JPS61289177A - Production of electret fibrous sheet - Google Patents
Production of electret fibrous sheetInfo
- Publication number
- JPS61289177A JPS61289177A JP12999585A JP12999585A JPS61289177A JP S61289177 A JPS61289177 A JP S61289177A JP 12999585 A JP12999585 A JP 12999585A JP 12999585 A JP12999585 A JP 12999585A JP S61289177 A JPS61289177 A JP S61289177A
- Authority
- JP
- Japan
- Prior art keywords
- electret
- fibrous sheet
- electrode
- producing
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、安定した分極電荷を長期に亘って保持するエ
レクトレット繊維状シートを連続的に製造する方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for continuously producing an electret fibrous sheet that maintains stable polarization charge over a long period of time.
(従来の技術)
従来、エレクトレット繊維シートを連続的に1ワる方法
として特公昭59−15168号公報に記載のごとく、
固定したアース電極上を繊維シートを移動させながら連
続的に印加処理してエレクトレット化する方法がある。(Prior Art) Conventionally, as described in Japanese Patent Publication No. 59-15168, there is a method of continuously rolling an electret fiber sheet.
There is a method in which a fiber sheet is continuously applied while moving on a fixed earth electrode to form an electret.
しかし、本方法は、凹凸のある繊維シートを固定したア
ース電極に接触させながら移動させるため、繊維シート
の凹凸によってアース電極に接触せず、又、接触圧も得
られないため、印加時にアース電極側からの補償電荷が
得難い。このため、十分な連続エレクトレット化ができ
ないという欠点がある。However, in this method, the uneven fiber sheet is moved while being in contact with a fixed earth electrode, so it does not come into contact with the earth electrode due to the unevenness of the fiber sheet, and contact pressure cannot be obtained. It is difficult to obtain compensation charge from the side. For this reason, there is a drawback that sufficient continuous electret formation cannot be achieved.
またその上、固定したアース電極上を繊維シートが移動
するため、摩擦帯電が生じて、連続エレクトレット化を
阻害し、十分な特性が)qられないという欠点もあった
。Moreover, since the fiber sheet moves on a fixed earth electrode, frictional electrification occurs, which inhibits continuous electret formation, resulting in insufficient characteristics.
本発明の目的は、前記の欠点、つまり固定したアース電
極と移動する凹凸繊維シートによって生じる接触不良に
基づく補償電荷不足と、摩擦帯電によって生じるエレク
トレット化阻害を解消し連続的にエレクトレット化する
製造法を提供するものである。The purpose of the present invention is to solve the above-mentioned drawbacks, that is, insufficient compensation charge due to poor contact caused by a fixed earth electrode and a moving uneven fiber sheet, and inhibition of electretization caused by frictional charging, and to provide a manufacturing method for continuous electretization. It provides:
(問題点を解決するための手段〕
本発明は、アース電極上にll1i維状シートを接触さ
せた状態で、該アース電極と繊維シートを共に移動させ
ながら非接触型印加電極で、高圧印加を行なって連続的
にエレクトレット化することを特徴とするエレクトレッ
ト繊維状シートの製造法に関するものである。(Means for Solving the Problems) The present invention applies a high voltage using a non-contact type application electrode while moving the earth electrode and the fiber sheet together with the ll1i fibrous sheet in contact with the earth electrode. The present invention relates to a method for manufacturing an electret fibrous sheet, which is characterized in that the electret fiber sheet is continuously converted into an electret by performing the following steps.
以下、本発明を図面によって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.
第1図は、本発明の実施態様の1例を示す。第1図にお
いて、繊維状シート■を連続的に供給しながら矢印六方
向に回転するアースされた回転ドラム■に接触させて、
非接触印加電極■、例えば負極性を与える高圧発生機■
で印加した後に、引き続き繊維シートをさらに矢印B方
向に回転するアースされた回転ドラム■に接触せしめて
繊維シートの裏面に例えば正極性を与える高圧発生機■
を用いて非接触印加電極■より電荷注入を行なうことに
よってエレクトレット繊維状シート■を連続的に得るこ
とができる。また本方法をさらに繰り返して行なっても
本発明を阻害するものではない。FIG. 1 shows an example of an embodiment of the invention. In Fig. 1, the fibrous sheet ■ is brought into contact with a grounded rotating drum ■ rotating in the six directions of arrows while being continuously supplied.
Non-contact application electrode■, for example, a high voltage generator that provides negative polarity■
After applying voltage, the fiber sheet is then brought into contact with a grounded rotating drum ■ that rotates in the direction of arrow B, and a high-pressure generator ■ gives positive polarity, for example, to the back side of the fiber sheet.
