JPS61252160A - Substrate for flexible electric circuit wiring and manufacture thereof - Google Patents
Substrate for flexible electric circuit wiring and manufacture thereofInfo
- Publication number
- JPS61252160A JPS61252160A JP60094155A JP9415585A JPS61252160A JP S61252160 A JPS61252160 A JP S61252160A JP 60094155 A JP60094155 A JP 60094155A JP 9415585 A JP9415585 A JP 9415585A JP S61252160 A JPS61252160 A JP S61252160A
- Authority
- JP
- Japan
- Prior art keywords
- adhesive
- circuit wiring
- wiring board
- board according
- release film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電気回路を形成するフレキシブル配線基板およ
びその製造方式に利用する。特に、製造工程が簡単であ
り、絶縁層に両表面に貫通するピンホールがなく、他の
部品に容易に貼着可能な配線基板およびその製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is applied to a flexible wiring board forming an electric circuit and a manufacturing method thereof. In particular, the present invention relates to a wiring board that has a simple manufacturing process, has no pinholes penetrating both surfaces of the insulating layer, and can be easily attached to other components, and a method for manufacturing the same.
本発明は、電気回路用のプリント基板の製造方法におい
て、
片面に接着剤が塗布された離型用フィルムを用いて、接
着剤層を転写することにより形成する操作を3回または
それ以上重ねて行い、三つまたはそれ以上の接着剤層が
積層構造により形成され、かつ最上層の接着剤層はBス
テージ状態に保持されかつ離型用フィルムが付されてい
ることにより、両表面を貫通するピンホールがなく、他
の部品に貼着できるようにしたものである。The present invention is a method for manufacturing a printed circuit board for an electric circuit, in which an operation of forming an adhesive layer by transferring the adhesive layer is repeated three or more times using a release film coated with an adhesive on one side. three or more adhesive layers are formed in a laminated structure, and the top adhesive layer is held in a B-stage state and a release film is attached to penetrate through both surfaces. It has no pinholes and can be attached to other parts.
表面に金属層が形成された電気回路用の配線基板は、金
属層に樹脂で作られた接着剤を塗布し、この接着剤を硬
化することにより製造する。A wiring board for an electric circuit having a metal layer formed on its surface is manufactured by applying an adhesive made of resin to the metal layer and curing the adhesive.
金属層が両面に形成されるものでは、その一方の面は接
地電位の配線に使用され、両面の金属0層が共に薄い金
属箔であるときには、フレキシブル基板であり、接地電
位の金属層が厚い金属板であるときには、硬質の回路基
板となる。この両面に金属層が形成された電気回路用基
板では、絶縁層に貫通するピンホールがあると、両面の
耐電圧が小さくなる。If the metal layer is formed on both sides, one side is used for wiring at ground potential, and if the metal 0 layers on both sides are both thin metal foils, it is a flexible board and the metal layer at ground potential is thick. When it is a metal plate, it becomes a hard circuit board. In this electric circuit board in which metal layers are formed on both sides, if there is a pinhole penetrating the insulating layer, the withstand voltage on both sides becomes small.
これを改良するものとして、絶縁層を多層構造にして、
一つの層の中では貫通するピンホールがあっても、両表
面を貫通するピンホールを無くする技術が知られている
がピンホールを皆無にすることはできずに通常フィルム
層を導入することにより対応している。To improve this, the insulating layer has a multilayer structure,
Even if there are pinholes that penetrate within one layer, there are known techniques to eliminate pinholes that penetrate both surfaces, but since pinholes cannot be completely eliminated, it is usually necessary to introduce a film layer. This is supported by
このため、多層構造の絶縁層を形成するには、接着剤の
塗布および硬化の工程を層の数だけ繰り返すことが必要
であり、製造工数が大きくなり、その製品はおのずと高
価になる欠点がある。Therefore, in order to form a multilayered insulating layer, it is necessary to repeat the adhesive application and curing process for the number of layers, which increases the number of manufacturing steps and makes the product naturally expensive. .
