[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61263523A - Method and device for measuring the rate of flow of pulverized/granular substance - Google Patents

Method and device for measuring the rate of flow of pulverized/granular substance

Info

Publication number
JPS61263523A
JPS61263523A JP10653785A JP10653785A JPS61263523A JP S61263523 A JPS61263523 A JP S61263523A JP 10653785 A JP10653785 A JP 10653785A JP 10653785 A JP10653785 A JP 10653785A JP S61263523 A JPS61263523 A JP S61263523A
Authority
JP
Japan
Prior art keywords
flow rate
powder
flow
tanks
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10653785A
Other languages
Japanese (ja)
Inventor
Masahiro Motoshige
元重 正洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10653785A priority Critical patent/JPS61263523A/en
Publication of JPS61263523A publication Critical patent/JPS61263523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To provide high-precision measurement by sensing the rate of flow of a pulverized/ granular substance in a pipe, correcting the sensed value for the in-pipe rate of flow with a specific correction factor, which is to be determined from said sensed rate of flow and the differentiated value of the sensed value for the weight of tank discharging the pulverized/ granular substance, and thereby eliminating ill influence of possible turbulence to occur on the occasion of replacement of tank. CONSTITUTION:The sensed signal for the weight of fine pulverized coal in tanks obtained through load cells 7A, 7B mounted on feedout tanks 2A, 2B is put into a differentiating device 20, and the differentiated signal thereby Q2 is fed in a rate-of-flow calculator 21, while the flow sensing value for the main pipe 10 measured by a flow meter 4 is corrected with said output signal Q2 from the differentiating device 20, whereby the operation is free from any ill influence even when the discharge of the fine pulverized coal is switched over from the tank 2A to 2B or vice versa. Therefore, said calculator 21 corrects a signal Q1 with the correction factor C to be determined on the basis of relationship between the signal Q2 and the signal Q1 given by the flow meter 4 during normal time without influence of switching between the tanks 2A, 2B, which should accomplish determination of the rate of flow of fine pulverized coal with high precision.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気送粉粒体、即ち加圧されたキャリアガスに
より搬送される粉粒体の流量測定方法及び装置に関し、
更に詳述すれば、粉粒体を排出するタンクが複数備えら
れており、これらのタンクを順次切換えつつ粉粒体を気
送することにより連続的に粉粒体を供給する場合(,7
−、タンクを切換えた際にも粉粒体流量の正確な測定が
可能な粉粒体の流量測定方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for measuring the flow rate of pneumatic granular material, that is, granular material transported by a pressurized carrier gas.
More specifically, in the case where a plurality of tanks for discharging powder and granules are provided, and the powder and granules are continuously supplied by pneumatically feeding the powder and granules while sequentially switching between these tanks (, 7
- This invention relates to a method and device for measuring the flow rate of powder or granular material, which can accurately measure the flow rate of powder or granular material even when switching tanks.

〔従来技術〕[Prior art]

たとえば、従来製鉄用高炉においては燃料として、炉頂
から挿入されるコークス及び羽口から吹き込まれる補助
燃料としての重油が使用されていた。しかし、近年では
重油に代えて微粉炭を加圧された窒素(N2)ガス等の
キャリアガスにより羽口から吹き込む技術が開発されて
いる。このように微粉炭を補助燃料として高炉に吹込む
場合には、その吹込み量を正確に把握する必要が有るが
、粉粒体の流量を正確に測定することは、気体流量、液
体流量等の測定とは異なって、容易ではなく、このため
粉粒体の流量測定に関する技術が種々提案されるに至っ
ている。
For example, conventional blast furnaces for steelmaking have used coke inserted from the top of the furnace and heavy oil as auxiliary fuel injected through the tuyeres. However, in recent years, a technique has been developed in which pulverized coal is blown through the tuyeres using pressurized carrier gas such as nitrogen (N2) gas instead of heavy oil. When injecting pulverized coal into a blast furnace as auxiliary fuel, it is necessary to accurately measure the amount of pulverized coal injected into the blast furnace.However, accurately measuring the flow rate of powder and granules requires measuring the gas flow rate, liquid flow rate, etc. This is different from the measurement of the flow rate of granular materials, which is not easy, and for this reason, various techniques have been proposed for measuring the flow rate of powder and granular materials.

