JPS61280464A - Production of disubstituted cyanamide - Google Patents
Production of disubstituted cyanamideInfo
- Publication number
- JPS61280464A JPS61280464A JP12059385A JP12059385A JPS61280464A JP S61280464 A JPS61280464 A JP S61280464A JP 12059385 A JP12059385 A JP 12059385A JP 12059385 A JP12059385 A JP 12059385A JP S61280464 A JPS61280464 A JP S61280464A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- disubstituted
- cyanamide
- approximately
- amine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ジ置換シアナミドの製法に関し、より詳しく
は、エポキシ樹脂用硬化剤、エツチング剤、ポリウレタ
ン樹脂用原料、アミン樹脂用原料、医薬用中間原料等と
して多くの用途が近年期待されているジ置換シアナミド
の製法に関する。更に詳しくは、ジ置換アミンと青酸ソ
ーダ(若しくは青酸カリ)とを塩素の存在下に水性溶媒
中で反応させることf!:特徴とするジ置換シアナミド
の製法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a di-substituted cyanamide, and more specifically, a curing agent for epoxy resin, an etching agent, a raw material for polyurethane resin, a raw material for amine resin, and a pharmaceutical use. This article relates to a method for producing di-substituted cyanamide, which is expected to find many uses in recent years as an intermediate raw material. More specifically, a disubstituted amine and sodium cyanide (or potassium cyanide) are reacted in an aqueous solvent in the presence of chlorine f! :Relating to a method for producing characteristically di-substituted cyanamides.
従来、ジ置換グアニジンを実質的に経由するテトラ置換
グアニジンの製法がいくつか知られている。Conventionally, several methods for producing tetra-substituted guanidine are known which essentially involve di-substituted guanidine.
先ず、特公昭49−48932号公報には、最低2当量
のジメチルアミンを水と非混和性の溶媒中で塩化シアン
と混合し、得られた混会物を反応が終了するまで加圧下
にて130〜180℃の温度に加熱し、随時1.1.3
.3−テトラメチルグアニジンを塩基との反応によって
その塩酸塩から分離することを特徴とするl、 1.3
.3−テトラメチルグアニジンまたはその塩酸塩の製造
方法
に関して開示されており、該公報の中にはジメチルアミ
ンと塩化シアンの反応によシジメチルシアナミドが生成
することが記載されている。First, Japanese Patent Publication No. 49-48932 discloses that at least 2 equivalents of dimethylamine are mixed with cyanogen chloride in a water-immiscible solvent, and the resulting mixture is heated under pressure until the reaction is completed. 1.1.3 Heat to a temperature of 130-180°C as needed.
.. 1.3, characterized in that 3-tetramethylguanidine is separated from its hydrochloride by reaction with a base;
.. A method for producing 3-tetramethylguanidine or its hydrochloride is disclosed, and the publication describes that cydimethyl cyanamide is produced by the reaction of dimethylamine and cyanogen chloride.
しかし、上記提案に於けるジメチルアミンと塩化シ・ア
ンの反応は、水と非混和性の溶媒、例えばベンゼン、ト
ルエン、クロロベンゼン、シクロ−\キサンまたは沸点
範囲60〜120℃にの有機溶媒の回収の問題、更には
反応完結に比較的高温を必要とするため加圧下に反応が
行なわれるので、反応装置上の制約が大きい等多くの問
題を有し、このため工業的に広く採用されるに至らなか
った。なお、前記提案には、ジメチルシアナミド以外の
ジ置換シアナミドに関しては、何等の記載も示唆もない
。However, the reaction of dimethylamine and cyanogen chloride in the above proposal requires the recovery of water-immiscible solvents such as benzene, toluene, chlorobenzene, cyclo-\xane or organic solvents with a boiling point range of 60-120°C. Moreover, since the reaction is carried out under pressure because it requires a relatively high temperature to complete the reaction, it has many problems such as large restrictions on the reactor, and for this reason it has not been widely adopted industrially. It didn't work out. Note that the above proposal does not include any description or suggestion regarding di-substituted cyanamides other than dimethyl cyanamide.
本発明の出願人は、上記の問題点を改善し工業的に好適
な1.1.3.3−テトラメチルグアニジンの製法につ
き研究を行ない、先に特許出願を行なった(特開昭55
−133352号)。The applicant of the present invention has conducted research on an industrially suitable method for producing 1.1.3.3-tetramethylguanidine that improves the above-mentioned problems, and has previously filed a patent application (Japanese Patent Laid-Open No. 55
-133352).