本発明者らはさきにこれを改良する電気回路配線用基板
の製造方法を特願昭 号により出願した。The inventors of the present invention have previously filed a patent application for a method for manufacturing an electric circuit wiring board that improves this method.
しかし、上記提案の製造方法による電気回路用基板では
、多層構造の絶縁層がすべて硬化されているため可撓性
に欠けており、さらに需要者より他の部品に貼着できる
電気回路用基板を要求された。However, the electrical circuit board manufactured by the above-proposed manufacturing method lacks flexibility because all of the insulating layers in the multilayer structure are hardened, and furthermore, consumers have been requesting electrical circuit boards that can be attached to other parts. I was demanded to.
本発明はこの要求に対応する新しいフレキシブル電気回
路配線用基板の製造方法およびその基板を提供すること
を目的とする。An object of the present invention is to provide a new method of manufacturing a flexible electric circuit wiring board and a board thereof that meet this demand.
本発明の第一の発明は、フレキシブル電気回路配線用基
板の製造方法であり、片面に接着剤が塗布された離型用
フィルムの接着剤層の表面に金属箔を貼り合わせその接
着剤を硬化させるとともにその離型用フィルムを取り除
くことにより、金属箔に硬化した第一の接着剤層を形成
する第一の工程と、
この第一の工程により形成された硬化した接着剤の表面
に、さらに、片面に接着剤が塗布された離型用フィルム
の接着剤層の表面を貼り合わせるとともにその離型用フ
ィルムを取り除く工程をn回行う第二の工程と、
この第二の工程により形成された接着剤層の表面に、さ
らに、片面に接着剤が塗布された離型用フィルムの接着
剤層の表面を貼り合わせてその接着剤をBステージ状態
に保持させるとともに離型用フィルムを付しておく第三
の工程と
を含むことを特徴とする。The first invention of the present invention is a method for manufacturing a flexible electric circuit wiring board, in which metal foil is pasted on the surface of the adhesive layer of a release film coated with adhesive on one side, and the adhesive is cured. a first step of forming a hardened first adhesive layer on the metal foil by removing the mold release film; , a second step in which the surfaces of the adhesive layer of a release film coated with an adhesive on one side are bonded together and the release film is removed n times; Further, on the surface of the adhesive layer, the surface of the adhesive layer of a release film coated with adhesive on one side is bonded to maintain the adhesive in a B-stage state, and the release film is attached. The method is characterized in that it includes a third step in which the process is performed.
この場合nは1であり、第二の工程は接着剤を硬化させ
る工程を伴うもの、あるいは第二の工程は接着剤をBス
テージの状態に保持させておくことが好ましい。In this case, n is 1, and it is preferable that the second step involves a step of curing the adhesive, or that the second step involves keeping the adhesive in a B-stage state.
またnは2以上であり、第二の工程は、このn回の繰り
返し工程のはじめの1回または複数回では接着剤を硬化
させる工程を伴い、あとの1回または複数回では接着剤
をBステージの状態に保持させておくことが好ましい。Further, n is 2 or more, and the second step includes a step of curing the adhesive in the first one or more times of the n-time repeating steps, and in the remaining one or more times, the adhesive is cured with B. It is preferable to keep it in a stage state.
本発明の第二の発明は、フレキシブル電気回路用配線基
板であり、金属箔の表面に3層以上の接着剤層が形成さ
れ、その接着剤層のうち少なくとも金属箔に接する層は
硬化され、その接着剤層のうち少なくとも金属箔から最
も遠い層はBステージの状態に保持され、その最も遠い
層の表面に離型用フィルムが付せられたことを特徴とす
る。A second invention of the present invention is a wiring board for a flexible electric circuit, in which three or more adhesive layers are formed on the surface of a metal foil, and at least one of the adhesive layers in contact with the metal foil is hardened, Among the adhesive layers, at least the layer farthest from the metal foil is maintained in a B-stage state, and a release film is attached to the surface of the farthest layer.