The electret fibrous sheet (2) can be continuously obtained by injecting charge from the non-contact application electrode (2) using the electret fibrous sheet (2). Furthermore, the present invention will not be impaired even if this method is repeated further.
又、別の実施態様として、第1図に示すエレクトレット
化装置の上段または下段のいずれかを使用し、高圧印加
して連続的にエレクトレット繊維状シートを得ることも
可能であり、さらに又、このようにして得たエレクトレ
ット繊維状シートの裏面をさらに上記反対極性で高圧印
加してエレクトレット繊維状シートを連続的に得ること
も可能である。Moreover, as another embodiment, it is possible to use either the upper or lower stage of the electretization apparatus shown in FIG. 1 and apply high pressure to continuously obtain an electret fibrous sheet. It is also possible to continuously obtain an electret fibrous sheet by further applying a high pressure with the opposite polarity to the back side of the electret fibrous sheet thus obtained.
又、他の実施態様として第2図に示すような方法でもよ
い。Further, as another embodiment, a method as shown in FIG. 2 may be used.
すなわち、繊維シート■をアース■したコンベア上■に
接触させて移動させながら加熱ボックス■中で非接触型
印加電極[相]で、例えば負極性で印加した後、冷却ボ
ックス■を通過させて、さらにアース■したコンベア■
上に接触させて移動させながら上記反対極性(正)で加
熱ボックス[相]中で非接触印加電極■を用いて印加し
た後に、さらにもう一度冷却ボックス[相]を通過させ
て、エレクトレット繊維状シート■を連続的に製造する
方法である。That is, the fiber sheet (■) is moved in contact with a grounded conveyor (■) while being applied with a non-contact application electrode [phase], for example, with negative polarity, in a heating box (■), and then passed through a cooling box (■). Further earthed conveyor■
While moving the electret fibrous sheet in contact with the above, the opposite polarity (positive) is applied using the non-contact application electrode in the heating box [phase], and then the electret fibrous sheet is passed through the cooling box [phase] again. (2) This is a method of continuously manufacturing.
第1図と第2図の実施態様の方法を比較してみると、第
1図の回転ドラムタイプの方が繊維シートがアース電極
であるドラムにより均一に密着しやすく、均一に連続エ
レクトレット化できる点で好ましい。Comparing the methods of the embodiments shown in Fig. 1 and Fig. 2, the rotating drum type shown in Fig. 1 makes it easier for the fiber sheet to adhere uniformly to the drum, which is the earth electrode, and allows uniform and continuous electret formation. This is preferable in this respect.
なお、加熱ボックスなどを利用して加熱印加するど、エ
レクトレット化が高くなる。この場合、シート素材ポリ
マーのTg以上で行なうことが好ましい。また、加熱印
加後は速かに冷却ボックスなどを利用してクーリングす
ることによりエレクトレット化の状態を固定するように
する。この固定によりその後に行なう反対電荷の印加が
より効率的に行なわれるようになる。Note that electretization increases when heat is applied using a heating box or the like. In this case, it is preferable to carry out the test at a temperature equal to or higher than the Tg of the sheet material polymer. Further, after applying heat, the electret state is fixed by immediately cooling it using a cooling box or the like. This fixation allows the subsequent application of opposite charges to be performed more efficiently.
本発明は繊維シートとアース電極であるドラムあるいは
コンベアーとの間に誘電体材料や半導体材料を挿入して
も特に本発明の作用を阻げるもの±はない。In the present invention, even if a dielectric material or a semiconductor material is inserted between the fiber sheet and the drum or conveyor serving as the ground electrode, there is nothing that particularly impairs the effects of the present invention.
特に半導体材料、例えば、体積抵抗率で10−3〜10
10Ω・cmの材料、さらに好ましくは10−1〜10
6Ω・cmの材料を挿入あるいは付設することは十分な
連続エレクトレット化ができて好ましい。Especially semiconductor materials, e.g. volume resistivity of 10-3 to 10
10Ω・cm material, more preferably 10-1 to 10
Inserting or attaching a material of 6 Ω·cm is preferable since sufficient continuous electret formation can be achieved.
具体的に半導体材料として、カーボンを混入したポリエ
チレンシート(体積抵抗率103〜106Ω・cm)
、カーボンを混入した塗料、液体を含浸した材料などを
使用することができる。Specifically, as a semiconductor material, a polyethylene sheet mixed with carbon (volume resistivity 103 to 106 Ω・cm)
, paint mixed with carbon, material impregnated with liquid, etc. can be used.
また、半導体材料そのものをアース電極に用いることも
可能でおる。この場合は、火花放電など防止して安定な
連続エレクトレット化ができる。It is also possible to use the semiconductor material itself for the ground electrode. In this case, stable continuous electret formation can be achieved by preventing spark discharge.
