the extraction of slow components by such darts results in a decrease in optical-to-electrical signal conversion efficiency, and is not necessarily suitable as a photodetector for optical communication systems that require a high signal/noise ratio. do not have.

本発明の目的は、この様な従来の欠点を除去せしめ、高
い光−電気信号変換効率を保ち、かつ高速応答特性を有
する光導電型半導体受光素子を提供する仁とKある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a photoconductive semiconductor light-receiving device which eliminates such conventional drawbacks, maintains high optical-to-electrical signal conversion efficiency, and has high-speed response characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は少なくとも禁制帯幅の異なる同一導電型の半導
体層を接して有する半導体において、上記禁制帯幅の大
なる半導体層の上記禁制帯幅の小なる半導体層と接しな
い領域に上記の導電型と逆の導電型の半導体領域を形成
することによりp−n接合を形成し、このp−n接合に
逆バイアスを印加することにより前記禁制帯幅の小なる
半導体層忙わたり空乏化することを特徴とする。
The present invention provides a semiconductor having at least semiconductor layers of the same conductivity type with different forbidden band widths in contact with each other, in which a region of the semiconductor layer with the large forbidden band width that is not in contact with the semiconductor layer with the small forbidden band width is of the conductive type. A p-n junction is formed by forming a semiconductor region of the opposite conductivity type, and by applying a reverse bias to this p-n junction, it is possible to prevent depletion of the semiconductor layer with a small forbidden band width. Features.

〔作用・原理〕[Action/Principle]

禁制帯幅の大なる半導体層中にp−n接合を形成し、こ
のp−n接合に逆バイアスを印加して、前記禁制帯幅の
小なる光吸収層にわたり空乏化することによ)、本、禁
制帯幅の小なる半導体層での光励起によって生成する電
子、正孔対の内、小数キャリアとなるキャリアを前記禁
制帯幅が異なる2つの半導体のバンド構造に起因したバ
ンドの不連続によシ2次元ガス化することにより高速応
答を得ることを可能とした。
By forming a p-n junction in a semiconductor layer with a large forbidden band width, applying a reverse bias to this p-n junction, and depleting the light absorption layer with a small forbidden band width), In this book, among electron and hole pairs generated by photoexcitation in a semiconductor layer with a small forbidden band width, carriers that become minority carriers are generated by band discontinuity caused by the band structure of two semiconductors with different forbidden band widths. By performing two-dimensional gasification, it was possible to obtain a high-speed response.

〔実施例〕〔Example〕

以下1本発明の実施例について図面を参照して説明する
An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す概略横断面図である
。本実施例は、まず(100)面を有するn+−InP
基板1の上にエピタキシャル成長法(側光ば分子線エピ
タキシャル成長法)によシ膜厚0.51Rn、不純物濃
度I X 1017z−’のn−AtInAa層2、膜
厚0.3μm、不純物濃度lX10m  のn−AAI
nAs層3を形成後、膜厚2μm不純物濃度5X10 
cm のn −InGaAs層4、膜厚1.5μm、不
純物濃度5 X 10”m−’のn−InP層5を形成
する。この様にして得たウェーハに、例えば5IO2膜
を選択拡散マスクとして選択的に例えばZnを拡散する
ことによりp −InP領域6を形成する。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the present invention. In this example, first, n+-InP having (100) plane
An n-AtInAa layer 2 with a film thickness of 0.51Rn and an impurity concentration I x 1017z-' is grown on the substrate 1 by an epitaxial growth method (side-light molecular beam epitaxial growth method). -AAI
After forming the nAs layer 3, the film thickness is 2 μm and the impurity concentration is 5×10
An n-InGaAs layer 4 with a thickness of 1.5 μm and an n-InP layer 5 with an impurity concentration of 5×10”m are formed on the wafer thus obtained. For example, a 5IO2 film is used as a selective diffusion mask on the wafer thus obtained. The p-InP region 6 is formed by selectively diffusing, for example, Zn.

次に例えばAuGe合金を蒸着後、所定の領域外を除去
し次後、高温処理することによりn領域7を形成し、そ
の後、リード線取シ出し用電極8及び8′を形成して光
導電型受光素子を完成する。
Next, after depositing, for example, an AuGe alloy, the area outside the predetermined area is removed, and then high temperature treatment is performed to form the n-region 7. After that, lead wire extraction electrodes 8 and 8' are formed to conduct photoconductivity. Complete the type photodetector.

上記した本発明の一実施例の効果を第2図の概略バンド
構造図を用いて説明する。光信号は光吸収層であるIn
GaAs層4で吸収され光励起された電子−正孔対が発
生する。この内、電子は前記A/JnAa層3とInG
aAs層4の伝導体の不連続に起因したInGaAs層
4内でのバンドのまがシによる2次元ガス領域に移動し
、一方正孔は、前記InP層5と6とによ膜形成された
p −n接合に逆バイアスが印加されることによシ空乏
層のn−InGaAs層4内への拡がシによる正孔の2
次元ガス形成域に移動する。
The effects of the embodiment of the present invention described above will be explained using the schematic band structure diagram shown in FIG. The optical signal is transmitted through the light absorption layer In
Electron-hole pairs that are absorbed and photoexcited in the GaAs layer 4 are generated. Among these, the electrons are connected to the A/JnAa layer 3 and the InG
Due to the band distortion in the InGaAs layer 4 caused by the discontinuity of the conductor in the aAs layer 4, the holes move to the two-dimensional gas region, while the holes are formed in the InP layers 5 and 6. By applying a reverse bias to the p-n junction, the depletion layer spreads into the n-InGaAs layer 4, and the holes due to
Move to the dimensional gas formation area.