たとえば、特開昭56−61227号では、気送される
粉粒体が加圧されて排出されるタンクの重量を検出する
ためのロードセルの検出信号を時間微分し、この時間微
分値を粉粒体の流量(厳密にはタンクから排出される流
量)として測定する装置が提案されている。
For example, in Japanese Patent Application Laid-open No. 56-61227, the detection signal of a load cell for detecting the weight of a tank from which pneumatically fed powder and granules are pressurized and discharged is time differentiated, and this time differential value is used to calculate the weight of powder and granules. A device has been proposed that measures body flow rate (strictly speaking, the flow rate discharged from a tank).

またたとえば、特開昭59−108917号では、キャ
リアガス流量と、粉粒体が気送される管の曲管部におけ
る気送粉粒体の圧力損失値とにより粉粒体の流量を求め
る方法が提案されている。更に、特開昭58−1546
22号では、マイクロ波により気送粉粒体の密度を検出
し、これと管内の気送粉粒体の流速とから、粉粒体の流
量を測定する方法が提案されている。
For example, JP-A No. 59-108917 discloses a method for determining the flow rate of powder and granular material from the carrier gas flow rate and the pressure loss value of the pneumatic powder and granular material in the curved pipe section of the pipe through which the powder and granular material is pneumatically fed. is proposed. Furthermore, JP-A-58-1546
No. 22 proposes a method of detecting the density of the pneumatic powder using microwaves and measuring the flow rate of the powder based on this and the flow rate of the pneumatic powder in a pipe.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述のタンクのM量検出信号の時間微分値から
粉粒体流量を測定する、という特開昭56−61227
号の発明は、通常の状態においては測定精度は±1乃至
3%と比較的高精度を期待し得る。
However, Japanese Patent Application Laid-Open No. 56-61227 proposes to measure the powder flow rate from the time differential value of the M amount detection signal of the tank mentioned above.
The invention of No. 1 can be expected to have relatively high measurement accuracy of ±1 to 3% under normal conditions.

しかし、たとえばタンクが複数装備されており、これら
を適宜切換えつついずれかのタンクから粉粒体を排出し
て連続的に粉粒体を供給するような装置構成の場合、タ
ンクが切換えられるとそれまで使用されていたタンクか
らの粉粒体の排出が停止され、次に使用されるタンクか
ら粉粒体の排出が開始される。このため、両タンク内の
圧力がそれぞれ急変し、タンクが歪む等してロードセル
の検出値に大きな外乱が与えられる。この結果、第4図
に示す如く、ロードセルの検出値を微分して得られる粉
粒体流量の測定値にも大きな乱れが生じる、という問題
点がある。なお、このタンクの切換え時におけるロード
セルの測定値の乱れは、第4図に示す如く本願発明者に
よれば、最大±30%程度であり、またその影響の持続
時間は約5分程度に及ぶとの観察結果が得られている。
However, for example, in the case of an equipment configuration in which multiple tanks are installed and the powder or granules are continuously supplied by discharging the powder or granules from one of the tanks while switching between them as appropriate, when the tanks are switched, the Discharging of powder and granular material from the tank that was previously used is stopped, and discharging of powder and granular material from the tank that will be used next is started. As a result, the pressure in both tanks suddenly changes, causing distortion of the tanks and other causes, which causes a large disturbance to the detected value of the load cell. As a result, as shown in FIG. 4, there is a problem in that the measured value of the powder flow rate obtained by differentiating the detected value of the load cell is also greatly disturbed. According to the inventor of the present invention, the disturbance in the measured value of the load cell when switching the tank is at most about ±30%, as shown in Fig. 4, and the duration of the effect is about 5 minutes. The observation results have been obtained.

