[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61273738A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS61273738A
JPS61273738A JP11610585A JP11610585A JPS61273738A JP S61273738 A JPS61273738 A JP S61273738A JP 11610585 A JP11610585 A JP 11610585A JP 11610585 A JP11610585 A JP 11610585A JP S61273738 A JPS61273738 A JP S61273738A
Authority
JP
Japan
Prior art keywords
magnetic recording
vapor
angle
maximum
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11610585A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11610585A priority Critical patent/JPS61273738A/en
Publication of JPS61273738A publication Critical patent/JPS61273738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve the vapor deposition efficiency and productivity of the titled medium by forming a magnetic recording layer while irradiating either an X ray or a charged particle ray in the incident direction opened to an angle of >=45 deg. from the incident direction of the vapor flow wherein the maximum vapor depositing velocity is obtained by oblique vapor deposition. CONSTITUTION:A magnetic recording layer is formed while irradiating either an X ray or a charged particle ray in the direction opened to an angle of >=45 deg. from the incident direction of the vapor flow wherein the maximum vapor depositing velocity is obtained by oblique vapor deposition. The maximum vapor depositing velocity is obtained at the minimum incident angle of vapor on a polymeric film 8 as the substrate. At this time, an Ar ion beam is scanned in the width wise direction of the substrate, the angle theta is adjusted to >=45 deg. and the beam is regulated and irradiated on the part wherein the maximum vapor depositing velocity is obtained. The charged particle ray is irradiated so that the opening angle from the incident direction of the vapor flow wherein the maximum vapor depositing velocity is obtained in controlled to >=45 deg. and high coercive force Hc can be obtained even when the minimum incident angle is decreased. Consequently, the productivity is improved, the quality of the obtained magnetic recording layer is ameliorated and especially the still endurance is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気記録媒体、特に高分子フィルム上に強磁性
金属薄膜を配した、いわゆる金属薄膜型の磁気配録媒体
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium, particularly a so-called metal thin film type magnetic recording medium in which a ferromagnetic metal thin film is disposed on a polymer film.

従来の技術 従来一般に普及している磁気記録媒体は、針状の磁性粉
と高分子結合剤とを主体とする磁性塗料を高分子フィル
ム上に塗布、乾燥して磁気記録層を形成した塗布型の磁
気記録媒体である。
Conventional technology The conventionally popular magnetic recording media is a coated type in which a magnetic coating mainly consisting of acicular magnetic powder and a polymer binder is applied onto a polymer film and dried to form a magnetic recording layer. This is a magnetic recording medium.

これに比し、Go 、 Fe 、 Ni等の強磁性金属
或いはこれらの合金を真空蒸着、スパッタリング、或い
はイオンブレーティング等のいわゆるフイジル・ペーパ
ー・デポジション技術によって高分子フィルム上に形成
する金属薄膜型の磁気記録媒体は、その磁気記録層中に
非磁性の結合剤が混入されていないために残留磁束密度
を大きくできることから、結果的に磁気記録層を薄くし
て損失を小さくできるので、高出力、かつ短波長応答性
に優れているという利点が認識され、高密度化傾向の強
まる磁気記録において実用化が強く望まれている0 しかしながら、この種の薄膜型の磁気記録媒体において
、Co単体等の磁性金属、及び合金を単に高分子フィル
ム上に例えば蒸着しただけでは充分高い抗磁力(Ha)
を有する磁性層を得ることは困難である。
On the other hand, metal thin film type films are made by forming ferromagnetic metals such as Go, Fe, and Ni or their alloys on polymer films using so-called physical paper deposition techniques such as vacuum evaporation, sputtering, or ion blasting. The magnetic recording medium has a high residual magnetic flux density because no non-magnetic binder is mixed in the magnetic recording layer, and as a result, the magnetic recording layer can be made thinner and loss can be reduced, resulting in high output. , and has excellent short wavelength response, and its practical application is strongly desired in magnetic recording, where the trend towards higher densities is increasing. However, in this type of thin film magnetic recording media, Co A sufficiently high coercive force (Ha) can be obtained by simply depositing magnetic metals and alloys on a polymer film, for example.
It is difficult to obtain a magnetic layer having .

この様な薄膜型記録媒体において、高い抗磁力(Ha 
)を有する磁性層を得る方法としては、基板に対して斜
めに蒸発原子を入射させる、いわゆる斜め蒸着法がよく
知られるが、この方法は蒸着効率が低く、生産性に劣る
ことから、磁性層材料の検討や、蒸着時の基板温度を高
める方法や、下地材料との組み合わせ等が工夫されてい
る。
In such thin film recording media, high coercive force (Ha
) The so-called oblique evaporation method, in which evaporated atoms are obliquely incident on the substrate, is well known as a method for obtaining a magnetic layer having Efforts are being made to consider materials, methods to increase the substrate temperature during vapor deposition, and combinations with underlying materials.