このとき第1図において、電極8,8間はソース・ドレ
インを形成する為に電位差が与えられており上記正孔及
び電子の2次元ガスは高速に取シ出すことが可能となる
At this time, in FIG. 1, a potential difference is applied between the electrodes 8 and 8 to form a source and drain, and the two-dimensional gas of holes and electrons can be extracted at high speed.

〔発明の効果〕〔Effect of the invention〕

以上詳しく説明した様に、本発明によれば光励起された
キャリアの両方を2次元ガス化が可能とな)、光−電気
信号変換効率の低下を抑え、かつ高速応答特性を有する
光導電型半導体受光素子を提供できる効果を有するもの
である。
As explained in detail above, according to the present invention, it is possible to two-dimensionally gasify both photoexcited carriers), suppress a decrease in photo-electrical signal conversion efficiency, and have high-speed response characteristics. This has the effect of providing a light receiving element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構造の横断面図、第2図は
第1図の構造による素子の効果を説明する為のバンド構
造概略図、第3図及び第4図は従来の光導電型半導体受
光素子の断面模式図である。 1 ・= n−InP基板、2− n−AtInAa 
、:l・・n−gInAs、4 ・・・n−InGaA
s 、 5− n−InP 、 6−・p −InP。 7・・・n領域、8・・・電極。 4、− TL−ITLG(LAS 5・・−n−rThP 第2図 一十 画Z 老2 一一一一一−1 を
FIG. 1 is a cross-sectional view of the structure of one embodiment of the present invention, FIG. 2 is a schematic diagram of the band structure for explaining the effect of the device with the structure of FIG. 1, and FIGS. 3 and 4 are the conventional FIG. 2 is a schematic cross-sectional view of a photoconductive semiconductor light-receiving element. 1 ・= n-InP substrate, 2- n-AtInAa
, :l...n-gInAs, 4...n-InGaA
s, 5-n-InP, 6-·p-InP. 7...n region, 8...electrode. 4, -TL-ITLG(LAS 5...-n-rThP Figure 2 10th stroke Z Old 2 1111-1

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも禁制帯幅の異なる同一導電型の半導体
層を接して有する半導体において、上記禁制帯幅の大な
る半導体層の上記禁制帯幅の小なる半導体層と接しない
領域に上記の導電型と逆の導電型の半導体領域を形成す
ることによりp−n接合とし、このp−n接合に逆バイ
アスを印加することにより前記禁制帯幅の小なる半導体
層にわたり空乏化するようにしたことを特徴とする光導
電型半導体受光素子。
(1) In a semiconductor having at least semiconductor layers of the same conductivity type with different forbidden band widths in contact with each other, a region of the semiconductor layer with a large forbidden band width that is not in contact with the semiconductor layer with a small forbidden band width has a conductivity type of the above conductivity type. A p-n junction is formed by forming a semiconductor region of the opposite conductivity type, and by applying a reverse bias to this p-n junction, the semiconductor layer having a small forbidden band width is depleted. Features of photoconductive semiconductor light-receiving device.
JP60125427A 1985-06-10 1985-06-10 Photoconductive type semiconductor photodetector Pending JPS61283178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60125427A JPS61283178A (en) 1985-06-10 1985-06-10 Photoconductive type semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60125427A JPS61283178A (en) 1985-06-10 1985-06-10 Photoconductive type semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS61283178A true JPS61283178A (en) 1986-12-13

Family

ID=14909826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60125427A Pending JPS61283178A (en) 1985-06-10 1985-06-10 Photoconductive type semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS61283178A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160283A (en) * 1986-12-23 1988-07-04 Fujitsu Ltd Semiconductor photodetector
US5272364A (en) * 1991-07-01 1993-12-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor photodetector device with short lifetime region

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160283A (en) * 1986-12-23 1988-07-04 Fujitsu Ltd Semiconductor photodetector
US5272364A (en) * 1991-07-01 1993-12-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor photodetector device with short lifetime region

Similar Documents

Publication Publication Date Title
US4731641A (en) Avalanche photo diode with quantum well layer
US4684969A (en) Heterojunction avalanche photodiode
JPS63955B2 (en)
JPS61283178A (en) Photoconductive type semiconductor photodetector
JPS6244709B2 (en)
JPS6285477A (en) Photosemiconductor device
JPS60110177A (en) Manufacture of semiconductor photodetector
JPS61283177A (en) Photoconductive type semiconductor photodetector
JPS6255969A (en) Photoconductive semiconductor photodetector
JPS61289678A (en) Avalanche photo diode
JPH0437591B2 (en)
JPS59232470A (en) Semiconductor light receiving element
JP2667413B2 (en) Semiconductor light receiving device
JPH01196182A (en) Photodiode
JPS6255968A (en) Photoconductive semiconductor photodetector
JPS59149070A (en) Photodetector
JPS61198688A (en) Semiconductor photodetector
JPH0750429A (en) Photodetector and manufacture thereof
JPH0265279A (en) Semiconductor photodetecting element
JPS6157716B2 (en)
JP2995751B2 (en) Semiconductor light receiving element
JPS61121482A (en) Photoconductive semiconductor light-receiving element
JPS59132687A (en) Semiconductor photo detecting element
JPS62169376A (en) Photodiode
JPH0451990B2 (en)