また、前述の他の特開昭59−108917号、同じく
58−154622号の発明では、上述の特開昭56−
61227号の如き問題は回避されるが、測定精度が±
6乃至10%程度と、特開昭56−61227号の発明
に比してほぼ1710程度の低精度となるため、実用上
の難点が多い。
Furthermore, in the inventions of the above-mentioned JP-A-59-108917 and JP-A-58-154622, the above-mentioned JP-A-56-
Problems like No. 61227 are avoided, but the measurement accuracy is
Since the accuracy is about 6 to 10%, which is about 1710 lower than that of the invention of JP-A No. 56-61227, there are many practical difficulties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は以上の如き事情に鑑みてなされたものであり、
粉粒体を装入した複数のタンクを切換えつつこれらから
連続的に粉粒体を供給する際に、気送粉粒体を排出する
タンクの重量を検出してこれを時間微分し、また流量計
により気送粉粒体の流量を検出し、両者の関係から補正
係数を求め、この補正係数により流量計の検出値を補正
して気送粉粒体の流量を求めることにより、高精度にて
粉粒体の流量測定を可能とし、更に粉粒体を排出するタ
ンクの切換え時等に発生する加圧タンクの重量検出手段
に対する外乱の影響の排除をも可能とした粉粒体の流量
測定方法及び装置の提供を目的とする。
The present invention has been made in view of the above circumstances, and
When switching between multiple tanks loaded with powder and granules and continuously supplying the powder, the weight of the tank from which the pneumatic powder is discharged is detected and differentiated with respect to time, and the flow rate is By detecting the flow rate of the pneumatic powder and granular material with a meter, determining a correction coefficient from the relationship between the two, and correcting the detected value of the flowmeter using this correction coefficient to determine the flow rate of the pneumatic powder and granular material, high accuracy can be achieved. Flow rate measurement of powder and granular materials that makes it possible to measure the flow rate of powder and granular materials, and also makes it possible to eliminate the influence of disturbances on the weight detection means of pressurized tanks that occur when switching tanks for discharging powder and granular materials. The purpose is to provide a method and apparatus.

本発明は、複数のタンクのいずれかから排出され、管内
を気送される粉粒体の流量測定方法において、前記管の
適宜位置にて管内流量を検出する一方、前記粉粒体の重
量を検出すべく前記粉粒体を排出しているタンクの重量
を検出し、この重量の検出値を時間微分し、この時間微
分値と管内流量の検出値との関係に従って補正係数を求
め、該補正係数にて管内流量の検出値を補正して前記粉
粒体の流量を求めることを特徴とする。
The present invention is a method for measuring the flow rate of powder or granular material discharged from one of a plurality of tanks and pneumatically conveyed through a pipe, in which the flow rate in the pipe is detected at an appropriate position in the pipe, and the weight of the powder or granular material is measured. The weight of the tank discharging the powder to be detected is detected, the detected value of this weight is differentiated with respect to time, a correction coefficient is determined according to the relationship between this time differentiated value and the detected value of the flow rate in the pipe, and the correction is performed. The method is characterized in that the flow rate of the powder or granular material is determined by correcting the detected value of the flow rate in the pipe using a coefficient.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof.

第1図は本発明に係る粉粒体の流量測定方法を実施する
ための装置、即ち本発明装置の構成を示すブロック図で
ある。なお、本考案実施例では粉粒体としての微粉炭を
高炉に吹込む場合について説明する。
FIG. 1 is a block diagram showing the configuration of an apparatus for implementing the method for measuring the flow rate of powder or granular material according to the present invention, that is, the apparatus of the present invention. In the embodiment of the present invention, a case will be described in which pulverized coal in the form of granules is injected into a blast furnace.

図中IA、 IBは粉粒体である微粉炭を貯留するため
のホッパであり、貯留している微粉炭をそれぞれ切出し
タンク2A、 2Bに供給する。
In the figure, IA and IB are hoppers for storing pulverized coal, which is particulate matter, and the stored pulverized coal is cut out and supplied to tanks 2A and 2B, respectively.

切出しタンク2A、 2Bは、粉粒体である微粉炭をキ
ャリアガスにより排出して気送するための加圧タンクで
ある。この切出しタンク2A、 2Bには、キャリアガ
スとしてたとえば加圧されたN2ガスが供給されており
、その内部は微粉炭とキャリアガスとが混合された高圧
状態となっている。また、切出しタンク2A、 2Bそ
れぞれの下部には機械的排出装置、たとえばロータリフ
ィーダ3.3が備えられている(なお、ロータリフィー
ダに代えて他の流体力学的な排出装置を使用してもよい
ことは勿論である)。そして、加圧キャリアガスと混合
状態でロークリフィーダ3.3から排出された微粉炭は
、流量計4を介装した主管10に送られ、分配器5によ
り支管11.11・・・にそれぞれ分配され、高炉6に
その羽口から吹込まれる。
The cut-out tanks 2A and 2B are pressurized tanks for discharging and pneumatically transporting pulverized coal, which is a particulate material, using a carrier gas. For example, pressurized N2 gas is supplied as a carrier gas to the cut-out tanks 2A and 2B, and the inside thereof is in a high-pressure state in which pulverized coal and carrier gas are mixed. In addition, a mechanical discharge device, for example, a rotary feeder 3.3, is provided at the bottom of each of the cutting tanks 2A and 2B (note that other hydrodynamic discharge devices may be used in place of the rotary feeder). Of course). The pulverized coal discharged from the rotary feeder 3.3 in a mixed state with the pressurized carrier gas is sent to the main pipe 10 equipped with a flow meter 4, and is sent to the branch pipes 11, 11, . . . by the distributor 5, respectively. It is distributed and blown into the blast furnace 6 through its tuyeres.