使用する繊維シートは電荷注入を容易にして十分なエレ
クトレット化を推進するため、目付が80 CJ /
Tr12以下が好ましい。また、そのカバーファクタは
、40%以上が火花放電を防止する上から好ましい。ま
た繊維状シートの構成繊維の直径は凹凸を少なくして、
アース電極に密着させて十分なエレクトレット化を促進
するため20.Un以下が好ましいが、更には平均直径
で10μm以下がよい。The fiber sheet used has a basis weight of 80 CJ/2 to facilitate charge injection and promote sufficient electret formation.
Tr is preferably 12 or less. Further, the cover factor is preferably 40% or more from the viewpoint of preventing spark discharge. In addition, the diameter of the constituent fibers of the fibrous sheet has less unevenness,
20. To promote sufficient electret formation by bringing it into close contact with the earth electrode. The average diameter is preferably 10 μm or less, and more preferably 10 μm or less in average diameter.
繊維状シートとしての形態は、不織布、織物、編物、ペ
ーパー、孔あきフィルム、スポンジなどが対象となる。Examples of the form of the fibrous sheet include nonwoven fabric, woven fabric, knitted fabric, paper, perforated film, and sponge.
特に不織布形態でのエレクトレット化は効率的で、中で
も極細繊維で形成されたメルトブロー不織布は適当であ
る。In particular, electretization in the form of a nonwoven fabric is efficient, and melt-blown nonwoven fabrics made of ultrafine fibers are especially suitable.
繊維状シートの素材は、体積抵抗率1013Ω・cm以
上の材料を用いることができ、例えば、ポリエチレン、
ポリプロピレンなとのポリオレフィン、ポリカーボネー
ト、ポリ弗素系樹脂、ポリエステル、ポリ塩化ビニール
、ガラスなどの無機化合物など使用できる。As the material of the fibrous sheet, a material having a volume resistivity of 1013 Ω·cm or more can be used, such as polyethylene,
Inorganic compounds such as polyolefin such as polypropylene, polycarbonate, polyfluorine resin, polyester, polyvinyl chloride, and glass can be used.
特にポリオレフィン系樹脂は、無極性であるため比抵抗
が大きく、エレクトレットが安定して好ましい。In particular, polyolefin resins are non-polar and have a high specific resistance, and electrets are stable and preferred.
次に印加強度は、連続エレクトレット化条件として重要
な因子である。Next, the applied strength is an important factor as a condition for continuous electret formation.
十分なエレクトレット繊維シートを連続的に得るために
は、印加強度が0.2〜2000W・min/112、
好ましくは2〜1001000W−/1T12が良い。In order to continuously obtain a sufficient number of electret fiber sheets, the applied strength should be 0.2 to 2000 W min/112,
Preferably it is 2 to 1001000W/1T12.
即ち、印加強度とは、連続エレクトレット化時に必要な
印加電圧、印加電流および印加時間の関係を数値化した
ものである。That is, the applied intensity is a numerical representation of the relationship among the applied voltage, applied current, and application time necessary for continuous electret formation.
即ち、印加強度は下式で表現される。That is, the applied intensity is expressed by the following formula.
印加強度(w−min/1712) =VX I XT
V:印加電圧(ボルト)
I:繊維状シートの単位面積当りの印加電流(アンペア
/Tn2)
T:印加時間(min )
印加強度が、2000W−1llin/T12を越えル
ト、火花放電を生じてエレクトレット化ができない。Applied strength (w-min/1712) = VX I XT
V: Applied voltage (volt) I: Applied current per unit area of the fibrous sheet (Ampere/Tn2) T: Application time (min) If the applied intensity exceeds 2000W-1llin/T12, spark discharge occurs and the electret cannot be converted into
また0、 2W−min/m2未満であれば、また十分
なエレクトレット化ができない。Moreover, if it is less than 0.2 W-min/m2, sufficient electret formation cannot be achieved.
ここで印加電流(I)の算出法について述べる。Here, a method for calculating the applied current (I) will be described.
非接触型印加電極から出る放電電流を測定し、その放電
電流が流れる繊維シート面積で割算することによって求
める。It is determined by measuring the discharge current emitted from the non-contact type application electrode and dividing it by the area of the fiber sheet through which the discharge current flows.
非接触型印加電極としては、針状電極、ワイヤー電極な
どを用いることができる。As the non-contact application electrode, a needle electrode, a wire electrode, etc. can be used.
電極の配列は、第3図に示すようにタテ、ヨコに電極■
を配列して、印加時間を取るのが好ましい。The electrode arrangement is as shown in Figure 3, with electrodes arranged vertically and horizontally.
It is preferable to arrange them and take the application time.
