[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6125278A - Real time three dimensional image process device - Google Patents

Real time three dimensional image process device

Info

Publication number
JPS6125278A
JPS6125278A JP14464084A JP14464084A JPS6125278A JP S6125278 A JPS6125278 A JP S6125278A JP 14464084 A JP14464084 A JP 14464084A JP 14464084 A JP14464084 A JP 14464084A JP S6125278 A JPS6125278 A JP S6125278A
Authority
JP
Japan
Prior art keywords
dimensional
address
memory
frame
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14464084A
Other languages
Japanese (ja)
Inventor
Hiroyuki Iida
博之 飯田
Tadashi Okada
正 岡田
Harukuni Mori
森 晴邦
Noriyuki Sagishima
鷺島 敬之
Akio Nishimura
明夫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14464084A priority Critical patent/JPS6125278A/en
Publication of JPS6125278A publication Critical patent/JPS6125278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Studio Circuits (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Image Processing (AREA)
  • Image Generation (AREA)

Abstract

PURPOSE:To make it possible to stretch input screen even to a complicated three dimensional object and to obtain special effects of image never experienced before by performing address operation at the write-out side, and by carrying out the interpolation of frame. CONSTITUTION:An input image signal is converted into plural bits of a digital signal by an A/D convertor, and written in memory 14 following a write-address formation circuit 13 after receiving the processing in advance by a low pass filter (LPF)8 and an interpolator 9. Three dimensional address formation circuit 14 stretches an input image signal to a three dimensional object every n frames to form three dimensional addresses X, Y, Z. A frame interpolator 10 interpolates the operated three dimensional addresses X, Y, Z in each n(>1) frame to prepare the data of i frame (n>=i>=1). A fill-up circuit 12 converts two dimensional data after conversion by fluoroscopy into an actual address on the screen.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、たとえば放送局、プロダクション等の画像処
理を行なう分野に利用する実時間三次元画像処理装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a real-time three-dimensional image processing apparatus used in the field of image processing, such as broadcasting stations and production facilities.

従来例の構成とその問題点 二次元の入力映像信号を三次元物体に張りつける理論は
コンピュータ、グラフィクスの分野では盛んに使用され
ているが、処理時間を膨大に必要とするため、もっばら
静止画としての扱いであり、実時間での写像を行なう機
械は非常に困難である。
Conventional configurations and their problems The theory of pasting a two-dimensional input video signal onto a three-dimensional object is widely used in the fields of computers and graphics, but because it requires a huge amount of processing time, it is often used for still images. It is extremely difficult to create a machine that performs mapping in real time.

第1図は従来の実時間三次元画像処理装置を示している
。以下この従来例の構成について第1図とともに説明す
る。
FIG. 1 shows a conventional real-time three-dimensional image processing device. The configuration of this conventional example will be explained below with reference to FIG.

第1図において、1はA/D変換器であり、このA/D
変換器で入力画像はPCM化され、書込みアドレス生成
回路6によシ作られたアドレスに従ってメモリ4に書込
まれる。画像を読出すときは、入力画像を三次元空間に
三次元アドレス生成回路3により張りつけ、それをスク
リーンから観ることにより読出しアドレスを読出しアド
レス生成回路2で生成し、そのアドレスに従ってメモリ
4を読み出し、D/A変換器6によってアナログ信号に
変換されて出力される。
In FIG. 1, 1 is an A/D converter, and this A/D
The input image is converted into PCM by the converter and written into the memory 4 according to the address generated by the write address generation circuit 6. When reading an image, the input image is pasted in a three-dimensional space by the three-dimensional address generation circuit 3, and by viewing it on the screen, a read address is generated by the read address generation circuit 2, and the memory 4 is read according to the address. The D/A converter 6 converts it into an analog signal and outputs it.