上記の特許出願は、
ハロゲン化シアンとジメチルアミンを溶媒の存在下で反
応させてl、 1.3.3−テトラメチルグアニジン塩
を製造する方法において、反応溶媒に水系溶媒を用いる
ことを特徴とする1、 1.3.3 。The above patent application describes a method for producing 1,3,3-tetramethylguanidine salt by reacting cyanogen halide and dimethylamine in the presence of a solvent, which is characterized in that an aqueous solvent is used as the reaction solvent. 1, 1.3.3.
−テトラメチルグアニジン塩の製法 に関するものである。-Production method of tetramethylguanidine salt It is related to.
しかし、上記第2の提案でも、危険性の高いハロゲン化
シアンを原料とするため作業@環境衛生上、排気及び排
水処理面等の設備コストが高くなるという問題があり、
また前記第1の提案と同様に該第2の提案にもジメチル
シアナミド以外のジ置換シアナミドについては何等記載
されていない。However, even in the second proposal, since the highly dangerous cyanogen halide is used as a raw material, there are problems in terms of work@environmental hygiene and equipment costs such as exhaust and wastewater treatment are high.
Further, like the first proposal, the second proposal does not mention any di-substituted cyanamides other than dimethyl cyanamide.
本発明者等は、引き続き前記第2の提案の斯る問題点の
改善とともに、ジメチルシアナミド以外のジ置換シアナ
ミドの製法について鋭意研究を進めた結果、ジ置換アミ
ンと青酸ソーダ(若しくは青酸カリ)とを塩素の存在下
に水性溶媒中で反応させることにより、−挙に高収皐で
高純度のジ置換シアナミドが得られるという意外な発見
を行ない本発明を完成した。The present inventors continued to improve the problems of the second proposal, and as a result of conducting intensive research on methods for producing disubstituted cyanamides other than dimethyl cyanamide, the present inventors discovered that disubstituted amines and sodium cyanide (or potassium cyanide) could be used together. The present invention was completed based on the unexpected discovery that a high-yield, high-purity di-substituted cyanamide can be obtained by reacting in an aqueous solvent in the presence of chlorine.
即ち、本発明の目的は、各種プラスチック用原料、医薬
中間体等として有用な高純度のジ置換シアナミドを、作
業上、環境衛生上安全く工業的に製造する方法を提供す
ることにある。That is, an object of the present invention is to provide a method for industrially producing high-purity disubstituted cyanamide useful as raw materials for various plastics, pharmaceutical intermediates, etc. in a safe manner in terms of operational and environmental health.
本発明の方法によれば、危険性の高い塩化シアンの単離
が省略できるので、塩化シアン発生基及びこれに付随す
る排気、排液処理設備を必要としないという利点がある
。According to the method of the present invention, the isolation of cyanogen chloride, which is highly dangerous, can be omitted, so there is an advantage that a cyanogen chloride generating group and accompanying exhaust and wastewater treatment equipment are not required.
本発明は、ジ置換アミンと青酸ソーダ(若しくは青酸カ
リ)とを塩素の存在下に水性溶媒中で反応させることを
特徴とするジ置換シアナミドの製法である。The present invention is a method for producing a di-substituted cyanamide, which is characterized by reacting a di-substituted amine and sodium cyanide (or potassium cyanide) in an aqueous solvent in the presence of chlorine.
上記ジ置換アミンとは、下記一般式 で表わされる化合物である。The above di-substituted amine has the following general formula: It is a compound represented by
上記のジ置換アミンとしてはR1、R,の両方が炭素数
1〜6個のアルキル基(但し、少なくともいずれか一方
は炭素数2〜6個のアルキル基)、ヒト四キシアルキル
基及び/又はシクロアルキル基よシなる化合物、例えば
、メチルエチルアミン、ジエチルアミン、ジn−プロピ
ルアミン、ジ1so−プロピルアミン、ジn−ブチルア
ミン、エチルミーブチルアミン、ジェタノールアミン、
ジシクロヘキシルアミン等;R1、R,のいずれか一方
が炭素数1〜6個のアルキル基であり、他方がアリール
基を含む基である化合物ζ例えばN−メチルアニリン、
N−メチルベンジルアミン等;R8とR1がNとともに
飽和複素環を形成する化合物、例えば、アジリジン、ア
ゼチジン、ピロリジン、ピペリジン、モルホリン、ピラ
ゾリン、イミダシリン、ピペラジン等;及びR1とR1
がNとともに不飽和複素環を形成する化合物、例えば、
ピロリン、ピラゾール、イミダゾール、イミダシリン、
トリアゾ−ル、テトラゾール等を挙げることができる。The above-mentioned di-substituted amines include alkyl groups in which both R1 and R have 1 to 6 carbon atoms (however, at least one of them has 2 to 6 alkyl groups), a human tetraxyalkyl group, and/or a cycloalkyl group. Compounds consisting of an alkyl group, such as methylethylamine, diethylamine, di-n-propylamine, di-1so-propylamine, di-n-butylamine, ethylmybutylamine, jetanolamine,
Dicyclohexylamine, etc.; Compounds in which one of R1 and R is an alkyl group having 1 to 6 carbon atoms and the other is a group containing an aryl group ζ For example, N-methylaniline,
N-methylbenzylamine, etc.; compounds in which R8 and R1 together with N form a saturated heterocycle, such as aziridine, azetidine, pyrrolidine, piperidine, morpholine, pyrazoline, imidacilline, piperazine, etc.; and R1 and R1
Compounds in which, together with N, form an unsaturated heterocycle, for example,
pyrroline, pyrazole, imidazole, imidacillin,
Triazole, tetrazole, etc. can be mentioned.