印加時間は、300秒以下が好ましく、あまり長時間の
印加は、エレクトレットの電化層を低下する。The application time is preferably 300 seconds or less; if the application is applied for too long, the electrified layer of the electret will deteriorate.
連続エレクトレット化の印加極性であるが、最初は負印
加した後、正印加をかける方が表面電荷密度の大きなエ
レクトレット繊維シートを得ることができる。Concerning the polarity of application during continuous electret formation, an electret fiber sheet with a higher surface charge density can be obtained by first applying a negative voltage and then applying a positive voltage.
またざらにこの場合、負印加の印加電圧の方が正印加の
印加電圧より高く印加する方が、表面電化密度の大きな
エレクトレット繊維状シートを得ることができる。Furthermore, in this case, it is possible to obtain an electret fibrous sheet with a higher surface electrification density by applying a higher negative applied voltage than a positive applied voltage.
次に実施例にあける測定法について説明する。 Next, the measurement method used in Examples will be explained.
(1) 体積抵抗率は、JIS−C2318に準じて
測定した。(1) Volume resistivity was measured according to JIS-C2318.
(2)カバーファクターは拡大透影器を用いて試料(2
cmx 2 cm)の陰影を作り、光の透過してできた
明るい面積部分をB、繊維によって光がさえぎられてで
きた影面積部分をCとして下式により求めたものである
。(2) The cover factor was determined using a magnifying fluoroscope for the sample (2
cm x 2 cm) was created, and the bright area where the light was transmitted was B, and the shadow area where the light was blocked by the fiber was C, which was calculated using the following formula.
カバーファクター(%)=C/B+Cx100(3)
シートの見掛密度
シートの見掛密度は下式から求めたものである。Cover factor (%) = C/B + Cx100 (3)
Apparent Density of Sheet The apparent density of the sheet was determined from the following formula.
シート見掛密度(g/cnf> =D/ExFD:単位
面積当りの重さくCI/cJ)E:厚 み (
cm)
F:単位面積 (2d)
なお、厚みは50q/−にて測定したものである。Sheet apparent density (g/cnf> = D/ExFD: Weight per unit area CI/cJ) E: Thickness (
cm) F: unit area (2d) The thickness was measured at 50q/-.
(4) 表面電荷密度
表面電荷密度の測定は第4図に示す通りで、試触させ、
試料表面に存在する電荷を静電誘導で金Oにためて、電
位計Oによってその電位を測定して下式によって試料表
面の表面電荷密度を求めたものである。(4) Surface charge density The surface charge density was measured as shown in Figure 4.
Charges existing on the sample surface are accumulated in gold O by electrostatic induction, the potential is measured with an electrometer O, and the surface charge density on the sample surface is determined by the following formula.
表面電荷密度(C/cd)=CXV/AC:コンデンサ
ー容量(ファラッド)
■=電 位 (ボルト)
A:試料面積 (cJ)
実施例1
第1図で示すような直径100cm、幅100cmのス
テンレス材(体積抵抗率10−5Ω・cm)を用いたド
ラムをアース電極にして、目付20 Q / m2、カ
バーファクター98%、平均繊度3.5μm、シート幅
100cmのポリプロピレンメルトブロー不織布を該ド
ラムに接触させた状態で、周速度1m/minで移動さ
せなカラ、−30K V (7)針状1ffiを用いて
電極間距離3cmで直流高圧印加した後に、前ドラムと
同様の2番目のドラムを用いて+18KVで更に該不織
布の裏面に印加して連続的にエレクトレット化不織布を
得た。なあ、針状電極の配列は両ドラムともシート幅方
向に5本、長さ方向に5本配置して印加を行なった。Surface charge density (C/cd) = CXV/AC: Capacitance of capacitor (Farad) = Potential (volt) A: Sample area (cJ) Example 1 A stainless steel material with a diameter of 100 cm and a width of 100 cm as shown in Figure 1. (volume resistivity 10-5 Ω cm) was used as a ground electrode, and a polypropylene melt-blown nonwoven fabric with a fabric weight of 20 Q/m2, a cover factor of 98%, an average fineness of 3.5 μm, and a sheet width of 100 cm was brought into contact with the drum. In this state, move the drum at a circumferential speed of 1 m/min, -30 K V (7) After applying high DC voltage with a distance between electrodes of 3 cm using a needle-shaped 1ffi, use a second drum similar to the front drum to A voltage of +18 KV was further applied to the back side of the nonwoven fabric to continuously obtain an electret nonwoven fabric. In both drums, five needle-like electrodes were arranged in the sheet width direction and five needle-like electrodes were arranged in the length direction to apply the voltage.
