【発明の詳細な説明】
■技術分野J
本発明は1、−プラズマCVD技術を用いてドラム等の
円筒状基体の表面にアモルファス・シリコン等の膜を蒸
着して、例えば、電子写真用感光体ドラムを連続的に生
産することができるプラズマCVD装置に関し、ドラム
表面にアモルファス・シリコン膜を均等゛に蒸着するこ
とができるプラズマCVD装置に関するものである・
【従来技術】
この種の装置は、プラズマCVD装置の電極配置方式か
ら分類すれば、従来の容量結合型プラズマCVD装置と
同様の構造を有するが、この構造を主に電子写真用感光
体ドラム作製用のプラズマCVD装置に適用すると、カ
ソード電極とアノード電極(ドラム)とが同心円状に配
置されているため、ドラム収納個数が制約され、装置構
造が複雑になる。
そこで亘上のような問題を考慮して、主としてアモルフ
ァス・シリコン感光体材料を用いる電子写真用感光体ド
ラムの量産装置を得べく、上述の従来例のごとき複雑な
装置構造を大幅に簡素化し、ドラムの収納個数を増やし
、かつ電極配置方法、及び形状を改善することにより、
従来の装置では困難であった電子写真用ドラム等の量産
、及び高速成膜を有利に可能ならしめた装置が提案され
た。
第1図はこのようなプラズマCVD装置を示し、図中1
5は表面にアモルファス・シリコン膜を形成するように
アルミニウム製の基板をドラム状に形成した円筒状基体
としてのドラムである。
■はドラム15を加熱するための加熱室、2は加熱室l
に続けて設けられ、ドラム15の表面にプラズマCVD
法(よりアモルファス・シリコン膜を形成するための反
応室、および3は反応室2に続けて設けられ、M形成後
のドラム15を冷却するための冷却室である。これらの
室1,2および3は気密構造を有している。6は保持枠
であって、複数のドラム15を軸中心に回転させると共
に、これらの中心軸 が互いに同一平面上になるように
、かっ各軸が平行になるように直立して保持し、さらに
ドラム回転搬送機構を有する。
4は加熱室1内に各室1,2および3の連続方向に沿う
ように配置された一対のヒーターである。
この一対のヒーター4は、互いに平行になるように直立
して配置され、かつその間に配列方向がヒーター4に平
行になるように配置されたドラム15を加熱する。5は
各室の一側壁に設けられ、各室を真空に保つためのフィ
ルター及びバッフルを備えた排気系である。
7はカソード電極としての一対の平板状電極であって、
互いに平行になるように直立して反応室2内に配置され
ている。この一対の電極7は、原料ガス供給のため二重
構造となし、その間に配列方向が電極7と平行になるよ
うに配置されたドラム15に向ってガスを噴出する多数
の孔7Aを内側全面にわたって有し、さらに外側にはヒ
ータを有する。8は平板状電極7の外側に接続された。
同電極7の二重構造内に原料ガスを供給するための原料
ガス供給パイプ、8は電極7にパイプ8を介して接続し
て同電極7をカソード電極とし、かつこの電極7に高周
波パワーを供給するための電源、。
10は保持枠6に保持されたドラム15を7ノート電極
とするためのアースである。
11は一対の冷却板であって、互いに平行になるように
直立して冷却室3内に配置されている。一対の冷却板1
1はその間にある膜形成の終ったドラム15を冷却する
ために内部に水等の冷媒流路を有する。12は冷却板1
1内に供給する水等の冷媒である。
・13は各室1,2および3を隔離し、かつドラム15
が保持枠8とともに移動するときに開状態になるように
制御されるゲート・バルブ、14は加熱室!及び冷却室
3の排気系5に設けられ各室1および3を大気に戻すた
めのリーク・バルブである。
保持枠8に固定されたドラム15は、第1図中左端のゲ
ー)−バルブ13内を通って、加熱室1に保持枠Bとと
もに搬入され、排気系5により真空にされた後、加熱室
1内において図中矢印のように回転しながらヒーター礁
により加熱される。
加熱されたドラム15は両室!および2間のゲート令バ
ルブla内を通って排気系5により真空に保たれた反応
室2に保持枠6とともに搬入されて、所定位置に配置さ
れる0反応室2に入ったドラム15は保持枠8とともに
7−スlOに接続されて、カソード電極としての一対の
電極7に対する7ノード電極を形成する。電極7と電場
を形成し1図中矢印で示すように回転しながら、ヒータ
ーにより加熱されたドラム15の表面には、原料ガス供
給パイプ8を介して一対の平板状電極7の内側の孔7A
かも反応室2内に供給されたシラン等の原料ガスがプラ
ズマ中で分解することによってアモルファス番シリコン
膜が形成される。膜形成に寄与したガスは、反応室2の
排気系5から外に排気される。
膜形成の終ったドラム!5は反応室2と冷却室3との間
のゲート・バルブ13内を通って、排気系5により真空
に保たれた冷却室3に入り、図中矢印のように回転しな
がら冷却板11を介して冷媒12と熱交換して冷却され
、リーク・バルブ14によす大気に戻された冷却室3か
ら第1図中右端のゲート・バルブ13内を通って冷却室
3外に、出される。
しかしながら以゛上のような構成のプラズマCVD装置
においては次のような欠点がある。すなわち、第2図は
反応室2の断面を示し、図中矢印で示すように原料ガス
は、平板状電極7の内側に全面にわたって形成されたガ
ス噴出用の孔7Aからドラム15に向って噴出する0図
中右側の平板状電極7から噴出した原料ガスは、ドラム
15の主として右側の半周部分に接触し、そして、左側
の平板状電極7の周辺を通って排気系5に排気さる。一
方、図中左側の平板状電極7から噴出した原料ガスはド
ラム15の主として左側の半周部分に接触して左側の平
板状電極7の周辺を通って排気系5に排気される。
このように反応室2内においては、第2図に示すように
ドラム15の左側における軸方向の中間部分近傍の原料