〔例えば、外国論文誌: IEEE Transact
ionon Magnetics (アイイーイーイー
磁気学会報)Vow、 MAG−20、g5 、 p、
p、a 18−820(1984)参照〕 発明が解決しようとする問題点 しかしながら上記した方法では、基板に耐熱性が要求さ
れたり、錆やすくなる等の問題があシ、蒸着効率の充分
大きな方法は見出されていないため、磁気記録媒体の量
産条件に対して不充分であるという問題がある。
[For example, foreign journal: IEEE Transact
ionon Magnetics (IEE Magnetics Society Bulletin) Vow, MAG-20, g5, p,
[See p. a 18-820 (1984)] Problems to be Solved by the Invention However, the above-mentioned method has problems such as requiring the substrate to be heat resistant and being susceptible to rust. Since this method has not been found, there is a problem that it is insufficient for the mass production conditions of magnetic recording media.

問題点を解決するための手段 上記問題点を解決するため本発明の磁気記録媒体の製造
方法は、斜め蒸着法で最大蒸着速度となる蒸気流の入射
方向と45度以上開いた入射方向でXlsと荷電粒子線
のいずれかを照射しながら磁気記録層を形成するように
したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing a magnetic recording medium of the present invention provides an Xls The magnetic recording layer is formed while being irradiated with either a charged particle beam or a charged particle beam.

作  用 上記した方法により従来いわれている斜め蒸着法で必要
とされる基板に立てた法線と蒸気流のなす角度が45度
以上でなくても、X線又は荷電粒子線の影響で結晶内に
格子欠陥等の抗磁力を増大せしめる原因となる磁壁移動
を阻止する役割を果たすものの配列が異方性を有するこ
とになり、入射角が46度以下でも斜め蒸着膜と同等の
抗磁力(Ha)が得られるようになるものと推察される
Effect Even if the angle between the normal to the substrate and the vapor flow, which is required in the conventional oblique evaporation method, is not 45 degrees or more, the inside of the crystal may be damaged due to the influence of X-rays or charged particle beams. The arrangement of the elements that play a role in preventing domain wall movement, which increases the coercive force due to lattice defects, has anisotropy, and even at an incident angle of 46 degrees or less, the same coercive force (Ha ) is expected to be obtained.

実施例 以下、図面を参照しながら本発明の実施例について説明
する〇 第1図は本発明の実施に用いた蒸着装置の要部構成図で
ある。第1図において、1は円筒キャン、2は送り出し
軸、3は巻取シ軸、4は蒸発源容器、6は蒸着材料、6
は蒸気流、7は入射角を限定するマスク、8は基板、9
はイオン源、1oはイオンビーム、11はガス導入ボー
ト、12は可変リーク弁、13は真空ポンプ、14は真
空容器である。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of the main parts of a vapor deposition apparatus used for carrying out the present invention. In Fig. 1, 1 is a cylindrical can, 2 is a delivery shaft, 3 is a winding shaft, 4 is an evaporation source container, 6 is a vapor deposition material, 6
is a vapor flow, 7 is a mask that limits the angle of incidence, 8 is a substrate, 9
10 is an ion source, 1o is an ion beam, 11 is a gas introduction boat, 12 is a variable leak valve, 13 is a vacuum pump, and 14 is a vacuum container.

図中、Aは、この場合、最大蒸着速度となる点で、ここ
で示した角θが本発明で45度以上になることが、制約
条件となるものである。
In the figure, A indicates the maximum deposition rate in this case, and the constraint is that the angle θ shown here is 45 degrees or more in the present invention.

第2図は、第1図の装置を用いて製造した磁気記録媒体
の拡大断面図である。第2図で、15は高分子フィルム
、16は磁気記録層、17は保護膜である。
FIG. 2 is an enlarged cross-sectional view of a magnetic recording medium manufactured using the apparatus shown in FIG. In FIG. 2, 15 is a polymer film, 16 is a magnetic recording layer, and 17 is a protective film.

直径1mの円筒キャン1の直下33cmに、蒸着材料6
としてCo−Ni合金(Nt;19wt%)を配し、電
子ビームで加熱蒸発させるようにした(電子ヒーム[最
大2oKV 、65 KW)。
Vapor deposition material 6 is placed 33 cm directly below the cylindrical can 1 with a diameter of 1 m.
A Co--Ni alloy (Nt; 19 wt%) was placed as a material, and it was heated and evaporated with an electron beam (electron beam [maximum 2 oKV, 65 KW).