接着剤層の全部または一部は1〜50重量%の繊維状無
機物絶縁材料を含み、各接着剤層を構成する接着剤は熱
硬化性であるか、または少なくとも一部に熱可塑性材料
を含むことが好ましい。All or part of the adhesive layer contains 1 to 50% by weight of a fibrous inorganic insulating material, and the adhesive constituting each adhesive layer is thermosetting or at least partially contains a thermoplastic material. It is preferable.
各接着剤層の厚さはそれぞれが5μm以上100μm以
下であり、金属箔の厚さは9μm以上200μm以下で
あることが好ましい。The thickness of each adhesive layer is preferably 5 μm or more and 100 μm or less, and the thickness of the metal foil is preferably 9 μm or more and 200 μm or less.
繊維状無機物絶縁材料は繊維状チタン酸カリウムである
ことが好ましい。The fibrous inorganic insulating material is preferably fibrous potassium titanate.
ここに硬化は、加熱硬化、経時硬化、硬化剤の添加によ
る方法および電子線などの輻射線放射による硬化方法を
含むものとする。Here, curing includes heat curing, curing over time, a method by adding a curing agent, and a curing method by radiation radiation such as an electron beam.
片面に接着剤が塗布された離型用フィルムは極めて均一
に多量に製造することができる。また、片面に接着剤が
塗布された離型用フィルムはその取扱いが容易であり、
この離型用フィルムの接着剤層を転写する工程は、軟性
の接着剤を一様に塗布する工程に比べてはるかに簡単で
あって工数が小さい。さらに最外面に離型用フィルム付
きのBステージ状態の接着剤が残っているので、この基
板の後加工が容易にできる長所がある。A release film coated with an adhesive on one side can be produced extremely uniformly and in large quantities. In addition, the release film with adhesive applied to one side is easy to handle.
The process of transferring the adhesive layer of the release film is much simpler and requires fewer steps than the process of uniformly applying a soft adhesive. Furthermore, since the adhesive in the B-stage state with the release film remains on the outermost surface, there is an advantage that post-processing of this substrate can be easily performed.
したがって、本発明によれば、多層の絶縁層を有するフ
レキシブル電気回路配線用基板を小さい工数で安価に製
造することができる。Therefore, according to the present invention, a flexible electric circuit wiring board having multiple insulating layers can be manufactured at low cost with a small number of man-hours.
ピンホールのない薄い絶縁層はBステージを経て作成す
ることは非常に難しいため、通常、100μm以上の厚
さが信顛性の点から必要であることが知られている。本
発明者らは鋭意検討を加えた結果、溶剤型フェスを用い
る場合に溶剤を蒸発乾燥しBステージ状態の樹脂薄膜を
製造する際に、樹脂薄膜形成時の蒸発収縮等によってピ
ンホールが発生するが、離型用フィルム上では蒸発が一
方向のみ起こるため、フィルムに接する面の樹脂薄膜に
ピンホールが発生しないことを発見した。しかも樹脂薄
膜形成時の加熱による離型フィルムの収縮は、ピンホー
ルの発生を阻止することに効果があり、さらにこの収縮
作用は、転写加熱硬化後の基板の硬化収縮を抑制する。It is known that it is very difficult to create a thin insulating layer without pinholes through the B stage, and therefore a thickness of 100 μm or more is usually required from the viewpoint of reliability. As a result of extensive studies, the inventors of the present invention found that when using a solvent-based FES, pinholes occur due to evaporation shrinkage during the formation of the resin thin film when the solvent is evaporated and dried to produce a B-stage resin thin film. However, they discovered that because evaporation occurs only in one direction on the release film, pinholes do not occur in the resin thin film on the surface that is in contact with the film. Moreover, the shrinkage of the release film due to heating during the formation of the resin thin film is effective in preventing the generation of pinholes, and furthermore, this shrinkage action suppresses curing shrinkage of the substrate after transfer heat curing.
