[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6128027B2 - - Google Patents

Info

Publication number
JPS6128027B2
JPS6128027B2 JP54113100A JP11310079A JPS6128027B2 JP S6128027 B2 JPS6128027 B2 JP S6128027B2 JP 54113100 A JP54113100 A JP 54113100A JP 11310079 A JP11310079 A JP 11310079A JP S6128027 B2 JPS6128027 B2 JP S6128027B2
Authority
JP
Japan
Prior art keywords
vapor deposition
aluminum oxide
titanium oxide
film
electron gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54113100A
Other languages
Japanese (ja)
Other versions
JPS5638467A (en
Inventor
Noboru Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11310079A priority Critical patent/JPS5638467A/en
Publication of JPS5638467A publication Critical patent/JPS5638467A/en
Publication of JPS6128027B2 publication Critical patent/JPS6128027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は蒸着用酸化アルミニウム組成物に関す
る。近年、光学系の高性能化にともない、レンズ
等の光学系に対して従来から用いられてきた弗化
マグネシウムの単層反射防止膜を施した程度では
満足できず、レンズ表面の反射を殆んど零にする
ような高性能な多層反射防止膜を施す事が要求さ
れてきた。高性能多層反射防止膜を実現する方法
として例えば基板上に中間屈折率物質を光学的膜
厚(幾何学的膜厚×屈折率)で中心波長λの1/
4、さらに高屈折率物質を1/2λ、さらに低屈折
率物質を1/4λ蒸着した、いわゆる3層整数反
射防止膜が広く用いられている。これらの膜構成
において、中間屈折率物質として屈折率1.62を持
つ、酸化アルミニウムが広く用いられる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to aluminum oxide compositions for deposition. In recent years, as the performance of optical systems has improved, it has become unsatisfactory to apply a single-layer anti-reflection coating of magnesium fluoride, which has been conventionally used for optical systems such as lenses, and it has become difficult to reduce the reflection on the lens surface. There has been a demand for high-performance multilayer anti-reflection coatings that can reduce the amount of light to zero. As a method for realizing a high-performance multilayer anti-reflection film, for example, an intermediate refractive index material is coated on a substrate with an optical film thickness (geometric film thickness x refractive index) of 1/1 of the center wavelength λ 0 .
4. A so-called three-layer integer antireflection film in which a high refractive index material is further deposited at 1/2λ 0 and a low refractive index material at 1/4λ 0 is widely used. In these film configurations, aluminum oxide, which has a refractive index of 1.62, is widely used as an intermediate refractive index material.

酸化アルミニウムは蒸気圧が低く、2000℃以上
に加熱しなければ蒸着できず、タングステン、タ
ンタル等の高温用の金属材料での抵抗加熱では金
属と反応を起こし、金属が容易に溶断してしま
う。したがつて、酸化アルミニウムの蒸着は電子
を蒸着物質に衝突させて加熱(以下電子銃加熱と
呼ぶ)する方法が用いられる。しかし、通常の条
件で焼結した酸化アルミニウムは電子銃で加熱す
る際、タブレツトの溶解過程で、加熱速度(衝突
電子の数)を少しでも上げすぎると、タブレツト
が容易に破裂飛散し、蒸着が出来なくなることが
多い。
Aluminum oxide has a low vapor pressure and cannot be deposited unless heated to 2000°C or higher, and resistance heating with high-temperature metal materials such as tungsten or tantalum causes a reaction with the metal, easily causing the metal to melt. Therefore, for vapor deposition of aluminum oxide, a method is used in which electrons collide with the vapor deposition material to heat it (hereinafter referred to as electron gun heating). However, when aluminum oxide sintered under normal conditions is heated with an electron gun, if the heating rate (number of colliding electrons) is increased even a little too much during the melting process of the tablet, the tablet will easily explode and scatter, resulting in vapor deposition. It is often not possible.