流量計4は、公知のたとえば差圧式、マイクロ波方式、
静電容量式等から適宜選択使用すればよく、この流量計
4の検出信号Q1は流量演算器21に与えられている。
The flow meter 4 is a known one, such as a differential pressure type, a microwave type,
An appropriate one may be used, such as a capacitance type, and the detection signal Q1 of the flow meter 4 is given to the flow rate calculator 21.

なお、本実施例では加圧タンクである切出しタンク及び
それらに微粉炭を供給するためのホッパをIA、 2A
及びIB、 2Bの二組備え、一方の切出しタンク、た
とえば2Aから微粉炭を排出して主管10内を気送して
高炉6に供給している間に他方の切出しタンク2Bにホ
ッパIBから微粉炭を供給する、というように両者を切
換えて使用するように構成されている。これにより、微
粉炭を連続的に高炉6の羽口に供給可能としている。
In addition, in this embodiment, the cutting tanks that are pressurized tanks and the hoppers for supplying pulverized coal to them are IA and 2A.
It is equipped with two sets of pulverized coal, IB and 2B, and while pulverized coal is discharged from one cut-out tank, for example 2A, and supplied to the blast furnace 6 by pneumatically conveying it through the main pipe 10, the pulverized coal is discharged from the hopper IB to the other cut-out tank 2B. It is configured to switch between the two to supply charcoal. Thereby, pulverized coal can be continuously supplied to the tuyeres of the blast furnace 6.

一方、切出しタンク2A、 2BにはそれぞれのM量を
検出するためのロードセル7A、 7Bが設けられてお
り、これらの検出信号、即ち各タンク2A、 2Bとそ
れぞれに装入されている微粉炭の重量との合計重量を表
す信号は微分器20に与えられている。換言すれば、ロ
ードセル7A、 7Bの出力信号の変化量はタンク2A
または2B内の微粉炭の重量変化を表している。
On the other hand, load cells 7A and 7B are installed in the cut-out tanks 2A and 2B to detect the amount of M in each tank, and these detection signals are used to detect the amount of pulverized coal charged in each tank 2A and 2B. A signal representing the total weight is given to the differentiator 20. In other words, the amount of change in the output signals of load cells 7A and 7B is equal to that of tank 2A.
Or it represents the weight change of pulverized coal in 2B.

微分器20は入力信号を時間微分し、その結果を信号Q
2として出力するように構成されている。
Differentiator 20 time-differentiates the input signal and converts the result into signal Q
It is configured to output as 2.

′−従って、微分器20の出力信号Q2、即ちロードセ
ル7A、 7Bの検出信号の時間微分値は切出しタンク
2八または2Bから排出される微粉炭の流量を表してい
る。この微分器20の出力信号Q2は流量演算器21に
与えられる。
'-Therefore, the output signal Q2 of the differentiator 20, ie, the time differential value of the detection signals of the load cells 7A, 7B, represents the flow rate of pulverized coal discharged from the cutting tank 28 or 2B. The output signal Q2 of this differentiator 20 is given to a flow rate calculator 21.

流量演算器21は、流量計4の出力信号Q1、即ち流量
計4による主管10内の流量の検出値を、微分器20の
出力信号値により補正するものである。
The flow rate calculator 21 corrects the output signal Q1 of the flow meter 4, that is, the detected value of the flow rate in the main pipe 10 by the flow meter 4, using the output signal value of the differentiator 20.