しかしながら、上記従来例においては、三次元画像を得
るのが読出し側制御であるので、演算時間をかせぐため
のフレーム補間が使′えず、1フイールドごとに1画面
分のアドレスデータを計算する必要があり、複雑な三次
元物体に入力画像を張りつけると計算量が膨大になり実
行できないという欠点があった。これにより、この従来
例では機能として、4×4の行列に関する線形変換だけ
に限定されてしまうという欠点があった。
However, in the above conventional example, since the control on the readout side is to obtain a three-dimensional image, frame interpolation to save calculation time cannot be used, and it is necessary to calculate one screen worth of address data for each field. However, there was a drawback that pasting an input image onto a complex three-dimensional object would require an enormous amount of calculation, making it unfeasible. As a result, this conventional example has a drawback in that its functionality is limited to linear transformation regarding a 4×4 matrix.

発明の目的 本発明は上記従来例の久喜を除却するものであり、球2
円柱2円錐、楕円体その他複雑な三次元物体に入力画像
を張りつけ、実時間で自由にその物体を三次元空間で移
動、回転、縮少、変形をしているように三次元画像処理
をすることを目的とするものである。
Purpose of the Invention The present invention eliminates the Kuki of the above-mentioned conventional example.
Paste an input image onto a complex three-dimensional object such as a cylinder, two cones, or an ellipsoid, and process the three-dimensional image as if the object were being freely moved, rotated, reduced, or transformed in three-dimensional space in real time. The purpose is to

発明の構成 本発明は上記目的を達成するために、アドレス演算を書
込み側で行ない、1回のフレーム補間を行なうことによ
一す、n/30秒に1回のフレーム演算で三次元アドレ
スを生成すればあとは補間器がその間のアドレスを生成
するので、演算時間がn倍になシ複雑な三次元物体にも
入力画面を張りつけることができ、いままでにない画像
特殊効果を得るものである。そのとき、生成されるアド
レスデータは、書込み側制御であるだめにシーケンシャ
ルに出力され、そのデータを貯えるメモリは直列−並列
変換により、安価な低速メモリが使え、コストを抑える
効果もある。
Structure of the Invention In order to achieve the above object, the present invention performs address calculation on the writing side and performs one frame interpolation, thereby generating a three-dimensional address by one frame calculation every n/30 seconds. Once generated, the interpolator generates the addresses between them, which increases the calculation time by n times, and allows the input screen to be attached to complex three-dimensional objects, creating unprecedented image special effects. be. At this time, the generated address data is outputted sequentially due to the writing side control, and the memory that stores the data is serial-parallel converted so that an inexpensive low-speed memory can be used, which also has the effect of reducing costs.

実施例の説明 以下に本発明の一実施例の構成について、図面と共に説
明する。第2図において、入力映像信号はA/D変換器
1によって複数ビットのデジタル信号に変換され、ロー
パスフィルタ(LPF)8、内挿器9による前処理を施
された後、書込みアドレス生成回路13に従ってメモル
4に書込まれる。
DESCRIPTION OF EMBODIMENTS The configuration of an embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, an input video signal is converted into a multi-bit digital signal by an A/D converter 1, subjected to preprocessing by a low pass filter (LPF) 8 and an interpolator 9, and then subjected to a write address generation circuit 13. It is written to memory 4 according to the following.

三次元アドレス生成回路14は、nフレームごとに入力
映像信号を三次元物体に張りつけ三次元アドレスX、Y
、Zを生成する。フレーム補間1゜はn(>1)フレー
ムごとに演算された三次元アドレスX、Y、zをフレー
ム補間器てiフレーム(n≧i≧1)のデータを作成す
る。透視変換回路11は亜次元アドレスを二次元アドレ
スに変換する。穴埋め回路12は、透視変換後の二次元
データをスクリーン上の実アドレスに変換する。メモリ
4に書込まれた映像データは、読出しアドレス生成回路
アにょシ生成されたアドレスによって読出され、D/A
変換器6にょシアナログビデオ信号に変換され出方され
る。
The three-dimensional address generation circuit 14 pastes the input video signal onto the three-dimensional object every n frames and generates the three-dimensional address X, Y.
, Z is generated. Frame interpolation 1° creates data for i frames (n≧i≧1) by using a frame interpolator to use three-dimensional addresses X, Y, and z calculated every n (>1) frames. A perspective conversion circuit 11 converts a subdimensional address into a two-dimensional address. The hole-filling circuit 12 converts the two-dimensional data after the perspective transformation into a real address on the screen. The video data written in the memory 4 is read out according to the address generated by the read address generation circuit, and then output to the D/A.
A converter 6 converts the signal into an analog video signal and outputs it.