ガスおよび左側の平板状電極7の内側の上下両端部分か
ら噴出した原料ガスなどがよどみやすい、その結果、ド
ラム15の周囲において、原料ガスの密度は不均一にな
りやすく、そのため、ドラム15の表面に得られたアモ
ルファス・シリコンの膜厚および膜質は不均一になりや
すい。
【目的】
本発明の目的は以上のような問題を解消し、適切な原料
ガスの流れを形成して膜厚および膜質の均一なドラム等
の円筒状基体が得られるプラズマCVD装置を提供する
ことにある。
【実施例】
第3図は本発明の一実施例にかかるプラズマCVD装置
の要部を示す斜視図、第4図は同装置の要部の水平断面
図、第5図は同装置の要部の垂直断面図である0本発明
にかかるプラズマCVD装置においては、反応室内の電
極および原料ガス供給排気のための構造を除いた他の構
成は、第1図に示したプラズマCVD装置と同様な構成
であるので図示省略し、以下、反応室について主に説明
する。
すなわち第3図に示すように、本発明にかかるプラズマ
CVD装置における反応室21内には、一対の平板状電
極22が、従来の平板状電極7と同様の位置に、互いに
平行になるように直立して配置されている。なお図示省
略したが、排気系は、反応室21の側壁に設けられてい
る。
一対の電極22の間の所定位置には、保持枠(図示省略
)によって、配列方向が電極22と平行になるように複
数のドラム15が配置される。
一対の平板状電極22は、従来の平板状電極7と同様の
構造になっている。すなわちこの一対の平板状電極22
は、原料ガス供給のため二重構造となし、その間の所定
位置に配置されたドラム15に向って原料ガスを噴出す
る多数の孔23を内側全面にわたって有し、さらにヒー
ター(図示省略)によって加熱される。24は平板状電
極22の外側に接続された、同電極22の二重構造内に
原料ガスを供給するための原料ガス供給パイプである。
一対の平板状電極22はパイプ24を介して高周波電極
8に接続し、カソード電極とする。
一対の電極22の間の所定位置に配置された複数のドラ
ム15の間の間隙およびその配列方向の両端の外側部分
には、ドラム15と平行に排気管25を各々配置する。
各排気管25は、一対の電極22と対向する部分に軸方
向に適当な間隔で吸気口26を有する。吸気口2Bの径
9個数9間隔等を適当に設定することによって、後述す
るようにドラム15の軸方向のガス密度が均一になるよ
うな原料ガスの流れ(層流)をつくりだすことができる
、各排気管25は反応室21の底壁21Aを貫通して1
木の集合管27に固定されている。この集合管27は排
気装置(図示せず)に接続され、かつ適当な昇降手段(
図示せず)に支持されている。したがって、各排気管2
5は、昇降手段によって、一対の電極22の間の所定位
置に配置した複数のドラム15の間の間隙およびその配
列方向の両端の外側部分に配置される。
なお、原料ガス供給パイプ24は、図示しない原料ガス
供給源に接続されている。ドラム15はアースされて、
7ノード電極となっている。
以上のような構成による本発明プラズマCVD装置の反
応室における作用を次′に説明する。
まず排気管25を下げておき、反応室21内の一対の電
極22の間の所定位置に複数のドラム15を配置し、ア
ースする。ついで昇降手段によって、複数のドラム15
の間の間隙およびその配列方向の両端の外側部分に排気
管25を各々配置する。ついでドラム15を回転させ、
第2図に矢印で示すように、原料ガスを、一対の電極2
2の内側の孔23から複数のドラム15に向って噴出し
、一対の電極22に電源8から高周波電力を供給する。
その結果、ドラム15の周囲のガス密度が軸方向に均一
化し、ドラム15が回転することと相俟ってドラム15
の表面には膜厚および膜質が均一なアモルファス・シリ
コン膜が形成される。
なお、放電強度が比較的弱い(成膜速度が遅い)複数の
ドラム15の間の間隙および配列方向の両端の外側部分
に排気管25を配置して原料ガスを強制的に導くように
したので、原料ガスの分解によって生じたシリコン活性
種の濃度を複数のドラム15の間の部分において濃くし
、この部分での成膜速度の低下を有効に防止するとかで
きる。
加熱室lおよび冷却室3におけるドラム15の処理は従
来と同様である。
また、上記実施例では、一対の電極22は共に高周波電
源8に接続してカソード電極としたが、これらのいずれ
か一方をカソード電極とし、他方を高周波電源8に接続
せずにアースして、7ノード電極としてもよい(ドラム
15はいずれの場合もアースする)。
゛ 【効果】
以上説明したように本発明によれば、膜厚および膜質が
均一であり、電気的特性に優れたアモルファス・シリコ
ン等の膜を表面に有する円筒状基体を効率的に得ること
ができる。
4、 rI!J面の簡単な説明
第1yjは電子写真感光体ドラム製造用の従来のプラズ
マCVrj #置の平面図。
tJ2図は同装置における反応室の垂直断面図、
第3図は電子写真感光体ドラム製造用の本発明にかかる
プラズマCVD装置の一実施例の要部を示す斜視図、
第4図は同装置の要部の水平断面図、
第5図は同装置の要部の垂直断面図である。
15・・・ドラム、
21・・・反応室、
22・・・電極、
25・・・排気管。
第4図