具体的には、流量計4による微粉炭の流量の検出値は、
〔従来技術〕の項において説明した如く、±6乃至10
%程度と比較的低精度ではあるが、微粉炭の排出を切出
しタンクを2Aから2Bに、あるいはその逆に切換えた
場合等にも、その影響を受けることはない。このため流
量演算器21ば、切出しタンク2A、 2Bの切換えに
よる影響が現れない通常時における流量計4の検出信号
Q1と微分器20の出力信号Q2との間の関係を基に補
正係数Cを時間移動的に求めつつ、この補正係数Cによ
り流量計4の検出信号Q、を補正し、また切出しタンク
2A、 2Bを切換えた場合にその影響が持続する期間
中はその直前に求めた補正係数Cにて流量計4の検出信
号Q1を補正することにより、切出しタンク2A、 2
Bの切換えに際してもその影響を受けず、また通常時に
おいても切出しタンク2A、 2BのMWtを時間微分
して求めた場合にほぼ準じた精度にて微粉炭の流量を求
めんとするものである。
Specifically, the detected value of the flow rate of pulverized coal by the flow meter 4 is:
As explained in the [Prior Art] section, ±6 to 10
Although the accuracy is relatively low at about %, it will not be affected even if the discharge of pulverized coal is cut out and the tank is switched from 2A to 2B or vice versa. Therefore, the flow rate calculator 21 calculates the correction coefficient C based on the relationship between the detection signal Q1 of the flowmeter 4 and the output signal Q2 of the differentiator 20 in normal times when no influence from switching between the cut-out tanks 2A and 2B appears. The detection signal Q of the flowmeter 4 is corrected using this correction coefficient C while being calculated in a time-shifting manner, and when switching the cut-out tanks 2A and 2B, the correction coefficient calculated immediately before is used during the period in which the effect continues. By correcting the detection signal Q1 of the flowmeter 4 at C, the cut-out tanks 2A, 2
The purpose is to obtain the flow rate of pulverized coal with almost the same accuracy as when the MWt of the cutting tanks 2A and 2B is obtained by time differentiation, without being affected by the switching of B, and even under normal conditions. .

第2図は各信号Q、、Q2等の波形を示す模式図、第3
図は流量演に器21の処理内容を示すフローチャートで
あるが、以下この第2,3図を参照しつつ流量演算器2
1による補正演算について具体的に説明する。
Figure 2 is a schematic diagram showing the waveforms of each signal Q, Q2, etc.
The figure is a flowchart showing the processing contents of the flow rate calculator 21.
The correction calculation according to No. 1 will be specifically explained.

流量演算器21は、微粉炭が排出される切出しタンクが
静から2Bに、あるいはその逆に切換えられた時点から
の所定時間(本実施例では5分間)以外の期間(以下、
通常期間という)においては、所定サンプリング周期に
て流量計4の検出信号Q1及び微分器20の出力信号Q
2を読込んでおり、またそのサンプリングタイミングi
における両信号Q1 、Q2の比Xi = (Ql/Q
2)を求めて記憶する。
The flow rate calculator 21 calculates a period other than a predetermined time (5 minutes in this embodiment) (hereinafter referred to as
(referred to as a normal period), the detection signal Q1 of the flowmeter 4 and the output signal Q of the differentiator 20 at a predetermined sampling period.
2 is being read, and its sampling timing i
The ratio Xi = (Ql/Q
2) Find and memorize.

次に、流量演算器21は、過去の0回のサンプリングタ
イミング(i−n+1から現在のiまで)における両信
号Q1+Q2の比Xiの移動平均を算出し、これをその
サンプリングタイミングiにおける補正係数C4とする
。そして、この補正係数Ciにより流量計4の検出信号
Q1を下記(11式により補正し、微粉炭の流量Qoを
算出する。
Next, the flow rate calculator 21 calculates the moving average of the ratio Xi of both signals Q1+Q2 at the past 0 sampling timings (from i-n+1 to the current i), and uses this as the correction coefficient C4 at the sampling timing i. shall be. Then, the detection signal Q1 of the flow meter 4 is corrected using the following equation (11) using this correction coefficient Ci, and the flow rate Qo of pulverized coal is calculated.

QO= Q 1/ Ci  −(1) たとえば、第2図において矢符にて示したタンク切換え
時点以前の通常期間において、流量計4の検出信号Q、
と微分器20の出力信号Q2とはほぼ相似の波形を示し
ている。このため、Xiはほぼ一定値を維持し、補正係
数Cはほぼ直線である。
QO=Q1/Ci-(1) For example, during the normal period before the tank switching point indicated by the arrow in FIG. 2, the detection signal Q of the flowmeter 4,
and the output signal Q2 of the differentiator 20 have substantially similar waveforms. Therefore, Xi maintains a substantially constant value, and the correction coefficient C is substantially linear.