次に上記実施例の各部の動作について説明する。Next, the operation of each part of the above embodiment will be explained.

まず、三次元アドレス生成回路14は、16ビツトのマ
イクロプロセッサと算術演算器を複数台用いて、第3図
(a) 、 (b)に示すように、二次元の入力画像P
(x、y)を例えばこの場合球に張りっけソフトウェア
により三次元画像p’ (x 、 y 、 z )を計
算する。この演算量は、次式(3−1)〜式(3−3)
に示されるように膨大であり、ソフトウェアではすべて
の入力画像の三次元アドレスP′を1フレ一ム時間内に
演算することはできない。
First, the three-dimensional address generation circuit 14 uses a plurality of 16-bit microprocessors and arithmetic units to generate a two-dimensional input image P, as shown in FIGS. 3(a) and (b).
In this case, for example, (x, y) is pasted on a sphere and a three-dimensional image p' (x, y, z) is calculated using software. This amount of calculation is calculated using the following equations (3-1) to (3-3)
As shown in FIG. 2, the number of three-dimensional addresses P' for all input images is enormous, and software cannot calculate the three-dimensional addresses P' of all input images within one frame time.

しかし張りつける物が変わった場合でもソフトウェアを
変えることにより対応できる高い汎用性を持つ。
However, it has a high degree of versatility, allowing you to change the software even if the object to be pasted changes.

X = Jq2− Y2cos−m−−−−−−−(3
−1)y −−i−y        0.−0−< 
3−2 )Z = Jq2− Y2s1n −=−(3
−3)フレーム補間口路1oは、三次元アドレス生成回
路がnフレームに一回しか演算できないのでその間のフ
レームを埋めるために第4図のように1番目の画像とi
+1番目の画像から、例えば次式(4−1)〜式(4−
3)で表わされる線形補間によシ、その間のフレームの
三次元アドレスを演算する。
X = Jq2− Y2cos−m−−−−−−(3
-1)y --i-y 0. -0-<
3-2) Z = Jq2- Y2s1n -=-(3
-3) Since the three-dimensional address generation circuit can perform calculation only once every n frames, the frame interpolation path 1o is used to fill in the intervening frames by interpolating the first image and i as shown in Figure 4.
From the +1st image, for example, the following equations (4-1) to (4-
3) In addition to linear interpolation, the three-dimensional address of the intervening frame is calculated.

xn−x。xn-x.

Xi : X0+−1・・・・・(4−1)(n−1)
i)o)n:補間するフレーム数透視変換回路11は、
フレーム補間によシ演算された三次元アドレスを、三次
元空間上で、4×4の行列を乗算することによシ、任意
の場所へ移動、回転などの線形変換を施こした後、第5
図。
Xi: X0+-1...(4-1)(n-1)
i) o) n: number of frames to be interpolated The perspective conversion circuit 11 is
The three-dimensional address calculated by frame interpolation is multiplied by a 4x4 matrix in three-dimensional space, and after performing linear transformation such as moving or rotating it to an arbitrary location, 5
figure.