↓Detailed Description of the Invention ■Technical Field J The present invention consists of 1.- Using plasma CVD technology, a film of amorphous silicon or the like is deposited on the surface of a cylindrical substrate such as a drum, thereby producing a photoreceptor for electrophotography, for example. The present invention relates to a plasma CVD apparatus capable of continuously producing drums, and relates to a plasma CVD apparatus capable of uniformly depositing an amorphous silicon film on the drum surface. [Prior Art] This type of apparatus uses plasma If classified based on the electrode arrangement method of the CVD device, it has a structure similar to that of a conventional capacitively coupled plasma CVD device, but if this structure is applied to a plasma CVD device mainly used for producing photoreceptor drums for electrophotography, the cathode electrode Since the anode electrode (drum) and the anode electrode (drum) are arranged concentrically, the number of drums that can be accommodated is limited and the device structure becomes complicated. Therefore, in consideration of the above-mentioned problems, in order to obtain a mass production device for electrophotographic photoreceptor drums that mainly uses amorphous silicon photoreceptor material, the complicated device structure of the conventional example described above was greatly simplified. By increasing the number of drums that can be stored and improving the electrode arrangement method and shape,
An apparatus has been proposed that advantageously enables mass production of electrophotographic drums and the like and high-speed film formation, which has been difficult with conventional apparatuses. FIG. 1 shows such a plasma CVD apparatus, and in the figure 1
Reference numeral 5 denotes a drum as a cylindrical base body, which is an aluminum substrate formed into a drum shape so as to form an amorphous silicon film on its surface. ■ is a heating chamber for heating the drum 15, 2 is a heating chamber l
A plasma CVD film is applied to the surface of the drum 15.
A reaction chamber for forming a more amorphous silicon film, and a cooling chamber 3 are provided following the reaction chamber 2 and are used to cool the drum 15 after M formation.These chambers 1, 2 and 3 has an airtight structure. 6 is a holding frame that rotates the plurality of drums 15 around their axes, and holds the respective axes parallel to each other so that their central axes are on the same plane. 4 is a pair of heaters arranged in the heating chamber 1 along the continuous direction of each chamber 1, 2, and 3. The heaters 4 heat drums 15 which are arranged upright parallel to each other and whose arrangement direction is parallel to the heaters 4. 5 is provided on one side wall of each chamber; This is an exhaust system equipped with a filter and baffle to keep each chamber in a vacuum. 7 is a pair of flat electrodes as cathode electrodes,