従って、通常の期間においては流量計4の検出信号Q1
をこの補正係数Cにて補正した補正流itQ。
Therefore, in a normal period, the detection signal Q1 of the flowmeter 4
is corrected by this correction coefficient C.

は、第2図最下段に示されている如く、流量計4の検出
信号Q1とほぼ比例した相似の波形となる。
As shown in the bottom row of FIG. 2, has a similar waveform that is almost proportional to the detection signal Q1 of the flowmeter 4.

一方、タンクが切換えられた時点以後の約5分間(以下
、切換え期間という)においては流量演算器21は所定
のサンプリング周期にて流量計4の検出信号Q1のみを
読込んでいる。そして、流量演算器21は、タンクが切
換えられた時点の直前に求めた補正係数Ciにて流量計
4の検出信号Q1の補正を行って補正流量Qoを求める
。このような演算処理により、たとえば第2図に示す如
く、タンクの切換え期間には流量計4の検出信号Q、の
増加量以上の増加量を微分回路4の出力信号Q2が示し
ている(前述した如く、タンク切換え時のロードセル7
A、 7Bに対する外乱の影響が大きい)ため、QI+
Q2の比Xiも大きく変動する(実際には切換え期間に
はQ2のサンプリングは行われないため、Q、、Q2の
比Xiは算出されない)。しかし流量演算器21はタン
クの切換えが行われた後の5分間の切換え期間中には、
その切換え期間が開始される直前の補正係数C4を流量
計4の検出信号Q1の補正に使用するため、微分器20
の出力信号Q2の増加量に比して補正後の流量Qoの増
加量は比較的小さい。
On the other hand, for about 5 minutes after the tank is switched (hereinafter referred to as the switching period), the flow rate calculator 21 reads only the detection signal Q1 of the flow meter 4 at a predetermined sampling period. Then, the flow rate calculator 21 corrects the detection signal Q1 of the flow meter 4 using the correction coefficient Ci obtained immediately before the tank was switched, and obtains the corrected flow rate Qo. Through such arithmetic processing, as shown in FIG. 2, for example, during the tank switching period, the output signal Q2 of the differentiating circuit 4 indicates an increase greater than the increase in the detection signal Q of the flowmeter 4 (as described above). As shown, load cell 7 when switching tanks
QI+
The ratio Xi of Q2 also varies greatly (actually, sampling of Q2 is not performed during the switching period, so the ratio Xi of Q2 is not calculated). However, during the 5-minute switching period after tank switching, the flow rate calculator 21
The differentiator 20 uses the correction coefficient C4 immediately before the switching period starts to correct the detection signal Q1 of the flowmeter 4.
The amount of increase in the flow rate Qo after correction is relatively small compared to the amount of increase in the output signal Q2.

そして、タンク切換えから約5分経過して切換え期間が
終了した後の通常期間においては、前述同様に再び補正
係数dの算出が行われ、この結果−一−は前述同様にほ
ぼ直線であるから、補正流量QOは流量計4の検出信号
Q1とほぼ相似の波形となる。
Then, during the normal period after the switching period ends when approximately 5 minutes have passed since the tank switching, the correction coefficient d is calculated again in the same manner as described above, and the result -1- is approximately a straight line as described above. , the corrected flow rate QO has a waveform substantially similar to the detection signal Q1 of the flowmeter 4.

このようにして流量演算器21により算出された微粉炭
の補正流量Qoは流量制御装置22に与えられる。なお
、この流量制御装置22は、上述の流量演算器21によ
り求められた微粉炭の補正流量QOを基に、微粉炭の流
量、換言すれば高炉6への微粉炭の吹込量を目標値に一
致させるべくロークリフィーダ3の開度を制御するよう
構成されている。
The corrected flow rate Qo of pulverized coal calculated by the flow rate calculator 21 in this manner is given to the flow rate control device 22. Note that this flow rate control device 22 adjusts the flow rate of pulverized coal, in other words, the amount of pulverized coal injected into the blast furnace 6, to a target value based on the corrected pulverized coal flow rate QO determined by the above-mentioned flow rate calculator 21. It is configured to control the opening degree of the row feeder 3 so as to match the opening degree.