上記ジ置換アミンはそれぞれ単独で又は2種以と混合し
て用いることができる。The above di-substituted amines can be used alone or in combination of two or more.
前記ジ置換アミンの中、得られるジ置換シアナミドの純
度及び収率の観点より、R1、R1の両方が炭素数1〜
6個のアルキル基(但し、少なくともいずれか一方は炭
素数2〜6個のアルキル基)、ヒドロキシアルキル基及
び/又はシクロアルキル基よりなる化合物;及びR1と
R2がNとともに飽和複素環を形成する化合物;が好ま
しく、ジエチルアミンが特に好ましい。Among the above disubstituted amines, from the viewpoint of purity and yield of the obtained disubstituted cyanamide, both R1 and R1 have 1 to 1 carbon atoms.
A compound consisting of 6 alkyl groups (at least one of which is an alkyl group having 2 to 6 carbon atoms), a hydroxyalkyl group, and/or a cycloalkyl group; and R1 and R2 together with N form a saturated heterocycle Compounds are preferred, and diethylamine is particularly preferred.
前記ジ置換アミンの使用量は、青酸ソーダ(若しくは青
酸カリ)1モルに対して約1.5〜約3当量用いるのが
好ましく、約2〜約2゜5当量用いるのが特に好ましい
。但し、上記ジ置換アミンの使用量の中、約半量(当量
数)を苛性ソーダ等の強アルカリで置き換えることが可
能である。特に、ジューブチルアミン等その塩酸塩の水
溶性が乏しいジ置換アミン類を用いる場合等には、得ら
れるジ置換シアナミドの単離の容易さの観点から、該ジ
置換アミンの使用量の中、約手t(当量数)を苛性ソー
ダ等の強アルカリで置き換えるのが好ましく、逆に、ジ
エチルアミン等その塩酸塩の水溶性が比較的高いジ置換
アミンを用いる場合には、該ジ置換シアナミドの収率の
観点から、該ジ置換アミンの使用量は青酸ソーダ(若し
くは青酸カリ)1モルに対し約2当量未満とならないよ
うにするのが好ましい。The amount of the disubstituted amine used is preferably about 1.5 to about 3 equivalents, particularly preferably about 2 to about 2.5 equivalents, per mole of sodium cyanide (or potassium cyanide). However, it is possible to replace about half (the number of equivalents) of the amount of the di-substituted amine used with a strong alkali such as caustic soda. In particular, when using disubstituted amines such as jubutylamine whose hydrochloride has poor water solubility, from the viewpoint of ease of isolation of the resulting disubstituted cyanamide, approximately It is preferable to replace the hand t (equivalent number) with a strong alkali such as caustic soda. Conversely, when using a disubstituted amine such as diethylamine whose hydrochloride has relatively high water solubility, the yield of the disubstituted cyanamide is From this point of view, it is preferable that the amount of the disubstituted amine used is not less than about 2 equivalents per mole of sodium cyanide (or potassium cyanide).