本発明の目的はこれらの欠点を改良した蒸着用
酸化アルミニウム組成物を提供することである。
さらに他の目的は、酸化アルミニウム組成物の焼
結タブレツトを電子銃で加熱蒸着するときに、タ
ブレツトが破裂飛散することなく容易に溶解する
材料を提供することである。さらに他の目的は、
化学的に安定で耐久性に富み、反射防止性能の優
れたコーテイング膜を製造する方法と材料を提供
することである。さらに他の目的は、連続自動蒸
着装置に適用できる蒸着用酸化アルミニウム組成
物を提供することである。
The object of the present invention is to provide an aluminum oxide composition for vapor deposition which improves these drawbacks.
Still another object is to provide a material that easily melts without causing the tablets to explode and scatter when sintered tablets of an aluminum oxide composition are heated and vapor deposited using an electron gun. Yet another purpose is
An object of the present invention is to provide a method and material for producing a coating film that is chemically stable, durable, and has excellent antireflection performance. Yet another object is to provide an aluminum oxide composition for deposition that can be applied to continuous automatic deposition equipment.

その特徴とするところは、酸化チタンを含有す
る蒸着用酸化アルミニウム組成物にある。さらに
は、酸化アルミニウムと酸化チタンとを混合した
タブレツトを用いて光学ガラスの反射防止膜を作
製する電子銃加熱蒸着方法にある。
Its feature lies in the aluminum oxide composition for vapor deposition containing titanium oxide. Furthermore, there is an electron gun heating evaporation method for producing an antireflection film for optical glass using a tablet containing a mixture of aluminum oxide and titanium oxide.

反射防止膜は化学的に安定で耐久性に富み前記
の特定の屈折率を有し、その膜自身による光損失
(吸収)Aは次のように定義される。
The antireflection film is chemically stable and durable and has the above-mentioned specific refractive index, and the optical loss (absorption) A by the film itself is defined as follows.

A(%)=100−R(%)−T(%) R(%)=反射率 T(%)=透過率 本発明において、蒸着用酸化アルミニウム組成
物に含有させる酸化チタンの量は0.1重量%〜6
重量%、好ましくは1重量%〜5重量%である。
ここで酸化チタンの含有量が多すぎると薄膜の光
損失が大きくなるので光学薄膜としては特殊な場
合を除いて用い難い。
A (%) = 100 - R (%) - T (%) R (%) = Reflectance T (%) = Transmittance In the present invention, the amount of titanium oxide contained in the aluminum oxide composition for deposition is 0.1 weight %~6
% by weight, preferably 1% to 5% by weight.
Here, if the content of titanium oxide is too large, the optical loss of the thin film increases, so it is difficult to use it as an optical thin film except in special cases.

電子銃加熱蒸着用タブレツトは、前記重量割合
で酸化アルミニウムと酸化チタンとを混合した
後、さらに焼結する温度まで加熱することにより
得られる。なおこの酸化アルミニウムと酸化チタ
ンとを混合して作つた蒸着材料は電子銃加熱ばか
りでなく、スパツタリングのターゲツトとしても
好適な反射防止膜が得られる。
The tablet for electron gun heating evaporation is obtained by mixing aluminum oxide and titanium oxide in the above weight ratio and then heating the mixture to a temperature for sintering. The vapor deposition material made by mixing aluminum oxide and titanium oxide provides an antireflection film suitable not only for electron gun heating but also as a sputtering target.

この実施例を次に示す。 An example of this is shown below.

実施例 1 酸化アルミニウムに酸化チタンを重量比で1%
添加し充分混合し、500Kg/cm2の圧力でプレス成型
した後、約1300℃、約3時間の焼結を行つて蒸着
試験の錠剤(タブレツト)を得た。次いでこの試
薬を蒸着装置に配置された電子銃に装填した。真
空度1×10-5Torrになるまで排気後、BK7(ガラ
スの屈折率n=1.52)ガラス基板上に注意しなが
ら電子銃の出力を上げ、錠剤の温度を上げて溶解
し、さらに光学的膜厚がnd=125mmとなるまで蒸
着した。
Example 1 1% titanium oxide by weight in aluminum oxide
The mixture was added, thoroughly mixed, and press-molded at a pressure of 500 kg/cm 2 , followed by sintering at about 1300° C. for about 3 hours to obtain tablets for the vapor deposition test. This reagent was then loaded into an electron gun located in the vapor deposition apparatus. After evacuation to a vacuum level of 1 × 10 -5 Torr, the output of the electron gun was increased while paying attention to the BK7 (refractive index of glass n = 1.52) glass substrate, the temperature of the tablet was raised and melted, and further optical Vapor deposition was performed until the film thickness reached nd = 125 mm.