これにより、転写法を用いてピンホールのない絶縁層を
作成することができ、しかもこれを3回またはそれ以上
繰り返すことによりその効果が確実になる。This makes it possible to create a pinhole-free insulating layer using the transfer method, and the effect is ensured by repeating this process three or more times.
この基板を後加工する場合、この基板に対向して接着さ
れる表面には、この基板と同種の接着剤が塗布されてい
ることが望ましい。When this substrate is subjected to post-processing, it is desirable that the same type of adhesive as that of the substrate be applied to the surface that faces and is to be bonded to the substrate.
〔実施例1〕
離型用フィルムの厚さ60μmのボリブロビレンフィル
ム(本州製紙側型アルファンフィルム)に、厚さ20μ
mになるようにフレキシブル用エポキシ樹脂を塗工し、
乾燥させてBステージ状態とし、このようにして得たB
ステージ状態のエポキシ樹脂を厚さ35μmの電解銅箔
の処理面(日鉱グールド社製JTC)に貼り合わせ加熱
硬化させた後離型用フィルムを取り除く (第一の工程
)。[Example 1] A 20 μm thick polypropylene film (Honshu Paper Industries side type Alphan film) was added to the release film having a thickness of 60 μm.
Coat flexible epoxy resin so that it is m,
The B-stage obtained in this way is dried to a B-stage state.
The epoxy resin in a stage state is pasted onto the treated surface of a 35 μm thick electrolytic copper foil (JTC manufactured by Nikko Gould Co., Ltd.), heated and cured, and then the release film is removed (first step).
次に、第一の工程で得た銅箔貼り合わせエポキシ樹脂の
硬化した樹脂面に、さらに厚さ20μmになるように上
記フレキシブル用エポキシ樹脂が塗工された上記ポリプ
ロピレンフィルムの塗工面を貼り合わせ、加熱硬化させ
た後ポリプロピレンフィルムを取り除いた(第二の工程
)。Next, on the cured resin surface of the copper foil bonded epoxy resin obtained in the first step, the coated surface of the polypropylene film coated with the flexible epoxy resin is further bonded to a thickness of 20 μm. After heating and curing, the polypropylene film was removed (second step).
次に、第二の工程で得た銅箔貼り合わせエポキシ樹脂の
樹脂面に、さらに厚さ20μmになるように上記フレキ
シブル用エポキシ樹脂が塗工された上記ポリプロピレン
フィルムの塗工面を貼り合わせ、離型用フィルム付の接
着剤付片面胴貼フレキシブルプリント回路用基板を得た
(第三の工程)。Next, on the resin surface of the copper foil laminated epoxy resin obtained in the second step, the coated surface of the polypropylene film coated with the flexible epoxy resin is further bonded to a thickness of 20 μm, and separated. A single-sided adhesive-attached flexible printed circuit board with mold film was obtained (third step).
〔実施例2〕
離型用フィルムの厚さ40μmのフッ化ビニールフィル
ム(米国デュポン社製テドラフィルム)に、厚さ15μ
mになるようにフレキシブル用ポリイミド樹脂を塗工し
、これを乾燥させてBステージ状態にし、このようにし
て得たBステージ状態のポリイミド樹脂を厚さ18μm
の圧延銅箔の処理面(日本鉱業■製)に貼り合わせ、加
熱硬化させた後、上記フン化ビニールフィルムを取り除
く (第一の工程)。[Example 2] A fluorinated vinyl film (Tedra film manufactured by DuPont, USA) with a thickness of 40 μm as a release film was coated with a 15 μm thick film.
A polyimide resin for flexible use is coated to a thickness of 18 μm and dried to a B-stage state.
After pasting on the treated surface of rolled copper foil (manufactured by Nippon Mining Co., Ltd.) and curing with heat, the vinyl fluoride film is removed (first step).