上記ジ置換アミンの導入方法は特に制限されるものでは
ないが、例えば青酸ソーダ(若しくは青酸カリ)ととも
に、水性溶媒の溶液又は懸濁液となし、該溶液又は懸濁
液を反応槽中に導入するのが良い。青酸ガスの発生を抑
えるため上記の溶液又は懸濁液のPHは、約7未満にな
らないように調節するのが好ましい。The method of introducing the above-mentioned disubstituted amine is not particularly limited, but for example, it is prepared as a solution or suspension in an aqueous solvent together with sodium cyanide (or potassium cyanide), and the solution or suspension is introduced into a reaction tank. It's good. In order to suppress the generation of hydrocyanic acid gas, the pH of the above solution or suspension is preferably adjusted to not be less than about 7.
前記水性溶媒とは、水及び水溶性の有機溶媒の水溶液で
あシ、斯る有機溶媒としては、メチルアルコール、エチ
ルアルコール、フロビルアルコール(n−1iso
)、tert、 ブチルアルコール等の炭素原子数1
〜4の脂肪族−価アルコール類;フルフリルアルコール
等のその他の一価アルコール類;エチレングリコール、
プロピレングリコール(1,2−11,3−)、グリセ
リン等の炭素原子数1〜4の脂肪族多価アルコール類;
室温で液状のポリエチレングリコール;エチレンクリコ
ールモノメチルエーテル、エチレングリコールモノエチ
ルエーテル、エチレンクリコールモツプチルエーテル等
のエチレングリコールと炭素原子数1〜4の脂肪族−価
アルコールとのモノエーテル化物;ジエチレングリコー
ルモノメチルエーテル、ジエチレングリコールモノエチ
ルエーテル、ジエチレングリコールモノブチルエーテル
、ジエチレングリコールジメチルエーテル、ジエチレン
グリコールジエチルエーテル等のジエチレンfす1−/
’、!:炭素原子数1〜4の脂肪族−価アルコールとの
モノまたはジエーテル化物;1−グリセリンモノメチル
エーテル等のグリセリンと炭素原子数1〜4の脂肪族−
価アルコールとのモノエーテル化物ニジオキサン(1,
3−11,4−)、テトラヒドロフラン等の環状エーテ
ル化合物;等を挙げることができる。上記の有機溶媒は
それぞれ単独で又は2種以上混合して用いることができ
る。ま念前記有機溶媒は、反応溶液よυ生成ジ置換シア
ナミドを分離する場合には、該分離に先き立って減圧蒸
留等の手段によυ除去するのが好ましいため、沸点が約
100℃以下の有機溶媒を使用するのが好ましく、特に
メチルアルコール、エチルアルコール及ヒイソプロビル
アルコールの使用が好ましい。The aqueous solvent is an aqueous solution of water and a water-soluble organic solvent, and such organic solvents include methyl alcohol, ethyl alcohol, flobyl alcohol (n-1iso
), tert, butyl alcohol, etc. with 1 carbon atom
~4 aliphatic-hydric alcohols; other monohydric alcohols such as furfuryl alcohol; ethylene glycol,
C1-4 aliphatic polyhydric alcohols such as propylene glycol (1,2-11,3-) and glycerin;
Polyethylene glycol that is liquid at room temperature; monoetherified products of ethylene glycol and aliphatic alcohols having 1 to 4 carbon atoms, such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monomethyl ether; diethylene glycol monomethyl Ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, etc.
',! : Mono- or dietherized product of aliphatic alcohol having 1 to 4 carbon atoms; glycerin such as 1-glycerin monomethyl ether and aliphatic alcohol having 1 to 4 carbon atoms
Monoetherified product Nidioxane (1,
3-11,4-), cyclic ether compounds such as tetrahydrofuran, and the like. The above organic solvents can be used alone or in a mixture of two or more. Note: When separating the di-substituted cyanamide produced from the reaction solution, the organic solvent should preferably have a boiling point of about 100°C or less, as it is preferable to remove it by means such as vacuum distillation prior to separation. Preference is given to using organic solvents, particularly methyl alcohol, ethyl alcohol and hisopropyl alcohol.
前記水性溶媒中に占める前記有機溶媒の量は、該水性溶
媒が青酸ソーダ(若しくは青酸カリ)を完全に溶解する
必要性から、約80容i%以下であることが好ましい。The amount of the organic solvent in the aqueous solvent is preferably about 80 volume i% or less, since the aqueous solvent needs to completely dissolve sodium cyanide (or potassium cyanide).
また、ジ置換アミンがジエチルアミン停水m性のアミン
である場合には、前記水性溶媒として水のみを用いるの
が好ましい。Further, when the disubstituted amine is a diethylamine-hydrovalent amine, it is preferable to use only water as the aqueous solvent.