BK7基板上に蒸着された本試薬の蒸着膜は屈折
率n=1.62で吸収もなく、基板に対する付着力が
大きく、かつ化学的に安定で耐久性に富み、前記
高性能多層反射防止膜の中間屈折率物質としてき
わめて満足すべき薄膜が得られた。
The vapor-deposited film of this reagent on the BK7 substrate has a refractive index of n=1.62, no absorption, strong adhesion to the substrate, chemical stability, and durability, and is an intermediate layer among the high-performance multilayer anti-reflection films. A very satisfactory thin film as a refractive index material was obtained.

実施例 2 酸化アルミニウムに酸化チタンを重量比で2.5
%添加し、前記実施例と同様な方法で錠剤を得
た。前記実施例と同様な方法で蒸着を行なつた所
実施例1と同様に、破裂飛散することなく、容易
に蒸着できた。光学的性質も前記実施例と同様で
あつた。
Example 2 Weight ratio of titanium oxide to aluminum oxide is 2.5
%, and tablets were obtained in the same manner as in the previous example. Vapor deposition was carried out in the same manner as in the previous example, and as in Example 1, the vapor deposition was easily carried out without any bursting and scattering. The optical properties were also the same as in the previous example.

実施例 3 酸化アルミニウムに酸化チタンを重量比で5%
添加し、前記実施例と同様な方法で錠剤を得前記
実施例と同様な方法で蒸着を行つた所、きわめて
容易に蒸着できた。BK7基板上に蒸着された本実
施例の蒸着膜の屈折率はn=1.63で実施例1、実
施例2にくらべわずかに高い。吸収、付着力、耐
久性等については実施例1、2と同様に満足すべ
き薄膜が得られた。
Example 3 5% titanium oxide by weight in aluminum oxide
When the tablets were obtained in the same manner as in the above example and vapor deposition was performed in the same manner as in the above example, the vapor deposition was very easy. The refractive index of the vapor deposited film of this example deposited on the BK7 substrate is n=1.63, which is slightly higher than that of Examples 1 and 2. As in Examples 1 and 2, a satisfactory thin film was obtained in terms of absorption, adhesion, durability, etc.

比較例 1 酸化アルミニウムに酸化チタンを重量比で7.5
%添加し前記実施例と同様な方法で錠剤を得、前
記実施例と同様な方法で蒸着を行つた所、きわめ
て容易に蒸着できた。BK7基板上に蒸着された本
実施例の蒸着膜の屈折率はn=1.65で付着力、耐
久性等については実施例1、2、3と同様満足す
べき状態であつた。しかし、この蒸着膜による光
損失(吸収)は1〜2%あり、光学薄膜としては
実用上満足なものとはいえなかつた。
Comparative Example 1 Weight ratio of titanium oxide to aluminum oxide is 7.5
%, tablets were obtained in the same manner as in the previous example, and vapor deposition was performed in the same manner as in the above example, and the vapor deposition was extremely easy. The refractive index of the vapor-deposited film of this example deposited on the BK7 substrate was n=1.65, and the adhesion, durability, etc. were satisfactory as in Examples 1, 2, and 3. However, the optical loss (absorption) caused by this vapor-deposited film was 1 to 2%, and it could not be said to be practically satisfactory as an optical thin film.

Claims (1)