最初のドラムでの印加強度は、150W−min/m2
.2番目のドラムでは10 W −min/112であ
った。The applied strength at the first drum is 150W-min/m2
.. In the second drum it was 10 W-min/112.
なお、印加時の温度は、常温にて実施した。この結果、
得られたエレクトレット不織布の表面電荷密度は7.5
X10−10クーロン/−であった。In addition, the temperature at the time of application was carried out at room temperature. As a result,
The surface charge density of the obtained electret nonwoven fabric was 7.5
It was X10-10 coulombs/-.
これを2力月間、室内に放置したが、電荷の減衰は殆ど
認められなかった。また、直流高圧発生装置は春日電殿
製を用いて実施した。This was left indoors for two months, but almost no charge decay was observed. In addition, a DC high voltage generator manufactured by Kasugadendono was used.
実施例2
実施例1で用いたもとの同様の装置を用いて、不織布と
ドラムアース電極との間に半導体材料としてカーボン入
りポリエチレンシート(体積抵抗率104Ω・cm)を
付設して、実施例1と同様不織布を用いて実験した。Example 2 Using a device similar to that used in Example 1, a carbon-containing polyethylene sheet (volume resistivity 104 Ω cm) was attached as a semiconductor material between the nonwoven fabric and the drum earth electrode, and the same device as Example 1 was prepared. Similar experiments were conducted using nonwoven fabric.
ただし、印加電圧は、最初が一38KVで、2番目が2
1KVで実施した。However, the applied voltage is 138KV at the beginning and 2KV at the second.
It was carried out at 1KV.
印加強度は最初が、238W−min/Tl′12.2
番目が、12 W −+nin/l112であツタ。The applied intensity was initially 238W-min/Tl'12.2
The second one is 12 W −+nin/l112 and ivy.
得られたエレクトレット不織布の表面電荷密度は8.5
X10’クーロン/−であった。The surface charge density of the obtained electret nonwoven fabric was 8.5
It was X10'coulombs/-.
2ケ月間室内に放置したが殆ど電荷は低下しなかった。Although it was left indoors for two months, the charge hardly decreased.
実施例3
実施例2で用いた装置の下段の装置のみを用いて実験を
行なった。Example 3 An experiment was conducted using only the lower device of the device used in Example 2.
一40KVで、ドラム周速度2m/mrn 、l’7ム
表面温度40℃で実施例2と同不織布に印加した後、一
度ロール状に巻き上げた。その後しばらくして該不織布
の表面に+20KVで、ドラム速度1m/minで印加
処理してエレクトレット不織布を得た。A voltage of 40 KV was applied to the same nonwoven fabric as in Example 2 at a drum circumferential speed of 2 m/mrn and a drum surface temperature of 40°C, and then wound up into a roll. After a while, a voltage of +20 KV was applied to the surface of the nonwoven fabric at a drum speed of 1 m/min to obtain an electret nonwoven fabric.
1回目の印加強度は、135 W −min/112.
2回目の印加強度は11 W−min/112であった
。得られたエレクトレット不織布の表面N荷密度は9.
5X10−10クーロン/clTfであった。また、2
ケ月間室内に放置しても電荷減衰は殆ど認められなかっ
た。The first applied intensity was 135 W-min/112.
The applied intensity for the second time was 11 W-min/112. The surface N loading density of the obtained electret nonwoven fabric was 9.
It was 5×10 −10 coulombs/clTf. Also, 2
Almost no charge decay was observed even after being left indoors for several months.
比較例1
固定したアース電極板として巾4Qcm、長ざ4Ωcm
のステンレス板を用い、針状電極をヨコ方向に2本、長
さ方向に2本配置した装置と、同様装置であるが、固定
したアース電極と針状電極の位置が反対である装置を設
置して、実施例1と同様の不織布を4 Qcm/min
の速度で移動させて印加処理した。最初は電極間3cm
で、−30KVで、次いで、同電極間で+18KVで印
加を行なった。Comparative Example 1 Fixed earth electrode plate with a width of 4Qcm and a length of 4Ωcm
A device using a stainless steel plate with two needle-like electrodes arranged horizontally and two in the length direction, and a similar device but with the fixed ground electrode and needle-like electrodes in opposite positions. Then, the same nonwoven fabric as in Example 1 was heated at 4 Qcm/min.
The application was performed by moving at a speed of . Initially, the distance between the electrodes is 3cm.
Then, -30 KV was applied between the same electrodes, and then +18 KV was applied between the same electrodes.
この結果、得られた不織布の表面電荷密度は0゜9X1
0−10クーロン/dと少なく、又、2力月間室内に放
置した後では0.4X10−10クーロン/−となり、
電荷減衰が著しく認められた。As a result, the surface charge density of the obtained nonwoven fabric was 0°9×1
It is as low as 0-10 coulombs/d, and after being left indoors for 2 months, it becomes 0.4 x 10-10 coulombs/-.