塩素を存在させる方法としては、例えば前記反応槽中に
塩素ガスを直接導入する方法を挙げることかできる。こ
の場合、上記塩素ガスを単独で反応溶液中に直接吹き込
むこともでき、また、該塩素ガスを空気、窒素等により
適宜希釈して導入することもできる。塩素の使用量は、
青酸ソーダ(若しくは青酸力+7 ) 1モルに対して
O58〜2.0モル用いるのが好ましく、1.0〜1.
5モル用いるのが特に好ましい。As a method of making chlorine exist, for example, a method of directly introducing chlorine gas into the reaction tank can be mentioned. In this case, the chlorine gas can be directly blown into the reaction solution alone, or the chlorine gas can be appropriately diluted with air, nitrogen, etc. and then introduced. The amount of chlorine used is
It is preferable to use 58 to 2.0 moles of O per 1 mole of sodium cyanide (or cyanide power +7), and 1.0 to 1.
Particular preference is given to using 5 mol.
本発明の反応は下記の反応式で表わすことができる。The reaction of the present invention can be represented by the following reaction formula.
NaCN + NH+ (/4 + Ba5eR3
Ba5eとして、ジ置換アミンを用いる場合には、Na
CN + 2 NH+ CL。NaCN + NH+ (/4 + Ba5eR3 When using a di-substituted amine as Ba5e, NaCN
CN+2NH+CL.
R。R.
となる。becomes.
上記反応時の反応溶液のPHは、約7〜約11であるの
が好ましい。PH約7未満では、青酸が発生する場合が
あり、PH約11を超えると副反応による反応溶液の着
色が起こりがちであり、いずれの場合も得られるジ置換
シアナミドの収率が低下する傾向にある。上記PH条件
は、より好ましくは約7〜約10、特に好ましくは約7
〜9である。The pH of the reaction solution during the above reaction is preferably about 7 to about 11. If the pH is less than about 7, hydrocyanic acid may be generated, and if the pH exceeds about 11, the reaction solution tends to be colored due to side reactions, and in either case, the yield of the di-substituted cyanamide obtained tends to decrease. be. The above pH condition is more preferably about 7 to about 10, particularly preferably about 7.
~9.
前記塩素の導入は、前記PH条件を逸脱しないように加
減しながら行なうのが好ましい。It is preferable that the introduction of chlorine be carried out while controlling the introduction so as not to deviate from the above PH conditions.
前記せる本発明の反応温度は、約0〜約50℃が好まし
い。上記反応温度が約0℃以下では、反応速度が低下す
る傾向にあシ、また該反応温度が約501:を超えると
副反応による反応溶液の着色が起こりがちであり、いず
れの場合も得られるジ置換シアナミドの収率が低下する
傾向にある。上記反応温度は、より好ましくは約10〜
約35℃、特に好ましくは約lOへ約30℃である。The reaction temperature of the present invention described above is preferably about 0 to about 50°C. If the above reaction temperature is about 0°C or less, the reaction rate tends to decrease, and if the reaction temperature exceeds about 50°C, the reaction solution tends to be colored due to side reactions, and in either case, the obtained The yield of disubstituted cyanamide tends to decrease. The reaction temperature is more preferably about 10 to
About 35°C, particularly preferably about 30°C to about 1O.
ジ置換シアナミドを単離する方法は、置換基の種類によ
シ適宜公知の方法を選択して採用することができ、例え
ば、反応終了後の溶液より水溶性有機溶媒を減圧蒸留等
により除去してから、非水溶性の有機溶媒を用いて抽出
する方法等が採用できる。As a method for isolating the disubstituted cyanamide, a known method can be selected and adopted as appropriate depending on the type of substituent. For example, the water-soluble organic solvent is removed from the solution after the reaction is completed by vacuum distillation, etc. After that, a method of extraction using a water-insoluble organic solvent can be adopted.
上記非水溶性の有機溶媒としては例えば、ベンゼン、ト
ルエン、キシレン等の芳香族炭化水素;ジクロロメタン
、クロロホルム、トリクロロエチレン、四塩化炭素等の
ハロゲン化炭化水素及びハロゲン化炭素;石油エーテル
、石油ベンジン等の石油系溶媒;ジエチルエーテル、ジ
インプロピルエーテル等のエーテル類;酢酸エチル等の
エステル類;メチルエチルケトン、メチルイソブチルケ
トン等のケトン類;等が挙げられ、得られΣジ置換シア
ナミドの種類によって適宜選択して、それぞれ単独又は
2挿具上湯合して用いることができる。Examples of the water-insoluble organic solvents include aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons and halogenated carbons such as dichloromethane, chloroform, trichloroethylene, and carbon tetrachloride; petroleum ether, petroleum benzine, etc. Petroleum solvents; ethers such as diethyl ether and diimpropyl ether; esters such as ethyl acetate; ketones such as methyl ethyl ketone and methyl isobutyl ketone; , each can be used alone or in combination with two inserts.