基板である高分子フィルム8に対する蒸気の入射角の最
小入射角が、最大蒸着速度となる条件で試作した。
A prototype was produced under conditions such that the minimum incident angle of vapor with respect to the polymer film 8 serving as the substrate was the maximum vapor deposition rate.

その時、Ar イオンビームを基板の幅方向に走査して
、θが45度以上になるようにして最大蒸着速度となる
部分を照射するよう調節した。イオンビームの条件は、
20KV、3μA/dである。
At this time, the Ar 2 ion beam was scanned in the width direction of the substrate and adjusted so that θ was 45 degrees or more so that the portion where the maximum evaporation rate occurred was irradiated. The ion beam conditions are:
20KV, 3μA/d.

円筒キャン1の表面温度は0℃一定とした。The surface temperature of the cylindrical can 1 was kept constant at 0°C.

また、蒸着中は、あらかじめ真空容器内を3.6X 1
0−”Torr  まで排気してから酸素を外部より導
入し、9 X 10 ’Torrに保ち、蒸着を行った
Also, during vapor deposition, the inside of the vacuum container should be 3.6X 1
After evacuation to 0-'' Torr, oxygen was introduced from the outside and the pressure was maintained at 9 x 10' Torr for vapor deposition.

磁気記録層の厚みは0.1μm一定とした。主な条件と
RCの関係を次表にまとめて示した。基板として用いた
高分子フィルムは厚み1000mのポリエチレンテレフ
タレートである。
The thickness of the magnetic recording layer was constant at 0.1 μm. The relationship between the main conditions and RC is summarized in the table below. The polymer film used as the substrate was polyethylene terephthalate with a thickness of 1000 m.

表中、スチル耐久時間は、アモルファス合金ヘッドでビ
デオテープレコーダのスチルモードで再主出力が初期値
から、3dB低下するまでの時間で、第2図で示した保
護膜17としてはステアリン酸亜鉛の35への膜を用い
た場合の比較である。4以上のように本実施例によれば
、最大蒸着速度を与える蒸気流の入射方向との開き角が
45度以上になるように荷電粒子線を照射することで、
最小入射角を小さくしても高いHaが得られるので、蒸
着効率が向上でき、巻取速度が示すように生産性も大幅
に向上する。
In the table, the still durability time is the time until the main output decreases by 3 dB from the initial value in the still mode of the video tape recorder with an amorphous alloy head. This is a comparison when using a membrane to No. 35. 4. According to this example, as described above, by irradiating the charged particle beam so that the angle with respect to the incident direction of the vapor flow that provides the maximum deposition rate is 45 degrees or more,
Since high Ha can be obtained even if the minimum incident angle is made small, the vapor deposition efficiency can be improved, and the productivity can also be greatly improved as shown by the winding speed.

また、磁気記録媒体としてスチル耐久が向上する効果も
併せもつことがわかる。
It can also be seen that it also has the effect of improving still durability as a magnetic recording medium.

なお、実施例ではAr  イオンビームを用いたが、他
に、He 、 Ne 、 Xe 、 N 、 O等のイ
オンビーム、電子ビーム、X線を用いてもよい。また、
磁気記録層として、Co −Ni −00例を挙げたが
、他にCo −0、Co −Or 、 Co −Mo 
、 Co−Ti 、 Co −W 、 Co−Ta 、
 Co−Ru 、 Co−Pt等でもよい。
Although an Ar ion beam was used in the embodiment, ion beams of He, Ne, Xe, N, O, etc., electron beams, and X-rays may also be used. Also,
As the magnetic recording layer, Co-Ni-00 is given as an example, but Co-0, Co-Or, Co-Mo
, Co-Ti, Co-W, Co-Ta,
Co-Ru, Co-Pt, etc. may also be used.

さらに、基板としては、温度をあげなくてもHaを大き
くできることから、他にポリプロピレン、ポリカーボネ
ート、ポリフェニレンサルファイド等の耐熱性の低い高
分子フィルムでも用いることができる。
Furthermore, since Ha can be increased without raising the temperature, other polymer films with low heat resistance such as polypropylene, polycarbonate, and polyphenylene sulfide can also be used as the substrate.