Significant charge decay was observed.
実施例4
第2図に示すような装置を用いて、平均繊度14μm、
カバーファクター97%、01寸40g/m2のポリプ
ロピレン不I1mを用いてテストした。Example 4 Using a device as shown in Fig. 2, an average fineness of 14 μm,
The test was conducted using 1m polypropylene film with a cover factor of 97% and a size of 40g/m2.
体積抵抗率10−5Ω・cmのステンレス板を用いたコ
ンベアーをアース電極に用いた。A conveyor using a stainless steel plate with a volume resistivity of 10 −5 Ω·cm was used as a ground electrode.
コンベアは巾4Qcm、長さ2mの物を用いた。The conveyor used had a width of 4Qcm and a length of 2m.
電極配列は、上・下側ともヨコ2本、タテ5本を配列し
た。The electrode arrangement was 2 horizontally and 5 vertically on both the upper and lower sides.
最初に、45°C雰囲気中で一28KVで印加し、冷却
した後に、+15KVで40’C雰囲気中で行なった後
冷却して連続的に巻取った。First, a voltage of -28 KV was applied in a 45° C. atmosphere, and after cooling, a voltage of +15 KV was applied in a 40° C. atmosphere, and then the coil was continuously wound up.
最初の印加強度は、112 W −min/m2.2回
目は、7.5W−min/112Fアッタ。The first applied intensity was 112 W-min/m2. The second applied intensity was 7.5 W-min/112 F atta.
得られたエレクトレット不織布の表面電荷密度は、6.
0X10”クーロン/−であり、2力月間放置しても電
荷の低下は認められなかった。The surface charge density of the obtained electret nonwoven fabric was 6.
0x10'' coulomb/-, and no decrease in charge was observed even after being left for 2 months.
(発明の効果)
本発明は、アース電極上に繊維状シートを接触させた状
態で、該アース電極と繊維シートを共に移動させながら
非接触型印加電極で、高圧印加を行なって連続的にエレ
クトレット化するので、従来の欠点であった接触不良に
よる補償電荷不足や、摩擦帯電によるエレクトレット化
阻害などが解消される。このため、本発明で得られたエ
レクトレット繊維状シートは、安定なエレクトレット性
を長期間に亘って維持することができ、フィルタ、吸着
材、抗血栓性材など幅広い用途に使用することができる
。(Effects of the Invention) The present invention continuously applies high voltage to the electret by keeping the fibrous sheet in contact with the earth electrode and moving the earth electrode and the fibrous sheet together using a non-contact type application electrode. Therefore, the conventional drawbacks such as insufficient compensation charge due to poor contact and inhibition of electret formation due to frictional charging are eliminated. Therefore, the electret fibrous sheet obtained in the present invention can maintain stable electret properties over a long period of time, and can be used in a wide range of applications such as filters, adsorbents, and antithrombotic materials.
第1図は、本発明のエレクトレット繊維状シートの製造
方法に使用されるエレクトレット化装置の一態様を示す
模式図、第2図は、本発明のエレクトレット繊維状シー
トの製造方法に使用されるエレクトレット化装置の他の
一態様を示す模式図、第3図は非接触型印加電極の配列
の一例をあられす模式図、第4図は表面電荷密度の測定
装置を示す模式図である。
1.8:繊維状シート
2.5:アースされた回転ドラム(アース電極)3.7
.12,17:非接触印加電極
10.15:アースされたコンベア
11.16:加熱ボックス
13.18:冷却ボックス
特許出願人 東 し 株 式 会 社第1図FIG. 1 is a schematic diagram showing an embodiment of an electretization apparatus used in the method for producing an electret fibrous sheet of the present invention, and FIG. FIG. 3 is a schematic diagram showing an example of the arrangement of non-contact application electrodes, and FIG. 4 is a schematic diagram showing a surface charge density measuring device. 1.8: Fibrous sheet 2.5: Grounded rotating drum (earth electrode) 3.7
.. 12, 17: Non-contact application electrode 10. 15: Grounded conveyor 11. 16: Heating box 13. 18: Cooling box Patent applicant Azuma Shi Co., Ltd. Figure 1
Claims (9)
、該アース電極と繊維シートを共に移動させながら非接
触型印加電極で、高圧印加を行なって連続的にエレクト
レット化することを特徴とするエレクトレット繊維状シ
ートの製造法。(1) It is a body in which a fibrous sheet is brought into contact with an earth electrode, and while the earth electrode and the fibrous sheet are moved together, high voltage is applied using a non-contact application electrode to continuously convert the electret into electret. A method for producing an electret fibrous sheet.