なお、前記ジ置換シアナミド抽出後の水性液は、例えば
苛性ソーダ等によυPH約10以上に保持しながら塩素
ガスと接触させることによシ、微量残存する可能性のあ
る青酸イオンを容易且つ完全に分解し、無毒化すること
ができる。The aqueous solution after the extraction of the di-substituted cyanamide can be brought into contact with chlorine gas while maintaining the pH at about 10 or higher using, for example, caustic soda, to easily and completely remove any trace amounts of cyanide ions that may remain. It can be decomposed and made non-toxic.
以下、実施例によシ本発明を更に具体的に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例1゜
攪拌機、温度計、PH電極、水性液導入管及びガス導入
管を付けた反応槽に約30mの脱イオン水を入れておき
、一方、約300−の脱イオン水にジエチルアミン約1
612(約262当量)を加えた後約96重量係青酸ソ
ーダ約51f(約1モル)を攪拌溶解した添加用水溶液
を作成し、反応槽中の内容物を攪拌しながら該添加用水
溶液を水性液導入管より約2時間かけて反応槽中に逐次
添加した。同時に1反応槽中の反応液のP)Iが平均的
8.5であり、且つ該PHが約8〜約9の範囲内を逸脱
しない様に注意しながらガス導入管より塩素ガスを導入
した。塩素ガスの導入合計量は、約24.6 Nt (
約1.1モル、)である。なお反応槽は、反応液の温度
が約30℃を保持するように温度調整した。Example 1: Approximately 30 m of deionized water was placed in a reaction tank equipped with a stirrer, a thermometer, a PH electrode, an aqueous liquid inlet pipe, and a gas inlet pipe.Meanwhile, about 1 ml of diethylamine was added to about 300 m of deionized water.
After adding 612 (approximately 262 equivalents), an aqueous solution for addition is prepared by stirring and dissolving approximately 51f (approximately 1 mol) of sodium cyanide by weight, and the aqueous solution for addition is made into an aqueous solution while stirring the contents in the reaction tank. The liquid was added sequentially into the reaction tank from the liquid introduction tube over a period of about 2 hours. At the same time, chlorine gas was introduced from the gas introduction pipe while taking care that the P)I of the reaction solution in one reaction tank was on average 8.5 and that the pH did not deviate from the range of about 8 to about 9. . The total amount of chlorine gas introduced is approximately 24.6 Nt (
approximately 1.1 mol). The temperature of the reaction tank was adjusted so that the temperature of the reaction solution was maintained at about 30°C.
ンを用いて抽出を行ない、抽出液を分取した上層と合わ
せて減圧蒸留し目的のジエチルシアナミドを得た。該ジ
エチルシアナミドの沸点は36m Hf減圧下で95℃
であり、青酸ソーダに基ずく収率は95.8%、またガ
スクロマトグラフィー・法(以下GC法と略称する)に
よる純度は99.6重量%であった。The extract was combined with the separated upper layer and distilled under reduced pressure to obtain the desired diethyl cyanamide. The boiling point of the diethyl cyanamide is 95°C under reduced pressure of 36mHf.
The yield based on sodium cyanide was 95.8%, and the purity as determined by gas chromatography (hereinafter abbreviated as GC method) was 99.6% by weight.
実施例2゜
実施例1と同様の反応容器を用い、また実施例1の添加
用水溶液の代υに脱イオン水約200−により、ジエヂ
ルアミン約80 f (約1.1轟量)、約93重量係
苛性ソーダ約432(約1当量)及び約96重量%青酸
ソーダ約511(約1モル)を溶解した添加用水溶液を
用いる以外は実施例1と同様にしてジエチルシアナミド
の合成を行なった。得られたジエチルシアナミドの青酸
ソーダに基ずく収率は75.3%、GC法による純度は
99.7重量%であった。Example 2 Using the same reaction vessel as in Example 1, and using deionized water in place of the aqueous addition solution in Example 1, about 80 f (about 1.1 molar mass) of diethylamine, about 93 Diethyl cyanamide was synthesized in the same manner as in Example 1, except that an aqueous addition solution containing about 432 (about 1 equivalent) of caustic soda by weight and about 511 (about 1 mol) of about 96% by weight sodium cyanide was used. The yield of the obtained diethyl cyanamide based on sodium cyanide was 75.3%, and the purity by GC method was 99.7% by weight.