They are arranged upright in the reaction chamber 2 so as to be parallel to each other. This pair of electrodes 7 has a double structure for supplying raw material gas, and has a large number of holes 7A on the inner surface thereof that eject gas toward a drum 15 arranged so that the arrangement direction is parallel to the electrodes 7. It also has a heater on the outside. 8 was connected to the outside of the flat electrode 7. A raw material gas supply pipe 8 for supplying raw material gas into the double structure of the electrode 7 is connected to the electrode 7 via a pipe 8 to use the electrode 7 as a cathode electrode, and to apply high frequency power to the electrode 7. Power supply, for supplying. Reference numeral 10 designates a ground for using the drum 15 held by the holding frame 6 as a 7-note electrode. A pair of cooling plates 11 are arranged upright in the cooling chamber 3 so as to be parallel to each other. A pair of cooling plates 1
1 has a refrigerant flow path for water or the like inside to cool the drum 15 between which the film formation has been completed. 12 is cooling plate 1
This is a refrigerant such as water that is supplied to the inside of the tank.・13 isolates each chamber 1, 2 and 3, and a drum 15
The gate valve 14 is controlled to be open when the holding frame 8 moves with the holding frame 8, and 14 is the heating chamber! and a leak valve provided in the exhaust system 5 of the cooling chamber 3 for returning each chamber 1 and 3 to the atmosphere. The drum 15 fixed to the holding frame 8 is carried into the heating chamber 1 together with the holding frame B through the valve 13 at the left end in FIG. 1, and after being evacuated by the exhaust system 5, the heating chamber 1, it is heated by a heater reef while rotating as shown by the arrow in the figure. The heated drum 15 has both chambers! The drum 15 that has entered the reaction chamber 2 is carried into the reaction chamber 2 which is kept in vacuum by the exhaust system 5 through the gate control valve la between the drum 15 and the holding frame 6, and is placed in a predetermined position. It is connected to the 7-sIO together with the frame 8 to form a 7-node electrode for the pair of electrodes 7 as cathode electrodes. The surface of the drum 15 heated by the heater while forming an electric field with the electrode 7 and rotating as shown by the arrow in FIG.