第6図で示されるような、三角形の相似を利用した透視
変換を行なうことにより、スクリーン上の二次元アドレ
スQ(ff、m)を演算する。第6図で、三次元アドレ
スをP′とすると、三角形P’ZHと、三角形LOHは
相似なので、スクリーン上のXアドレス4は、式(e−
1)で表わされ、yアドレスmは、式(e=2)で演算
される。
A two-dimensional address Q(ff, m) on the screen is calculated by performing perspective transformation using the similarity of triangles as shown in FIG. In FIG. 6, if the three-dimensional address is P', the triangle P'ZH and the triangle LOH are similar, so the X address 4 on the screen can be calculated using the formula (e-
1), and the y address m is calculated using the formula (e=2).

穴埋め回路12は、透視発換回路11\により演算され
た二次元アドレスQ(#、In)が、第7図のように実
際のスクリーン上の画素に当てはまら々いため、−走査
線分の遅延回路を用いて、二次元アドレスQ、〜Q4を
格子に見たてて、その格子内のメモリアドレス(実画素
アドレス)Sを演算する。その方法としては、まず、第
7図においてy方向の最大値を持つ二次元アドレスQ2
を求め、そのときC2はメモリアドレス上に無いので、
その小数部を切り捨て整数化する。その整数化したyの
値による直線がe、であシ、その直線11と直線Q1.
Q2、直線Q2. C4の交点C,、C2を演算し、C
1とC2の間に実画素アドレスがあるか無いかで、格子
内の実画素を捜す。このyの値から1を減じた値による
直線12で同様の処理を行ない、この場合最大2個の実
画素アドレスを捜す。またこのとき第8図(2L) t
 (b)のように格子の法線も演算され、その法線の方
向が視点を向いていれば見える、向いていなければ見え
ないという陰面消去を式(8−1)のように法線NのZ
成分が正か負かによシ判断して行なう。
Since the two-dimensional address Q (#, In) calculated by the perspective conversion circuit 11\ does not apply to the actual pixel on the screen as shown in FIG. Using , the two-dimensional addresses Q, to Q4 are viewed as a lattice, and the memory address (actual pixel address) S within the lattice is calculated. As a method, first, in FIG. 7, the two-dimensional address Q2 having the maximum value in the y direction is
Then, since C2 is not on the memory address,
The decimal part is rounded down to an integer. The straight line based on the integer value of y is e, and the straight line 11 and the straight line Q1.
Q2, straight line Q2. Compute the intersection C,,C2 of C4, and
A real pixel in the grid is searched depending on whether there is a real pixel address between 1 and C2. Similar processing is performed on the straight line 12 obtained by subtracting 1 from this value of y, and in this case, a maximum of two actual pixel addresses are searched. Also at this time, Fig. 8 (2L) t
The normal of the lattice is also calculated as shown in (b), and the normal N Z of
This is done by determining whether the component is positive or negative.

Nz” (X+ 、xzXY、+Y2)+(Xz  X
3XY12+Y3)+ (X、−Xl)(Y、+Y、)
      −−−−−−(s −1)書込みアドレス
生成回路13は、穴埋め回路12により求められたメモ
リアドレスSに書込むデータの重みを計算する。書込ま
れるデータは、第9図(Ia) 、 (b)のように落
子の各4点Q1〜q4からSまでの距離を求め、その距
離により、重み付けされる。例えば、第9図(a)の場
合には、SがQ、に近いのでSに書込む画像データはQ
lの成分を一番多くする。逆に第9図(b)の場合は、
91〜Q4の画像データの%づつを加え合わせれば良い
。この重みは、内挿器9に送られ画像データの重み付け
による内挿演算を行なう。
Nz” (X+ , xzXY, +Y2)+(Xz
3XY12+Y3)+ (X, -Xl) (Y, +Y,)
--------(s -1) The write address generation circuit 13 calculates the weight of data to be written to the memory address S determined by the hole filling circuit 12. The data to be written is weighted based on the distances from each of the four points Q1 to q4 of the droplet to S as shown in FIGS. 9(Ia) and 9(b). For example, in the case of FIG. 9(a), S is close to Q, so the image data written to S is Q.
Make the l component the most. Conversely, in the case of Figure 9(b),
It is sufficient to add the image data of 91 to Q4 by %. This weight is sent to the interpolator 9, which performs an interpolation calculation by weighting the image data.