トの表および裏に行なわれる特許請求の範囲第(1)項
記載のエレクトレット繊維状シートの製造法。(2) The method for producing an electret fibrous sheet according to claim (1), wherein high voltage application electrodes are applied using non-contact application electrodes on the front and back sides of the fibrous sheet.
した後、正極性で印加することである特許請求の範囲第
(1)項又は第(2)項記載のエレクトレット繊維状シ
ートの製造法。(3) Production of an electret fibrous sheet according to claim (1) or (2), wherein high voltage is applied with a non-contact type application electrode with negative polarity and then with positive polarity. Law.
ートに与えられる印加電極が0.2〜2000W−mi
n/m^2である特許請求の範囲第(1)項記載のエレ
クトレット繊維状シートの製造法。(4) The applied electrode applied to the fiber sheet by the non-contact applied electrode and the ground electrode is 0.2 to 2000 W-mi.
A method for producing an electret fibrous sheet according to claim (1), wherein the electret fibrous sheet is n/m^2.
囲第(1)項記載のエレクトレット繊維状シートの製造
法。(5) The method for producing an electret fibrous sheet according to claim (1), wherein the earth electrode is heated.
請求の範囲第(1)項記載のエレクトレット繊維状シー
トの製造法。(6) The method for producing an electret fibrous sheet according to claim (1), wherein the fibrous sheet has a basis weight of 80 g/m^2 or less.
る特許請求の範囲第(1)項記載のエレクトレット繊維
状シートの製造法。(7) The method for producing an electret fibrous sheet according to claim (1), wherein the fibrous sheet has a cover factor of 40% or more.
のである特許請求の範囲第(1)項記載のエレクトレッ
ト繊維状シートの製造法。(8) The method for producing an electret fibrous sheet according to claim (1), wherein the fiber sheet has a fiber diameter of 20 μm or less.
させてなる特許請求の範囲第(1)項記載のエレクトレ
ット繊維状シートの製造法。(9) A method for producing an electret fibrous sheet according to claim (1), wherein a semiconductor material is interposed between the fiber sheet and the earth electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12999585A JPS61289177A (en) | 1985-06-17 | 1985-06-17 | Production of electret fibrous sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12999585A JPS61289177A (en) | 1985-06-17 | 1985-06-17 | Production of electret fibrous sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61289177A true JPS61289177A (en) | 1986-12-19 |
Family
ID=15023545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12999585A Pending JPS61289177A (en) | 1985-06-17 | 1985-06-17 | Production of electret fibrous sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61289177A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248624A (en) * | 1987-03-30 | 1988-10-14 | 東レ株式会社 | Method of preserving preserving object |
JPH0272074A (en) * | 1988-09-08 | 1990-03-12 | Toray Ind Inc | Packaging material |
WO1990003318A1 (en) * | 1988-09-21 | 1990-04-05 | Toray Industries, Inc. | Packaging material made of electret material and packaging method |
JPH03105907A (en) * | 1989-09-19 | 1991-05-02 | Toray Ind Inc | Method for restoring electret commodity |
US5246637A (en) * | 1991-05-02 | 1993-09-21 | Mitsui Petrochemical Industries, Ltd. | Method for producing electret filter |
WO2013080955A1 (en) | 2011-11-28 | 2013-06-06 | 東レ株式会社 | Mixed fiber non-woven fabric and filter element using same |
WO2017110299A1 (en) | 2015-12-22 | 2017-06-29 | 東レ株式会社 | Electret fiber sheet |
KR20190088476A (en) | 2016-12-08 | 2019-07-26 | 도레이 카부시키가이샤 | Electret fiber sheet |
WO2019159654A1 (en) | 2018-02-15 | 2019-08-22 | 東レ株式会社 | Nonwoven fabric and air-filter filtering material using same |
KR20210035099A (en) | 2018-07-27 | 2021-03-31 | 도레이 카부시키가이샤 | Air filter composed of spunbonded nonwoven fabric and spunbonded nonwoven fabric |
KR20220125248A (en) | 2020-01-23 | 2022-09-14 | 도레이 카부시키가이샤 | Electret melt blown nonwoven fabric, filter medium and air filter comprising the same, and manufacturing method of electret melt blown nonwoven fabric |
KR20230031831A (en) | 2020-06-30 | 2023-03-07 | 도레이 카부시키가이샤 | Electret fiber sheets and laminated sheets and filters |
-
1985
- 1985-06-17 JP JP12999585A patent/JPS61289177A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248624A (en) * | 1987-03-30 | 1988-10-14 | 東レ株式会社 | Method of preserving preserving object |