次に、第一の工程で得た同箔貼り合わせポリイミド樹脂
の硬化した樹脂面に、厚さ20μmになるように耐熱変
性ナイロン樹脂が塗工された離型用フィルムの厚さ50
μmのポリエステルフィルム(東し■製ルミラーフィル
ム)の塗工面を貼り合わせた後、上記ポリエステルフィ
ルムを取り除く (第二の工程)。Next, a release film with a thickness of 50 μm was coated with a heat-resistant modified nylon resin on the cured resin surface of the same foil-laminated polyimide resin obtained in the first step to a thickness of 20 μm.
After bonding the coated surfaces of a μm polyester film (Lumirror Film manufactured by Toshi ■), the polyester film is removed (second step).
次に、第二の工程で得た銅箔貼り合わせポリイミド−ナ
イロン樹脂の樹脂面と、厚さ20μmになるように上記
耐熱変性ナイロン樹脂が塗工された上記ポリエステルフ
ィルムの塗工面とを貼り合わせ、加熱させて離型用フィ
ルム付の接着剤付片面胴貼フレキシブルプリント回路用
基板を得た。Next, the resin surface of the copper foil laminated polyimide-nylon resin obtained in the second step is bonded to the coated surface of the polyester film coated with the heat-resistant modified nylon resin to a thickness of 20 μm. By heating, a single-sided adhesive-attached flexible printed circuit board with a release film was obtained.
〔実施例3〕
離型用フィルムの厚さ60μmのポリプロピレンフィル
ム(東し側製トレファンフィルム)に、厚さ10μmに
なるようにフレキシブル用エポキシ樹脂を塗工し、これ
を乾燥させてBステージ状態にし、このようにして得た
Bステージ状態のエポキシ樹脂を厚さ35μmの圧延銅
箔の処理面(日本鉱業■製)に貼り合わせ、加熱硬化さ
せた後上記ポリプロピレンフィルムを取り除く (第一
の工程)。[Example 3] Flexible epoxy resin was coated on a 60 μm thick polypropylene film (Torefan film made by Toshi side) as a release film to a thickness of 10 μm, and this was dried to form a B stage. The B-stage epoxy resin obtained in this way was bonded to the treated surface of a 35-μm-thick rolled copper foil (manufactured by Nippon Mining Co., Ltd.), heated and cured, and then the polypropylene film was removed (first step). process).
次に、この第一の工程で得た銅箔貼り合わせエポキシ樹
脂の樹脂面に上記のポリプロピレンフィルムに厚さ10
μmになるように塗工されたBステージ状態の上記エポ
キシ樹脂を貼り合わせ、加熱硬化させる処理を2回繰り
返す(第二の工程)。Next, the resin surface of the copper foil laminated epoxy resin obtained in this first step was coated with the above polypropylene film to a thickness of 10 mm.
The process of bonding the epoxy resin in a B-stage state coated to a thickness of μm and curing by heating is repeated twice (second step).
次に、第二の工程で得た銅箔貼り合わせエポキシ樹脂の
樹脂面と上記ポリプロピレンフィルムに塗工された厚さ
10μmのBステージ状態のエポキシ樹脂の樹脂面とを
貼り合わせて、離型用フィルム付の接着剤付片面胴貼フ
レキシブルプリント回路用基板を得た。Next, the resin surface of the copper foil laminated epoxy resin obtained in the second step and the resin surface of the 10 μm thick B-stage epoxy resin coated on the polypropylene film are bonded together for mold release. A single-sided flexible printed circuit board with film and adhesive was obtained.
〔実施例4〕
離型用フィルムの厚さ40μmのポリプロピレンフィル
ム(本州製紙■製アルフ1ンフィルム)に、厚さ10μ
mになるようにエポキシ樹脂を塗工し乾燥させてBステ
ージ状態にし、このようにして得たBステージ状態のエ
ポキシ樹脂を厚さ35μmの圧延銅箔の処理面(日本鉱
業91製)に貼り合わせ、加熱硬化させた後上記ポリプ
ロピレンフィルムを取り除く (第一の工程)。[Example 4] A polypropylene film with a thickness of 10 μm (Alph 1 film manufactured by Honshu Paper Industries Ltd.) was added to a polypropylene film with a thickness of 40 μm as a release film.
The epoxy resin was applied to a thickness of 35 μm and dried to bring it to the B stage state, and the epoxy resin thus obtained in the B stage state was applied to the treated surface of a 35 μm thick rolled copper foil (manufactured by Nippon Kogyo 91). After combining and heating and curing, remove the polypropylene film (first step).
次に、離型用フィルムの厚さ40μmのポリエチレンフ
ィルムに厚さ25μmになるように30%の繊維状チタ
ン酸カリウムを含むフレキシブル用エポキシ樹脂を塗工
し、乾燥させてBステージ状態にした樹脂面と第一の工
程で得た銅箔貼り合わせエポキシ樹脂の樹脂面とを貼り
合わせ、加熱硬化させ上記ポリエチレンフィルムを取り
除く (第二の工程)。Next, a flexible epoxy resin containing 30% fibrous potassium titanate was coated on a polyethylene film with a thickness of 40 μm as a release film to a thickness of 25 μm, and the resin was dried to bring it into a B-stage state. The surface and the resin surface of the copper foil laminated epoxy resin obtained in the first step are bonded together, heated and cured, and the polyethylene film is removed (second step).
次に、離型用フィルムの厚さ40μmのポリプロピレン
フィルムに厚さ15μmになるようにフレキシブル用エ
ポキシ樹脂を塗工し、乾燥させてBステージ状態とした
樹脂面に第二の工程で得た銅箔貼り合わせエポキシ樹脂
の樹脂面とを貼り合わせ、離型用フィルム付の接着剤付
片面胴貼フレキシブルプリント回路用基板を得た。Next, a polypropylene film with a thickness of 40 μm as a release film was coated with a flexible epoxy resin to a thickness of 15 μm, and the resin surface was dried to a B-stage state. The resin surface of the foil-bonded epoxy resin was bonded together to obtain a one-sided body-bonded flexible printed circuit board with an adhesive and a release film.
上記各実施例を1m厚さの鉄板に貼り合わせて加熱硬化
させたものについて試験を行った結果を次表に示す。引
き剥がし強さ、耐溶剤性は2.5 ts幅の銅箔または
鉄箔を90度方向に引き剥がし、1cm当たりに換算し
た値で示す。The following table shows the results of tests conducted on the above-mentioned examples bonded to a 1 m thick iron plate and cured by heating. Peel strength and solvent resistance are values calculated per 1 cm when a 2.5 ts wide copper foil or iron foil is peeled off in a 90 degree direction.
(以下本頁余白)
〔発明の効果〕
以上説明したように本発明によれば、製造工数が小さく
、ピンホールがなく、後加工した後に他の部材に容易に
接着して使用することができ、かつ収縮が少ないなどの
後加工性のよい基板を得ることができる。(Hereinafter referred to as the margin of this page) [Effects of the Invention] As explained above, according to the present invention, the number of manufacturing steps is small, there are no pinholes, and the product can be used by easily adhering to other members after post-processing. , and a substrate with good post-processability such as low shrinkage can be obtained.
図は実施例1に記載した方法による基板の構造断面図。 The figure is a cross-sectional view of the structure of a substrate obtained by the method described in Example 1.