メモリ4は、詳細には第11図のように構成されており
、ここでは次のような機能をしている。
The memory 4 is configured in detail as shown in FIG. 11, and has the following functions.

まず、透視変換後の二次元アドレス91〜Q4が第10
図のようにメモリアドレス(実画素)S上に透視変換さ
れたとすると、その格子内に含まれる実画素Sは、格子
の変換位置によシ、格子Q+ lC21Qa 、Q9の
ように最大2個から、格子Q3+ C4+ Qlo +
QHのように最小無しまで個数が変化する。第10図の
演算の様子を第12図のタイミング・チャートに示す。
First, the two-dimensional addresses 91 to Q4 after perspective transformation are the 10th
As shown in the figure, if the perspective transformation is performed on the memory address (real pixel) S, the actual pixels S included in the grid will vary depending on the transformed position of the grid, from a maximum of 2 to 2 as shown in the grid Q+ lC21Qa, Q9. , lattice Q3+ C4+ Qlo +
Like QH, the number changes until there is no minimum. The state of the calculation in FIG. 10 is shown in the timing chart of FIG. 12.

第12図においてe)は、透視変換後の二次元アドレス
Qであシ、(b) 、 (Ct)はその格子内に含まれ
るメモリアドレスSである。斜線は、格。子内部に含ま
れるメモリアドレスSが無い場合である。(d)は、直
並列変換回路のラッチパルスであり、ここでは例えば、
4相の直並列変換するので、Sが4つごとに1パルス出
力される。そのパルスにより、第11図のラッチ16 
、20が4相の内挿された画像データと4相のメモリア
ドレスSをラッチして低速メモリ17.21に書き込む
。1フイールドの処理が終了した時点で、低速メモリ1
7.21から両者をここでは4つづつ読み出してきて、
並直列変換を行ない、書込みアドレスSで、内挿された
データをメモリ4に書込む。
In FIG. 12, e) is the two-dimensional address Q after perspective transformation, and (b) and (Ct) are the memory addresses S included in the grid. Diagonal lines are cases. This is a case where there is no memory address S contained within the child. (d) is a latch pulse of the serial/parallel conversion circuit, and here, for example,
Since 4-phase serial-parallel conversion is performed, one pulse is output for every four S. The pulse causes latch 16 in FIG.
, 20 latch the four-phase interpolated image data and the four-phase memory address S and write them into the low-speed memory 17.21. When processing of 1 field is completed, low-speed memory 1
From 7.21, both are read out four times each,
Parallel-to-serial conversion is performed, and the interpolated data is written to the memory 4 at the write address S.

最後に、読出しアドレス生成回路7によシ生成された、
実際の走査線に対応したシーケンシャル・アドレスでメ
モリ4から画像データを読み出してきて、D/A変換器
已によシアナログ画像ン−タに変換されて出力される。
Finally, the address generated by the read address generation circuit 7 is
Image data is read out from the memory 4 at a sequential address corresponding to an actual scanning line, converted into a digital image data by a D/A converter, and outputted.

本実施例においては、書込み側による画像変換処理を行
なうことにより、フレーム補間ができ、演算時間が充分
に得られ、複雑な三次元物体にも二次元の入力画像を実
時間で張りつけたようにみ、せることができる上に、ア
ドレス、画像データがシーケンシャルに出力されるため
、高密度で安価々低速メモリを直並列変換回路を用いる
ことにより使用できるため、装置を安価でコンパクトに
作れるなどの利点がある。
In this embodiment, by performing image conversion processing on the writing side, frame interpolation is possible, sufficient calculation time is obtained, and complex three-dimensional objects can be processed as if two-dimensional input images were pasted in real time. In addition, since addresses and image data are output sequentially, high-density and low-cost low-speed memory can be used by using a serial-to-parallel conversion circuit, making it possible to make devices inexpensive and compact. There are advantages.