〔効果〕〔effect〕

以上に詳述した如く、本発明によれば、粉粒体を排出す
るタンクを複数のタンク間にて切換えることにより連続
的に粉粒体を供給する場合において、タンクを切換えた
際の外乱に拘わらず正確な粉粒体流量の測定が可能であ
り、またタンクの切換えの影響が及ばない通常時におい
ては、タンクの重量を時間微分して流量を求める手法と
ほぼ同等の精度にて粉粒体流量の測定が可能であり、更
に周辺に配置されている機器の振動等の外乱を受ける膚
も回避される。
As described in detail above, according to the present invention, in the case of continuously supplying powder or granules by switching the tank for discharging powder or granules between a plurality of tanks, the disturbance caused by switching the tank can be avoided. It is possible to accurately measure the flow rate of powder and granules regardless of the situation, and under normal conditions when switching between tanks does not affect the flow rate of powder or granules, It is possible to measure the body flow rate, and also avoids external disturbances such as vibrations from devices placed around the body.

なお、前記実施例では、粉粒体として微粉炭を使用して
いるが、他の種々の粉体、粒体についても本発明が適用
可能であることは勿論である。
In the above embodiments, pulverized coal is used as the powder, but it goes without saying that the present invention is also applicable to various other powders and granules.

また、前記実施例では粉粒体を供給するためのタンクを
二つとし、これらを交互に切換えて使用する構成として
いるが、更に多数の加圧タンクを備え、これらを順次連
続的に切換えて使用する構成にも本発明は通用可能であ
る。
In addition, in the above embodiment, there are two tanks for supplying powder and granular material, and these are used by switching alternately. The present invention is also applicable to the configuration used.

更に、前記実施例では補正係数として、流量計の検出値
Q1と加圧タンクの重量の時間微分値Q2との比、即ち
Q+ / Q2の移動平均値を採っているが、これに限
るものではなく、他の種々の数学的手法を採用すること
が可能である。
Further, in the above embodiment, the ratio of the detected value Q1 of the flow meter to the time differential value Q2 of the weight of the pressurized tank, that is, the moving average value of Q+/Q2, is used as the correction coefficient, but the present invention is not limited to this. Instead, it is possible to employ various other mathematical techniques.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すものであり、第1図は本発
明装置の構成を示すブロック図、第2図は流量演算器に
よる補正計算の説明のための波形図、第3図は流量演算
器による補正計算の手順を示すフローチャート、第4図
は従来技術の説明図である。 2A 、 2B・・・切出しタンク (加圧タンク) 
 4・・・流量計  6・・・高炉 7A、7B・・・
ロードセル  10・・・主管  20・・・微分器 
 21・・・流量演算器時 許 出願人  住友金属工
業株式会社代理人 弁理士  河  野  登  夫耳
 3 因 $ 4 図
The drawings show an embodiment of the present invention, and FIG. 1 is a block diagram showing the configuration of the device of the present invention, FIG. 2 is a waveform diagram for explaining correction calculation by the flow rate calculator, and FIG. 3 is a flow rate diagram. FIG. 4 is a flowchart showing the procedure of correction calculation by the arithmetic unit, and is an explanatory diagram of the prior art. 2A, 2B... Cutout tank (pressurized tank)
4...Flowmeter 6...Blast furnace 7A, 7B...
Load cell 10... Main pipe 20... Differentiator
21...Flow rate calculator time Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono 3 Reasons $ 4 Figure

Claims (1)