実施例3゜
実施例1と同様の反応容器を用い、実施例1の添加用水
溶液の代)に、脱イオン水約400づ中にジ1so−プ
ロピルアミン約111 t (約131当量)及び約9
6重世係青酸ソーダ約25.52(約0.5モル)を混
入した添加用液(二層分離)fc用い、添加に当っては
該添加用液を強攪拌によシ強制分散状態で添加しく添加
時間約2時間)、また導入塩素ガスの合計量を約12.
3Nt (約0,55モル)とする以外は実施例1と同
様にしてジ1ao−プロピル7アナミドの合成を行なっ
た。得られたジfiso−プロピルシアナミドの収率、
純度及び物性は第1表に示す。Example 3 Using a reaction vessel similar to Example 1, approximately 111 t (approximately 131 equivalents) of di-1so-propylamine and approximately 9
Addition liquid (two-layer separation) fc mixed with about 25.52 (about 0.5 mol) of 6th grade sodium cyanide is used, and during addition, the addition liquid is forcedly dispersed by strong stirring. The total amount of chlorine gas introduced was approximately 12 hours.
Di-1ao-propyl 7-anamide was synthesized in the same manner as in Example 1 except that 3Nt (approximately 0.55 mol) was used. The yield of di-fiso-propyl cyanamide obtained,
Purity and physical properties are shown in Table 1.
実施例4゜
実施例1と同様の反応容器を用い、実施例1の添加用水
溶液の代シに、脱イオン水約200−中に、ジn−ブチ
ルアミン約111?(約0.6当t)、約93重量係苛
性ソーダ約21.5P(約0.5 M量)及び約96重
量壬青酸ソーダ約25.59(約0.5モル)tl−混
入した添加用液(二層分離)を用い、添加に当っては該
添加用液を強攪拌により強制分散状態で添加しく添加時
間約1時間)、また導入塩素ガスの合計量を約L2.3
Nt(約0.55モル)とする以外は実施例1と同様に
してジローブチルシアナミドの合成を行なった。得られ
たジローブチルシアナミドの収率、純度及び物性は第1
表に示す。Example 4 Using a reaction vessel similar to that of Example 1, in place of the aqueous addition solution of Example 1, about 111 mm of di-n-butylamine was added in about 200 mm of deionized water. (approximately 0.6 equivalent t), approximately 93 parts by weight caustic soda approximately 21.5P (approximately 0.5 M amount) and approximately 96 parts by weight sodium cyanide approximately 25.59 (approximately 0.5 mol) tl- for addition. Addition time is about 1 hour), and the total amount of introduced chlorine gas is about L2.3.
Dibutyl cyanamide was synthesized in the same manner as in Example 1 except that Nt (approximately 0.55 mol) was used. The yield, purity, and physical properties of the obtained dibutyl cyanamide were the first
Shown in the table.
実施例5゜
実施例1と同様の反応浴器を用い、実施例1の添加用水
溶液の代りに、脱イオン水100m及びメタノール20
0−の混合溶液によりピペラジンの6水和物約581(
約0.6当量)、約96重を憾青酸ソーダ約25.5y
(約0.5モル)及び約93重量係苛性ソーダ約21.
59(約0.5当量)を溶解した添加用水性溶液を用い
(逐次添加時間約1時間)、また、導入塩素ガスの合計
量を約12.3 Nt (約0.55モル)とする以外
は実施例1と同様に反応を行なった。反応終了後、反応
液よυメタノールを減圧下に留去し、次いで脱イオン水
約50−を加えて十分攪拌混合してから生成した白色結
晶をF別、乾燥することによりN、N’−ジ7アノビベ
ラジンを得た。Example 5 Using the same reaction bath as in Example 1, 100 m of deionized water and 20 m of methanol were added instead of the aqueous solution for addition of Example 1.
About 581 (about 581) hexahydrate of piperazine (
Approximately 0.6 equivalent), approximately 96 weight of sodium cyanide approximately 25.5y
(about 0.5 mol) and about 93% caustic soda by weight of about 21%.
59 (approximately 0.5 equivalent) was used (sequential addition time approximately 1 hour), and the total amount of introduced chlorine gas was approximately 12.3 Nt (approximately 0.55 mol). The reaction was carried out in the same manner as in Example 1. After the reaction is complete, methanol is distilled off from the reaction solution under reduced pressure.Next, approximately 50% of deionized water is added and the resulting white crystals are thoroughly stirred and mixed. Di7anobiverazine was obtained.