発明の効果 本発明は上記のような構成で、1、以下に示す効果が得
られるものでおる。
Effects of the Invention With the above-described configuration, the present invention provides the following effects: 1.

(a)  実時間三次元画像処理により複雑な三次元効
−果が得られ、今までにない特殊効果を作ることができ
る。
(a) Real-time three-dimensional image processing allows complex three-dimensional effects to be obtained, making it possible to create unprecedented special effects.

(b)  書込み側制御によシ、書込みに直並列変換、
読出しに並直列変換を用いることができるので安価で高
密度な低速メモリーを使用でき、低コスト、コンパクト
な三次元画像処理装置を構成できる。
(b) Write side control, serial/parallel conversion for writing,
Since parallel-to-serial conversion can be used for reading, an inexpensive, high-density, low-speed memory can be used, and a low-cost, compact three-dimensional image processing device can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の三次元画像処理装置のブロック図、第2
図は本発明の一実施例における実時間三次元画像処理装
置のブロック図、第3図は三次元アドレス生成回路の原
理を説明する図、第4図はフレーム補間の説明図、第6
図は本装置の原理を説明する図、第6図は透視変換の原
理図、第7図は穴埋めの原理図、第8図は陰面消去の説
明図、第9図は画像データの重み付けの説明図、第10
図、第11図はメモリ及びアドレス発生の説明図、第1
2図はメモリのタイミングチャートである。 1・・・・・・A/D変換器、4・・・・・・メモリ、
6・・・・・・D/A変換器、7・・・・・・読出しア
ドレス生成回路、8・・・・・・LPF、9・・・・・
・内挿器、10・・・・・・フレーム補間回路、11・
・・・・・透視変換回路、12・・・・・・穴埋め回路
、13・・・・・・書込みアドレス生成回路、14・・
・・・・三次元アドレス生成回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名区 
            ω ト                城グ R 区          派 城
Figure 1 is a block diagram of a conventional three-dimensional image processing device;
The figure is a block diagram of a real-time three-dimensional image processing device according to an embodiment of the present invention, FIG. 3 is a diagram explaining the principle of a three-dimensional address generation circuit, FIG. 4 is a diagram explaining frame interpolation,
The figure is a diagram explaining the principle of this device, Figure 6 is a diagram of the principle of perspective transformation, Figure 7 is a diagram of the principle of hole filling, Figure 8 is a diagram explaining hidden surface removal, and Figure 9 is an explanation of weighting of image data. Figure, 10th
Figure 11 is an explanatory diagram of memory and address generation, Figure 1.
Figure 2 is a memory timing chart. 1...A/D converter, 4...memory,
6...D/A converter, 7...Read address generation circuit, 8...LPF, 9...
・Interpolator, 10... Frame interpolation circuit, 11.
. . . Perspective conversion circuit, 12 . . . Hole filling circuit, 13 . . . Write address generation circuit, 14 .
...Three-dimensional address generation circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person
ω To Castle Group R Ward Group

Claims (1)

【特許請求の範囲】[Claims]  入力映像信号をA/D変換した後メモリに書込み、そ
れを読出してD/A変換器により映像信号に戻すと共に
、前記メモリの書込みに必要なアドレスの発生を、映像
信号を三次元物体に写像する三次元アドレス生成部、三
次元アドレス生成に必要な演算時間をかせぐためのフレ
ーム補間部、透視変換部、実際の画面上の画素アドレス
を演算する穴埋め回路、その結果発生したアドレスに従
って前記メモリの最終書込みアドレスを演算する書込み
アドレス生成回路から構成した回路で行なう事により、
前記映像信号を実時間で三次物体に張り付けると共に三
次元座標変換を同時に行なう実時間三次元画像処理装置
After A/D converting the input video signal, it is written into a memory, read out and returned to a video signal by a D/A converter, and the video signal is mapped to a three-dimensional object by generating the address necessary for writing into the memory. a three-dimensional address generation section, a frame interpolation section for saving the calculation time necessary for three-dimensional address generation, a perspective conversion section, a hole-filling circuit for calculating the pixel address on the actual screen, and a filling circuit for calculating the address of the memory according to the address generated as a result. By using a circuit consisting of a write address generation circuit that calculates the final write address,
A real-time three-dimensional image processing device that attaches the video signal to a three-dimensional object in real time and simultaneously performs three-dimensional coordinate transformation.
JP14464084A 1984-07-12 1984-07-12 Real time three dimensional image process device Pending JPS6125278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14464084A JPS6125278A (en) 1984-07-12 1984-07-12 Real time three dimensional image process device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14464084A JPS6125278A (en) 1984-07-12 1984-07-12 Real time three dimensional image process device