【特許請求の範囲】 1、複数のタンクのいずれかから排出され、管内を気送
される粉粒体の流量測定方法において、 前記管の適宜位置にて管内流量を検出する 一方、前記粉粒体の重量を検出すべく前記粉粒体を排出
しているタンクの重量を検出し、この重量の検出値を時
間微分し、 この時間微分値と管内流量の検出値との関 係に従って補正係数を求め、 該補正係数にて管内流量の検出値を補正し て前記粉粒体の流量を求めること を特徴とする粉粒体の流量測定方法。 2、複数のタンクのいずれかから排出され、管内を気送
される粉粒体の流量測定装置において、 前記管の適宜位置に設けた流量計と、 前記タンクそれぞれに設けられ、各タンク の重量を検出するための重量検出器と、 前記粉粒体を排出しているタンクの重量検 出器の検出信号を時間微分する微分器と、 該微分器にて求められた時間微分値と前記 流量計にて求められた管内流量との関係に従って補正係
数を算出する演算装置と、 該演算装置により算出された補正係数にて 前記流量計の検出値を補正して前記粉粒体の流量を算出
する演算装置と を備えたことを特徴とする粉粒体の流量測 定装置。
[Claims] 1. In a method for measuring the flow rate of powder or granules discharged from any one of a plurality of tanks and pneumatically conveyed through a pipe, the in-pipe flow rate is detected at an appropriate position in the pipe, while the powder or granules are In order to detect the weight of the body, the weight of the tank discharging the granular material is detected, the detected value of this weight is differentiated with respect to time, and a correction coefficient is calculated according to the relationship between this time differentiated value and the detected value of the flow rate in the pipe. A method for measuring the flow rate of a powder or granular material, characterized in that the flow rate of the powder or granular material is determined by correcting a detected value of the flow rate in a pipe using the correction coefficient. 2. A flow rate measuring device for powder and granular material discharged from any one of a plurality of tanks and pneumatically fed through a pipe, which includes: a flow meter installed at an appropriate position in the pipe; and a flow meter installed in each of the tanks to measure the weight of each tank. a differentiator for time-differentiating the detection signal of the weight detector of the tank discharging the powder, and a time-differentiated value obtained by the differentiator and the flowmeter. a calculation device that calculates a correction coefficient according to the relationship with the in-pipe flow rate determined by the calculation device; and a calculation device that corrects the detected value of the flowmeter using the correction coefficient calculated by the calculation device to calculate the flow rate of the powder and granular material. A flow rate measuring device for powder or granular material, characterized in that it is equipped with a calculation device.
JP10653785A 1985-05-17 1985-05-17 Method and device for measuring the rate of flow of pulverized/granular substance Pending JPS61263523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10653785A JPS61263523A (en) 1985-05-17 1985-05-17 Method and device for measuring the rate of flow of pulverized/granular substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10653785A JPS61263523A (en) 1985-05-17 1985-05-17 Method and device for measuring the rate of flow of pulverized/granular substance

Publications (1)

Publication Number Publication Date
JPS61263523A true JPS61263523A (en) 1986-11-21

Family

ID=14436136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10653785A Pending JPS61263523A (en) 1985-05-17 1985-05-17 Method and device for measuring the rate of flow of pulverized/granular substance

Country Status (1)

Country Link
JP (1) JPS61263523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031040A (en) * 2005-07-25 2007-02-08 Nippon Steel Corp Flow rate control device for distribution of coal particulates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031040A (en) * 2005-07-25 2007-02-08 Nippon Steel Corp Flow rate control device for distribution of coal particulates

Similar Documents

Publication Publication Date Title
JP3083593B2 (en) Pulverized coal emission control device
JP5087879B2 (en) Powder injection method
US4529336A (en) Method of distributing and transporting powdered or granular material
RU2010123979A (en) SOLID PARTICULAR INJECTION SYSTEM
JPS61263523A (en) Method and device for measuring the rate of flow of pulverized/granular substance
JPH09126841A (en) Electromagnetic flow-rate measuring instrument and its flow-rate correcting method
JP6139763B1 (en) Powder parallel blowing system and powder parallel blowing method
JPH067322Y2 (en) Powder flow rate measuring device
JP2742001B2 (en) Pulverized coal injection control method
JP6906868B2 (en) Powder blowing system
EP0116764A1 (en) Apparatus for blowing powdery refining agent into refining vessel
JPH0136887B2 (en)
JP2006077267A (en) Facility for injecting powdery material
JP2742000B2 (en) Pulverized coal injection control method
JP2006046939A (en) Metering device of furnace treating object supply amount and method, and furnace treating object supply facility
JPH03138534A (en) Method and apparatus for measuring flow rate of pulverized coal
JP3292257B2 (en) Granular material transfer control method
JP3731101B2 (en) Powder injection control method
RU1797694C (en) Pulverized-fuel flow metering set
JPS6350352A (en) Automatic blowing manufacture of molten slag
GB2095197A (en) Measurement of flowrates of particulate solids
JPS586827A (en) Constant flow control unit for high pressure powder/gas pipe transport system
JP2012167294A (en) Method and facility for charging raw material for blast furnace
JPS5648331A (en) Controlling device for quantitative delivery from hopper receiving bulk cargo
JPS63292023A (en) Method for measuring flow rate of powder in lock hopper system