発明の効果 以上のように本発明によれば、斜め蒸着において入射角
の制限がゆるくなり、生産性を改良することができると
共に、得られる磁気記録層の改質、とりわけスチル耐久
の向上を図ることができるといった優れた効果が得られ
るものである0
Effects of the Invention As described above, according to the present invention, restrictions on the angle of incidence in oblique vapor deposition are relaxed, productivity can be improved, and the resulting magnetic recording layer is improved, particularly in still durability. 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するのに適した蒸着装置の要部構
成図、第2図は本発明の方法により得られる磁気記録媒
体の一例の拡大断面図である。 1・・・・・・円筒キャン、4・・・・・・蒸発源容器
、5・・・・・・蒸着材料、6・・・・・・蒸気流、7
・・・・・・マスク、8・・・・・・基板、9・・・・
・・イオン源、10・・・・・・イオンビーム、13・
・・・・・真空ポンプ、14・・−・・・真空容器。
FIG. 1 is a block diagram of essential parts of a vapor deposition apparatus suitable for carrying out the present invention, and FIG. 2 is an enlarged sectional view of an example of a magnetic recording medium obtained by the method of the present invention. 1... Cylindrical can, 4... Evaporation source container, 5... Vapor deposition material, 6... Vapor flow, 7
...Mask, 8...Substrate, 9...
...Ion source, 10...Ion beam, 13.
...Vacuum pump, 14...Vacuum container.

Claims (1)

【特許請求の範囲】[Claims] 斜め蒸着法で最大蒸着速度となる蒸気流の入射方向と、
45度以上開いた入射方向でX線と荷電粒子線のいずれ
かを照射しながら磁気記録層を形成することを特徴とす
る磁気記録媒体の製造方法。
The direction of incidence of the vapor flow that provides the maximum deposition rate in the oblique deposition method,
A method for manufacturing a magnetic recording medium, comprising forming a magnetic recording layer while irradiating either an X-ray or a charged particle beam in an incident direction that is open at an angle of 45 degrees or more.
JP11610585A 1985-05-29 1985-05-29 Production of magnetic recording medium Pending JPS61273738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11610585A JPS61273738A (en) 1985-05-29 1985-05-29 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11610585A JPS61273738A (en) 1985-05-29 1985-05-29 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61273738A true JPS61273738A (en) 1986-12-04

Family

ID=14678819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11610585A Pending JPS61273738A (en) 1985-05-29 1985-05-29 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61273738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141926A (en) * 1988-11-22 1990-05-31 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPH02141927A (en) * 1988-11-22 1990-05-31 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
WO2017138532A1 (en) * 2016-02-10 2017-08-17 ソニー株式会社 Magnetic powder and production method therefor, and magnetic recording medium and production method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161138A (en) * 1982-03-19 1983-09-24 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161138A (en) * 1982-03-19 1983-09-24 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141926A (en) * 1988-11-22 1990-05-31 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPH02141927A (en) * 1988-11-22 1990-05-31 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
WO2017138532A1 (en) * 2016-02-10 2017-08-17 ソニー株式会社 Magnetic powder and production method therefor, and magnetic recording medium and production method therefor
JPWO2017138532A1 (en) * 2016-02-10 2018-11-29 ソニー株式会社 Magnetic powder and method for producing the same, magnetic recording medium and method for producing the same

Similar Documents

Publication Publication Date Title
US4661418A (en) Magnetic recording medium
JPS61273738A (en) Production of magnetic recording medium
JPH0546013B2 (en)
EP0650159B1 (en) Manufacturing method of magnetic recording medium
JPH05109046A (en) Magnetic recording medium and its manufacture
US5378496A (en) Method of manufacturing magnetic recording medium
JPH0227732B2 (en)
US4526131A (en) Magnetic recording medium manufacturing apparatus
JP2874419B2 (en) Method and apparatus for manufacturing magnetic recording medium
JP2894253B2 (en) Manufacturing method of highly functional thin film
JPH0311531B2 (en)
JP2558753B2 (en) Magnetic recording media
JPH0473215B2 (en)
JPS6194240A (en) Preparation of magnetic recording medium
JPS6194239A (en) Preparation of magnetic recording medium
JPH0997413A (en) Magnetic recording medium
JPH0125144B2 (en)
JPS6378336A (en) Production of magnetic recording medium
JPH04328325A (en) Manufacture of magnetic recording medium
JPH05159287A (en) Production of magnetic recording medium
JPH01319119A (en) Magnetic recording medium
JPH0279220A (en) Production of magnetic recording medium
JPH0799580B2 (en) Method of manufacturing magnetic recording medium
JPS6267728A (en) Production of magnetic recording medium
JPS63251928A (en) Production of magnetic recording medium