Publications (1)

Publication Number Publication Date
JPS6125278A true JPS6125278A (en) 1986-02-04

Family

ID=15366760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14464084A Pending JPS6125278A (en) 1984-07-12 1984-07-12 Real time three dimensional image process device

Country Status (1)

Country Link
JP (1) JPS6125278A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219080A (en) * 1987-03-09 1988-09-12 Matsushita Electric Ind Co Ltd Image converting device
JPS6434988A (en) * 1987-07-30 1989-02-06 Kissei Pharmaceutical Azepinoindole derivative
JPH01131976A (en) * 1987-08-05 1989-05-24 Daikin Ind Ltd Device and method for texture mapping
JPH04284494A (en) * 1991-03-14 1992-10-09 Hitachi Ltd Method and device for image processing
US6195102B1 (en) 1987-03-17 2001-02-27 Quantel Limited Image transformation processing which applies realistic perspective conversion to a planar image

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219080A (en) * 1987-03-09 1988-09-12 Matsushita Electric Ind Co Ltd Image converting device
US6195102B1 (en) 1987-03-17 2001-02-27 Quantel Limited Image transformation processing which applies realistic perspective conversion to a planar image
JPS6434988A (en) * 1987-07-30 1989-02-06 Kissei Pharmaceutical Azepinoindole derivative
JPH01131976A (en) * 1987-08-05 1989-05-24 Daikin Ind Ltd Device and method for texture mapping
JPH04284494A (en) * 1991-03-14 1992-10-09 Hitachi Ltd Method and device for image processing

Similar Documents

Publication Publication Date Title
US4667236A (en) Television perspective effects system
JP2550530B2 (en) Video signal processing method
JPS61230477A (en) Picture converter
CN114549731A (en) Method, device, electronic device and storage medium for generating perspective image
JPH0628485A (en) Texture address generator, texture pattern generator, texture plotting device and texture address generating method
JPH05324817A (en) Method for animating one-sequence video image field and apparatus for recovering approximately reduced pixel mapping to mapping from ordinary pixel to pixel
AU736560B2 (en) Method and apparatus for texture data
JPH0752925B2 (en) Video signal processor
JPS6125278A (en) Real time three dimensional image process device
Ghosh et al. Design of an application specific VLSI chip for image rotation
JP3074779B2 (en) Special effect generator
JPH07105404A (en) Stereoscopic image processor and its processing method
JP2707605B2 (en) Image data conversion method
JP2000155851A (en) Texture mapping device and rendering device equipped with the same and information processor
JP2535814B2 (en) Mapping circuit of CRT display device
JP3278828B2 (en) Translucent stereoscopic image processing device
JPH0445491A (en) Digital special effect device
JP3344675B2 (en) Stereoscopic image processing device
JP2638218B2 (en) Spherical texture mapping device
JPS63189056A (en) Image synthesizing system
JPH0887606A (en) Stereoscopic image processor
JPS6055837B2 (en) graphic display device
JPS6219980A (en) Image processor
JPS63102467A (en) Converting device for resolution of picture data
JP2998689B2 (en) How to map image data