Claims (11)
剤層の表面に金属箔を貼り合わせその接着剤を硬化させ
るとともにその離型用フィルムを取り除くことにより、
金属箔に硬化した第一の接着剤層を形成する第一の工程
と、 この第一の工程により形成された硬化した接着剤の表面
に、さらに、片面に接着剤が塗布された離型用フィルム
の接着剤層の表面を貼り合わせるとともにその離型用フ
ィルムを取り除く工程をn回行う第二の工程と、 この第二の工程により形成された接着剤層の表面に、さ
らに、片面に接着剤が塗布された離型用フィルムの接着
剤層の表面を貼り合わせてその接着剤をBステージ状態
に保持させるとともに離型用フィルムを付しておく第三
の工程と を含むフレキシブル電気回路配線用基板の製造方法。(1) By pasting metal foil on the surface of the adhesive layer of a release film coated with adhesive on one side, curing the adhesive, and removing the release film,
A first step of forming a hardened first adhesive layer on the metal foil, and a releasing agent in which an adhesive is further applied to one side of the surface of the hardened adhesive formed by this first step. A second step in which the surfaces of the adhesive layer of the film are bonded together and the release film is removed n times, and the surface of the adhesive layer formed in this second step is further bonded to one side. A third step of bonding the surfaces of the adhesive layers of the release film coated with a release agent to maintain the adhesive in a B-stage state and attaching the release film. method for manufacturing substrates for
工程を伴う特許請求の範囲第(1)項に記載のフレキシ
ブル電気回路配線用基板の製造方法。(2) The method for manufacturing a flexible electrical circuit wiring board according to claim (1), wherein n is 1, and the second step includes a step of curing the adhesive.
の状態に保持させておく特許請求の範囲第(1)項に記
載のフレキシブル電気回路配線用基板の製造方法。(3) The method for manufacturing a flexible electrical circuit wiring board according to claim (1), wherein n is 1, and the second step is to maintain the adhesive in a B-stage state.
り返し工程のはじめの1回または複数回では接着剤を硬
化させる工程を伴い、あとの1回または複数回では接着
剤をBステージの状態に保持させておく特許請求の範囲
第(1)項に記載のフレキシブル電気回路配線用基板の
製造方法。(4) n is 2 or more, and the second step involves a step of curing the adhesive in the first one or more times of this n-time repeating step, and a step of curing the adhesive in the remaining one or more times. The method for manufacturing a flexible electrical circuit wiring board according to claim (1), wherein the flexible electrical circuit wiring board is held in a B-stage state.
され、 その接着剤層のうち少なくとも金属箔から最も遠い層は
Bステージの状態に保持され、 その最も遠い層の表面に離型用フィルムが付せられたこ
とを特徴とする、フレキシブル電気回路配線用基板。(5) Three or more adhesive layers are formed on the surface of the metal foil, at least the layer in contact with the metal foil is cured, and at least the layer farthest from the metal foil is B. A flexible electrical circuit wiring board that is held in a stage state and has a release film attached to the surface of the farthest layer thereof.
維状無機物絶縁材料を含む特許請求の範囲第(5)項に
記載のフレキシブル電気回路配線用基板。(6) The flexible electrical circuit wiring board according to claim (5), wherein all or part of the adhesive layer contains 1 to 50% by weight of a fibrous inorganic insulating material.
許請求の範囲第(5)項に記載のフレキシブル電気回路
配線用基板。(7) The flexible electrical circuit wiring board according to claim (5), wherein the adhesive constituting each adhesive layer is thermosetting.
熱可塑性材料を含み残りは熱硬化性である特許請求の範
囲第(7)項に記載のフレキシブル電気回路配線用基板
。(8) The flexible electrical circuit wiring board according to claim (7), wherein at least a portion of the adhesive constituting each adhesive layer contains a thermoplastic material, and the remainder is thermosetting.
μm以下である特許請求の範囲第(5)項に記載のフレ
キシブル電気回路配線用基板。(9) The thickness of each adhesive layer is 5 μm or more and 100 μm or more.
The flexible electric circuit wiring board according to claim (5), which has a diameter of μm or less.
る特許請求の範囲第(5)項に記載のフレキシブル電気
回路配線用基板。(10) The flexible electric circuit wiring board according to claim (5), wherein the metal foil has a thickness of 9 μm or more and 200 μm or less.