【特許請求の範囲】 1 酸化チタンを含有することを特徴とする蒸着
用酸化アルミニウム組成物。 2 酸化チタンの含有量が0.1重量%〜6重量%
である特許請求の範囲第1項記載の蒸着用酸化ア
ルミニウム組成物。 3 酸化アルミニウムと酸化チタンを混合して焼
結し、電子銃加熱蒸着用タブレツトとした特許請
求の範囲第1項記載の蒸着用酸化アルミニウム組
成物。 4 酸化チタンを含有する蒸着用酸化アルミニウ
ム組成物を用いて光学ガラスの反射防止膜を製造
することを特徴とする反射防止膜製造方法。 5 電子銃加熱によつて反射防止膜を製造する特
許請求の範囲第4項記載の反射防止膜製造方法。
[Scope of Claims] 1. An aluminum oxide composition for vapor deposition characterized by containing titanium oxide. 2 Titanium oxide content is 0.1% to 6% by weight
The aluminum oxide composition for vapor deposition according to claim 1. 3. The aluminum oxide composition for vapor deposition according to claim 1, which is prepared by mixing aluminum oxide and titanium oxide and sintering the mixture to form a tablet for electron gun heating vapor deposition. 4. A method for producing an antireflection film, which comprises producing an antireflection film for optical glass using an aluminum oxide composition for vapor deposition containing titanium oxide. 5. The method for manufacturing an anti-reflection film according to claim 4, wherein the anti-reflection film is manufactured by heating with an electron gun.
JP11310079A 1979-09-04 1979-09-04 Aluminum oxide composition for deposition Granted JPS5638467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11310079A JPS5638467A (en) 1979-09-04 1979-09-04 Aluminum oxide composition for deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11310079A JPS5638467A (en) 1979-09-04 1979-09-04 Aluminum oxide composition for deposition

Publications (2)

Publication Number Publication Date
JPS5638467A JPS5638467A (en) 1981-04-13
JPS6128027B2 true JPS6128027B2 (en) 1986-06-28

Family

ID=14603475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11310079A Granted JPS5638467A (en) 1979-09-04 1979-09-04 Aluminum oxide composition for deposition

Country Status (1)

Country Link
JP (1) JPS5638467A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634615Y2 (en) * 1977-12-08 1981-08-15
JPS54118364U (en) * 1978-02-08 1979-08-18
NZ204822A (en) * 1982-07-09 1986-04-11 Greater Manchester Council Refuse treatment:removal of glass after rotary pulverisation
JPH068042Y2 (en) * 1987-03-11 1994-03-02 株式会社吉野工業所 Container with inner lid
JP3416580B2 (en) 1999-07-13 2003-06-16 松下電器産業株式会社 Solid-state imaging device, camera using the same, and method of manufacturing solid-state imaging device
US10371581B2 (en) * 2017-06-02 2019-08-06 Sensata Technologies, Inc. Alumina diffusion barrier for sensing elements
CN109503149A (en) * 2018-11-27 2019-03-22 北京富兴凯永兴光电技术有限公司 A kind of high refractive index optical filming material and preparation method, optical anti-reflective film

Also Published As

Publication number Publication date
JPS5638467A (en) 1981-04-13

Similar Documents

Publication Publication Date Title
US3934961A (en) Three layer anti-reflection film
US4312915A (en) Cermet film selective black absorber
TWI614357B (en) Light absorbing layer, and layer system comprising said layer, method for the production of said layer system and sputtering target suitable for that purpose
EP1211524B9 (en) Method for producing composition for vapor deposition, composition for vapor deposition, and method for producing optical element with antireflection film
JP2003526732A (en) Zinc-tin alloy sputter target
JPH0745710B2 (en) Products with high transmittance and low emissivity
JPH0369081B2 (en)
JP2003502259A (en) Protective layer for sputter-coated articles
CN113165965B (en) Coated glass sheet
US5415946A (en) Vapor-deposition material for the production of optical coatings of medium refractive index
JPS6128027B2 (en)
JP2720919B2 (en) target
CN88101655A (en) Bismuth/tin oxide spray coating
US4348453A (en) Glazing possessing selective transmission and reflection spectra
US5776847A (en) Stabilized vapour-deposition materials based on titanium oxide
JP2006519305A (en) Vapor deposition materials for producing high refractive index optical layers.
JP3355786B2 (en) Manufacturing method of optical components for infrared
JPS585855B2 (en) semi-reflective glass
CN112962064A (en) High-temperature-resistant optical reflecting film and preparation method and application thereof
US5578536A (en) Evaporating material for producing optical thin film
JPH08277462A (en) Optical coating film of medium refractive index
US2427592A (en) Thorium compound protective coatings for reflecting surfaces
JPH03242319A (en) Transparent film having intermediate refractive index
WO1997008357A1 (en) Anti-reflective coating
JPH0339021B2 (en)