JPH0272074A (en) * | 1988-09-08 | 1990-03-12 | Toray Ind Inc | Packaging material |
JPH0431951B2 (en) * | 1988-09-08 | 1992-05-27 | ||
WO1990003318A1 (en) * | 1988-09-21 | 1990-04-05 | Toray Industries, Inc. | Packaging material made of electret material and packaging method |
JPH03105907A (en) * | 1989-09-19 | 1991-05-02 | Toray Ind Inc | Method for restoring electret commodity |
US5246637A (en) * | 1991-05-02 | 1993-09-21 | Mitsui Petrochemical Industries, Ltd. | Method for producing electret filter |
WO2013080955A1 (en) | 2011-11-28 | 2013-06-06 | 東レ株式会社 | Mixed fiber non-woven fabric and filter element using same |
KR20140101340A (en) | 2011-11-28 | 2014-08-19 | 도레이 카부시키가이샤 | Mixed fiber non-woven fabric and filter element using same |
US9180392B2 (en) | 2011-11-28 | 2015-11-10 | Toray Industries, Inc. | Mixed-fiber nonwoven fabric and filter medium using the same |
KR20180096596A (en) | 2015-12-22 | 2018-08-29 | 도레이 카부시키가이샤 | Electret fiber sheet |
WO2017110299A1 (en) | 2015-12-22 | 2017-06-29 | 東レ株式会社 | Electret fiber sheet |
US10512861B2 (en) | 2015-12-22 | 2019-12-24 | Toray Industries, Inc. | Electret fiber sheet |
KR20190088476A (en) | 2016-12-08 | 2019-07-26 | 도레이 카부시키가이샤 | Electret fiber sheet |
US11154803B2 (en) | 2016-12-08 | 2021-10-26 | Toray Industries, Inc. | Electret fiber sheet |
WO2019159654A1 (en) | 2018-02-15 | 2019-08-22 | 東レ株式会社 | Nonwoven fabric and air-filter filtering material using same |
KR20200116449A (en) | 2018-02-15 | 2020-10-12 | 도레이 카부시키가이샤 | Nonwoven fabric and air filter media made using the same |
KR20210035099A (en) | 2018-07-27 | 2021-03-31 | 도레이 카부시키가이샤 | Air filter composed of spunbonded nonwoven fabric and spunbonded nonwoven fabric |
US11975281B2 (en) | 2018-07-27 | 2024-05-07 | Toray Industries, Inc. | Spun-bonded nonwoven fabric and air filter constituted from spun-bonded nonwoven fabric |
KR20220125248A (en) | 2020-01-23 | 2022-09-14 | 도레이 카부시키가이샤 | Electret melt blown nonwoven fabric, filter medium and air filter comprising the same, and manufacturing method of electret melt blown nonwoven fabric |
KR20230031831A (en) | 2020-06-30 | 2023-03-07 | 도레이 카부시키가이샤 | Electret fiber sheets and laminated sheets and filters |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61289177A (en) | Production of electret fibrous sheet | |
US5401446A (en) | Method and apparatus for the electrostatic charging of a web or film | |
FI74213C (en) | FOERFARANDE FOER FRAMSTAELLNING AV EN ELEKTRISK LADDAD FILTRERINGSBANA. | |
PL95618B1 (en) | METHOD OF MAKING FIBER ELECTROFILTERS | |
Tabti et al. | Factors that influence the corona charging of fibrous dielectric materials | |
EP0898997A1 (en) | Composite of pleated filter media consisting of split film fibers and nonwoven webs | |
Plopeanu et al. | Surface potential decay characterization of non-woven electret filter media | |
JPS59113458A (en) | Apparatus for evenly charging moving web | |
JPH048539B2 (en) | ||
US20100182728A1 (en) | Apparatus and methods for modification of electrostatic charge on a moving web | |
JPS61282471A (en) | Production of electret fiber sheet | |
JP2531475B2 (en) | Electret fabric | |
CN211431149U (en) | Electret synergistic instrument for enhancing filtering effect of mask and mask machine comprising electret synergistic instrument | |
JPS61252363A (en) | Production of electret fiber sheet | |
JPH0220750B2 (en) | ||
KR20070086141A (en) | Lint-reducing container | |
Dascalescu et al. | Corona charging of composite non-woven media for air filtration | |
JP2817238B2 (en) | Method for producing electretized porous sheet | |
JPS61204052A (en) | Air filter having novel filtering characteristics | |
JPS62110974A (en) | Production of electret fiber sheet | |
JPH031045B2 (en) | ||
JPS62126621A (en) | Manufacture of electret sheet | |
Stark et al. | Surface potential homogeneity of corona charged FEP and PVDF electrets | |
JPS625626A (en) | Antistatic electret sheet and making thereof | |
JP3061534B2 (en) | Method for producing electret fiber sheet |