上記N、N−ジンアノピペラジンの収率、純度及び物性
は第1表に示す。The yield, purity and physical properties of the above N,N-zineanopiperazine are shown in Table 1.
Claims (1)
を塩素の存在下に水性溶媒中で反応させることを特徴と
するジ置換シアナミドの製法。 2、上記反応に於ける温度が約0〜約50℃であり且つ
、該反応時の水性溶媒のPHが約7〜約11であること
を特徴とする特許請求の範囲第1項記載の製法。 3、上記ジ置換アミンが、ジエチルアミンであることを
特徴とする特許請求の範囲第1項又は第2項記載の製法
。 4、上記水性溶媒が水であることを特徴とする特許請求
の範囲第3項記載の製法。[Claims] 1. A method for producing a di-substituted cyanamide, which comprises reacting a di-substituted amine and sodium cyanide (or potassium cyanide) in an aqueous solvent in the presence of chlorine. 2. The production method according to claim 1, wherein the temperature in the reaction is about 0 to about 50°C, and the pH of the aqueous solvent during the reaction is about 7 to about 11. . 3. The production method according to claim 1 or 2, wherein the disubstituted amine is diethylamine. 4. The manufacturing method according to claim 3, wherein the aqueous solvent is water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12059385A JPS61280464A (en) | 1985-06-05 | 1985-06-05 | Production of disubstituted cyanamide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12059385A JPS61280464A (en) | 1985-06-05 | 1985-06-05 | Production of disubstituted cyanamide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61280464A true JPS61280464A (en) | 1986-12-11 |
JPH0560461B2 JPH0560461B2 (en) | 1993-09-02 |
Family
ID=14790101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12059385A Granted JPS61280464A (en) | 1985-06-05 | 1985-06-05 | Production of disubstituted cyanamide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61280464A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60120592A (en) * | 1983-12-05 | 1985-06-28 | 日立化成工業株式会社 | Ceramic circuit board and method of producing ceramic circuit board |
-
1985
- 1985-06-05 JP JP12059385A patent/JPS61280464A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60120592A (en) * | 1983-12-05 | 1985-06-28 | 日立化成工業株式会社 | Ceramic circuit board and method of producing ceramic circuit board |
Also Published As
Publication number | Publication date |
---|---|
JPH0560461B2 (en) | 1993-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9006438B2 (en) | Processes for the preparation of an apoptosis-inducing agent | |
JP3962872B2 (en) | Method for synthesizing ketazine | |
CN105051031B (en) | The preparation method of the amine of 1 (ylmethyl of [1,3] dioxolanes 4) 1H pyrazoles 3 | |
SE446528B (en) | PROCEDURE FOR THE PREPARATION OF ALFA-BETA-UNATATED N-SUBSTITUTED CARBON ACID AMAMIDS | |
EP0372635B1 (en) | Method of preparing dialkyl and diallyl dicarbonates | |
JPS61280464A (en) | Production of disubstituted cyanamide | |
US4918194A (en) | Process for the synthesis of a N,N-dialkyl-hydroxylamine | |
EP0850930B1 (en) | A process for producing alicyclic hydrazine derivatives. | |
JPS5829296B2 (en) | Method for producing monomethylhydrazine | |
US3317607A (en) | Chemical reduction of nitrosamines | |
CN113735785B (en) | Preparation method of 3, 6-dichloropyrazine-2-carbonitrile | |
JPS61280463A (en) | Production of dimethylcyanamide | |
JPS6372661A (en) | Production of alkylhydrazines | |
JPH07278156A (en) | Preparation of dimethylamine - borane | |
JPH10168070A (en) | Production of 3-chlorobenzisothiazole compounds | |
KR100690010B1 (en) | Synthetic method of fluorinated dialkylcarbonates | |
JP3671281B2 (en) | Method for producing trimethylsilyl azide | |
JPS5896037A (en) | Manufacture of malondialdehyde tetraalkylacetal | |
JP4586362B2 (en) | Process for producing ω-mercaptoalkylpyridines | |
US2755291A (en) | Certain quaternary ammonium azides | |
JPS6314717B2 (en) | ||
JP4159767B2 (en) | Method for producing lactone | |
USRE23399E (en) | Unsaturated halogen-containing | |
JP4586361B2 (en) | Method for preserving omega-mercaptoalkylpyridine mineral salts | |
JPH0159266B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |