JPS61251126A - Vapor growth method - Google Patents
Vapor growth methodInfo
- Publication number
- JPS61251126A JPS61251126A JP9316685A JP9316685A JPS61251126A JP S61251126 A JPS61251126 A JP S61251126A JP 9316685 A JP9316685 A JP 9316685A JP 9316685 A JP9316685 A JP 9316685A JP S61251126 A JPS61251126 A JP S61251126A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- temperature
- susceptor
- heating
- vapor phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、半導体あるいは絶縁体などの基板上に薄膜を
形成する気相成長方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a vapor phase growth method for forming a thin film on a substrate such as a semiconductor or an insulator.
半導体装置を製造するための気相成長における基板の加
熱には、通常、カーボン製のサセプタを用い、このサセ
プタに基板を支持させ、該サセプタを抵抗加熱、高周波
誘導加熱、さらにはランプなどによる赤外線加熱によっ
て発熱させ、これに支持されている基板を加熱する方法
が採用されている。特に、最近では、高周波誘導加熱と
ランプによる赤外線加熱がほとんどである。To heat a substrate during vapor phase growth for manufacturing semiconductor devices, a carbon susceptor is usually used, the substrate is supported by this susceptor, and the susceptor is heated by resistance heating, high frequency induction heating, or even infrared rays using a lamp or the like. A method is adopted in which heat is generated by heating and the substrate supported by the heat is heated. In particular, recently, high-frequency induction heating and infrared heating using lamps are the most common methods.
気相成長における基板の加熱、特にエピタキシャル気相
成長における基板の加熱は、結晶欠陥であるスリップの
発生を押えるため、基板内の温度分布を均一に保って加
熱する必要があるとされていた。この基板内の温度分布
の均一とは、平面内での温度分布はもちろん厚さ方向す
なわち表面と裏面の温度の均一をも含み、基板全体を均
一な温度に保って気相成長を行なう必要があるとされて
いた。When heating a substrate in vapor phase growth, particularly in epitaxial vapor growth, it is necessary to maintain a uniform temperature distribution within the substrate in order to suppress the occurrence of slip, which is a crystal defect. Uniform temperature distribution within the substrate includes not only temperature distribution in the plane but also uniformity of temperature in the thickness direction, that is, on the front and back surfaces, and it is necessary to maintain the entire substrate at a uniform temperature to perform vapor phase growth. It was said that there was.
従来、基板全体をより均一に加熱でき、スリップの発生
が少ない気相成長を行なうのには、前記のランプによる
赤外線加熱が最も好ましいとされてい次。しかしながら
ランプによる赤外線加熱は。Conventionally, it has been thought that infrared heating using the above-mentioned lamp is the most preferable method for performing vapor phase growth, which can heat the entire substrate more uniformly and cause fewer slips. However, infrared heating by lamps.
ランプの寿命が比較的短かく保守が大変であシ。The lamp life is relatively short and maintenance is difficult.
また1例えばモノシラン(SiH4)のように分解温度
が低い半導体材料ガスを反応ガスとして用いる場合1反
応室を形成する石英ベルジャの内面にシリコン(Sl)
が付着し、加熱源である赤外線ヲ遮りて、基板を加熱す
ることができないため、限られた半導体材料ガスでしか
気相成長が行なえない欠点がある。In addition, 1. For example, when a semiconductor material gas with a low decomposition temperature, such as monosilane (SiH4), is used as a reaction gas, 1.
This has the disadvantage that vapor phase growth can only be carried out using a limited amount of semiconductor material gas because the substrate is unable to be heated because it blocks the infrared rays that are the heating source.
これに対し、高周波誘導加熱は、装置の寿命が長く保守
が容易であると共に1反応室内に生ずるSlの付着によ
って加熱効率が低下することもない利点を有しているが
、後述するようにサセプタ全体を均一に加熱することが
非常に困難であり、このため基板が大径化すると、基板
内の温度分布の均一性が悪くなり、スリップを生じてし
まう欠点があった。すなわち、第3図に示すような縦型
の気相成長装量は、高周波誘導加熱による装置としては
最も温度分布の均一性が得られるものとして知られてい
るが、この装置でも次のような問題がある。第3図にお
いて% 3は反応室、4はノズル。On the other hand, high-frequency induction heating has the advantage that the equipment has a long life and is easy to maintain, and the heating efficiency does not decrease due to the adhesion of Sl that occurs in one reaction chamber. It is very difficult to uniformly heat the entire substrate, and as a result, when the diameter of the substrate increases, the uniformity of temperature distribution within the substrate deteriorates, resulting in slippage. In other words, the vertical vapor phase growth loading shown in Fig. 3 is known to provide the most uniform temperature distribution among high-frequency induction heating devices, but this device also has the following problems. There's a problem. In Figure 3, %3 is the reaction chamber and 4 is the nozzle.