An amorphous silicon film is formed by decomposing a raw material gas such as silane supplied into the reaction chamber 2 in plasma. The gas that has contributed to film formation is exhausted to the outside from the exhaust system 5 of the reaction chamber 2. Drum with finished film formation! 5 passes through the gate valve 13 between the reaction chamber 2 and the cooling chamber 3, enters the cooling chamber 3 kept in a vacuum by the exhaust system 5, and rotates the cooling plate 11 as shown by the arrow in the figure. It is cooled by exchanging heat with the refrigerant 12 through the cooling chamber 3, and is returned to the atmosphere through the leak valve 14. It passes through the gate valve 13 at the right end in FIG. 1 and exits the cooling chamber 3. . However, the plasma CVD apparatus having the above configuration has the following drawbacks. That is, FIG. 2 shows a cross section of the reaction chamber 2, and as shown by the arrow in the figure, the raw material gas is ejected toward the drum 15 from the gas ejection holes 7A formed over the entire surface inside the flat electrode 7. The raw material gas ejected from the flat plate electrode 7 on the right side in FIG. On the other hand, the raw material gas ejected from the flat electrode 7 on the left side in the figure comes into contact mainly with the left half circumference of the drum 15 and is exhausted to the exhaust system 5 through the periphery of the flat electrode 7 on the left side. In this way, in the reaction chamber 2, as shown in FIG. 2, the raw material gas near the axially intermediate portion on the left side of the drum 15 and the raw material gas ejected from both upper and lower ends inside the left flat plate electrode 7, etc. As a result, the density of the raw material gas tends to become non-uniform around the drum 15, and therefore the thickness and quality of the amorphous silicon film obtained on the surface of the drum 15 tend to become non-uniform. [Objective] The purpose of the present invention is to solve the above-mentioned problems and provide a plasma CVD apparatus that can form an appropriate flow of raw material gas and obtain a cylindrical substrate such as a drum with uniform film thickness and film quality. It is in. [Example] Fig. 3 is a perspective view showing the main parts of a plasma CVD apparatus according to an embodiment of the present invention, Fig. 4 is a horizontal sectional view of the main parts of the apparatus, and Fig. 5 is a main part of the apparatus. In the plasma CVD apparatus according to the present invention, the other structure except for the electrodes in the reaction chamber and the structure for supplying and exhausting raw material gas is the same as that of the plasma CVD apparatus shown in FIG. The reaction chamber will be mainly explained below, with illustration omitted since it is a configuration. That is, as shown in FIG. 3, in the reaction chamber 21 of the plasma CVD apparatus according to the present invention, a pair of flat electrodes 22 are arranged parallel to each other at the same positions as the conventional flat electrodes 7. placed upright. Although not shown, an exhaust system is provided on the side wall of the reaction chamber 21. At predetermined positions between the pair of electrodes 22, a plurality of drums 15 are arranged by a holding frame (not shown) so that the arrangement direction is parallel to the electrodes 22. The pair of flat electrodes 22 has the same structure as the conventional flat electrode 7. That is, this pair of flat electrodes 22
has a double structure for supplying the raw material gas, and has a large number of holes 23 all over the inner surface for spouting the raw material gas toward the drum 15 placed at a predetermined position between them, and is further heated by a heater (not shown). be done. 24 is a raw material gas supply pipe connected to the outside of the flat electrode 22 for supplying raw material gas into the double structure of the electrode 22. A pair of flat electrodes 22 are connected to the high frequency electrode 8 via a pipe 24 and serve as cathode electrodes. Exhaust pipes 25 are arranged parallel to the drums 15 in the gaps between the plurality of drums 15 arranged at predetermined positions between the pair of electrodes 22 and in the outer portions of both ends in the arrangement direction. Each exhaust pipe 25 has intake ports 26 at appropriate intervals in the axial direction at a portion facing the pair of electrodes 22 . By appropriately setting the diameter, number, and interval of the intake ports 2B, it is possible to create a flow (laminar flow) of the raw material gas such that the gas density in the axial direction of the drum 15 is uniform, as will be described later. Each exhaust pipe 25 passes through the bottom wall 21A of the reaction chamber 21 and
It is fixed to a wooden collecting pipe 27. This collecting pipe 27 is connected to an exhaust system (not shown) and is equipped with suitable elevating means (
(not shown). Therefore, each exhaust pipe 2
5 is arranged in the gap between the plurality of drums 15 arranged at a predetermined position between the pair of electrodes 22 and in the outer portions of both ends in the arrangement direction by the lifting means. Note that the raw material gas supply pipe 24 is connected to a raw material gas supply source (not shown). The drum 15 is grounded,
It has 7 node electrodes. The operation in the reaction chamber of the plasma CVD apparatus of the present invention constructed as described above will be explained below. First, the exhaust pipe 25 is lowered, and a plurality of drums 15 are placed at predetermined positions between a pair of electrodes 22 in the reaction chamber 21 and grounded. Then, the plurality of drums 15 are moved by the lifting means.
Exhaust pipes 25 are disposed in the gap between them and in the outer portions of both ends in the arrangement direction. Then rotate the drum 15,
As shown by the arrow in FIG.
The high-frequency power is ejected from the holes 23 inside the drums 2 toward the plurality of drums 15, and high-frequency power is supplied from the power source 8 to the pair of electrodes 22. As a result, the gas density around the drum 15 becomes uniform in the axial direction, and together with the rotation of the drum 15, the gas density around the drum 15 becomes uniform.
An amorphous silicon film with uniform thickness and quality is formed on the surface. In addition, the exhaust pipes 25 are arranged in the gaps between the plurality of drums 15 where the discharge intensity is relatively weak (the film forming speed is slow) and in the outer portions of both ends in the arrangement direction to forcibly guide the raw material gas. It is possible to increase the concentration of silicon active species generated by decomposition of the source gas in the area between the plurality of drums 15, and effectively prevent a decrease in the film forming rate in this area. The treatment of the drum 15 in the heating chamber 1 and the cooling chamber 3 is the same as in the conventional case. Further, in the above embodiment, both of the pair of electrodes 22 are connected to the high frequency power source 8 to serve as cathode electrodes, but one of these electrodes is used as a cathode electrode, and the other is not connected to the high frequency power source 8 but is grounded. A seven-node electrode may also be used (the drum 15 is grounded in both cases).゛ [Effect] As explained above, according to the present invention, it is possible to efficiently obtain a cylindrical substrate having a film of amorphous silicon or the like on its surface that has uniform film thickness and film quality and excellent electrical properties. can. 4. rI! Brief Description of J-plane The first yj is a plan view of a conventional plasma CVrj # for manufacturing electrophotographic photosensitive drums. Figure tJ2 is a vertical sectional view of the reaction chamber in the same apparatus, Figure 3 is a perspective view showing the essential parts of an embodiment of the plasma CVD apparatus according to the present invention for manufacturing electrophotographic photosensitive drums, and Figure 4 is the same apparatus. FIG. 5 is a horizontal cross-sectional view of the main parts of the device, and FIG. 5 is a vertical cross-sectional view of the main parts of the device. 15...Drum, 21...Reaction chamber, 22...Electrode, 25...Exhaust pipe. Figure 4↓