ムである特許請求の範囲第(6)項に記載のフレキシブ
ル電気回路配線用基板の製造方法。(11) The method for manufacturing a flexible electric circuit wiring board according to claim (6), wherein the fibrous inorganic insulating material is fibrous potassium titanate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60094155A JPS61252160A (en) | 1985-05-01 | 1985-05-01 | Substrate for flexible electric circuit wiring and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60094155A JPS61252160A (en) | 1985-05-01 | 1985-05-01 | Substrate for flexible electric circuit wiring and manufacture thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61252160A true JPS61252160A (en) | 1986-11-10 |
JPH0227144B2 JPH0227144B2 (en) | 1990-06-14 |
Family
ID=14102485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60094155A Granted JPS61252160A (en) | 1985-05-01 | 1985-05-01 | Substrate for flexible electric circuit wiring and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61252160A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009009952A (en) * | 2003-07-29 | 2009-01-15 | Ind Technol Res Inst | Flat fuel cell assembly and manufacturing method thereof |
JP2009111432A (en) * | 2009-02-16 | 2009-05-21 | Panasonic Electric Works Co Ltd | Manufacturing method of single-sided board, and manufacturing method of printed wiring board |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4759896B2 (en) * | 2001-09-25 | 2011-08-31 | パナソニック電工株式会社 | Manufacturing method of printed wiring board manufacturing material |
-
1985
- 1985-05-01 JP JP60094155A patent/JPS61252160A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009009952A (en) * | 2003-07-29 | 2009-01-15 | Ind Technol Res Inst | Flat fuel cell assembly and manufacturing method thereof |
JP2009111432A (en) * | 2009-02-16 | 2009-05-21 | Panasonic Electric Works Co Ltd | Manufacturing method of single-sided board, and manufacturing method of printed wiring board |
Also Published As
Publication number | Publication date |
---|---|
JPH0227144B2 (en) | 1990-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9003648B2 (en) | Methods to produce high density, multilayer printed wiring boards from parallel-fabricated circuits and filled vias | |
JPH09504139A (en) | Flexible multilayer printed circuit board and method of manufacturing the same | |
JPH0240230B2 (en) | ||
TW526694B (en) | Multilayer flexible wired circuit board and producing method thereof | |
JPS61252160A (en) | Substrate for flexible electric circuit wiring and manufacture thereof | |
JPH0644668B2 (en) | Flexible printed circuit board with shield | |
JPS58153390A (en) | Substrate material for printed circuit and method of producing same | |
JPS61235150A (en) | Manufacture of substrate for electric circuit wiring | |
JPS61183998A (en) | Manufacture of flexible printed wiring board | |
JP2008010797A (en) | Electronic components and capacitors | |
JPH1174640A (en) | Manufacture of printed wiring board | |
JPS58108788A (en) | Method of coating flexible circuit board | |
JPH03209792A (en) | Both-side metal-cladded flexible printed circuit board and manufacture thereof | |
JPH0783570B2 (en) | Double-sided fine pattern circuit | |
JPH0119414Y2 (en) | ||
JPS627190A (en) | Substrate for flexible wiring and manufacture thereof | |
JPH07329246A (en) | Metal clad laminated sheet and production thereof | |
JP2001308521A (en) | Method for manufacturing multilayered circuit board | |
JPS593879B2 (en) | Manufacturing method for printed wiring boards | |
JP2005260012A (en) | Method for manufacturing double-sided wiring board and multilayer wiring board | |
JPH01265595A (en) | Manufacture of laminated circuit board | |
JPH0154877B2 (en) | ||
JPH0740625B2 (en) | Method for manufacturing printed wiring board | |
JP2606387B2 (en) | Manufacturing method of laminate for additive printed circuit board | |
JPS6021598A (en) | Method of producing multilayer wiring board |