5はサセプタ、6は基板、7は高周波誘導コイル。5 is a susceptor, 6 is a substrate, and 7 is a high frequency induction coil.
(以下RFコイルという)であり、RFコイル7に高周
波高電圧高電流(以下高周波電力という)を印加し、サ
セプタ5を誘導加熱によって所定温度に加熱し、基板6
を前記サセプタ5によって気相成長温度まで加熱するも
のであるが、サセプタ5の外周部と内周部との磁束密度
を均一にすることが困難であり、従来からRFコイル7
とサセプタ5との間隔を調節するなどの種々の対策が採
られているが、外周部の方が内周部より磁束密度が高く
なり、さらに外周部はカーボン製のサセプタ5より熱伝
導の悪いガスに包囲されてこれより外方への熱伝達が内
方への熱伝達よシ小さいため。(hereinafter referred to as an RF coil), a high frequency, high voltage and high current (hereinafter referred to as high frequency power) is applied to the RF coil 7, the susceptor 5 is heated to a predetermined temperature by induction heating, and the substrate 6 is heated to a predetermined temperature by induction heating.
is heated to the vapor phase growth temperature by the susceptor 5, but it is difficult to make the magnetic flux density uniform between the outer circumference and the inner circumference of the susceptor 5.
Various measures have been taken, such as adjusting the distance between the susceptor 5 and the outer periphery, but the magnetic flux density is higher on the outer periphery than on the inner periphery, and furthermore, the outer periphery has poorer heat conduction than the carbon susceptor 5. Because it is surrounded by gas, the outward heat transfer is smaller than the inward heat transfer.
外周部に熱が集中し易く、さらにサセプタ5の内周部は
機械構造上、RFコイル7による誘導加熱が及ばないた
め、特にサセプタ5内に矢きな熱の流れがある昇温過程
において内周部よシ外周部の方が高温になってしまう。Heat tends to concentrate on the outer circumference, and the inner circumference of the susceptor 5 cannot be heated by induction by the RF coil 7 due to its mechanical structure. The outer periphery becomes hotter than the periphery.
このサセプタ5の内外周部の温度差は、サセプタ5の温
度が所定の気相成長温度に達して安定すると、サセプタ
5内の熱の流れが小さくなり、該サセプタ5を形成して
いるカーボンは熱伝導が良いため、温度分布は実質的に
問題にならない程度まで均一化される。なお。The temperature difference between the inner and outer circumferential parts of the susceptor 5 is such that when the temperature of the susceptor 5 reaches a predetermined vapor phase growth temperature and becomes stable, the flow of heat within the susceptor 5 becomes small, and the carbon forming the susceptor 5 is Because of the good heat conduction, the temperature distribution is made uniform to the extent that it is practically not a problem. In addition.
降温過程においては、昇温過程と逆の傾向すなわち外周
部の方が内周部より冷却され易いため、その値は比較的
小さいが、外周部の方が温度が低くなる。そこで、す化
ブタ5に支持されている基板6は、特に昇温過程におい
て不均一な加熱を余儀なくされ、熱応力を受けて結晶欠
陥であるスリップを生じてしまう。この傾向は、基板6
が大口径化、例えば5インチ(127mm)以上になる
にしたがって大きくなる。本願発明者らは、このスリッ
プ発生につき種々研究した結果1次のことを知見した。In the temperature-lowering process, the tendency is opposite to the temperature-raising process, that is, the outer peripheral part is more easily cooled than the inner peripheral part, so the temperature is lower in the outer peripheral part, although the value is relatively small. Therefore, the substrate 6 supported by the soot porcelain 5 is forced to be heated unevenly, especially during the temperature rising process, and is subjected to thermal stress, resulting in slippage, which is a crystal defect. This tendency is reflected in the substrate 6
becomes larger as the diameter becomes larger, for example, 5 inches (127 mm) or more. The inventors of the present application have conducted various studies on the occurrence of slips, and have found the following.
すなわち、基板6を常温から気相成長源力学的に不安定
な弾塑性域で、基板5の表面の温度分布が均一であれば
、スリップの発生がなく、この平面内における温度分布
の差が数10℃以上になると、スリップを発生する。同
様に、塑性状態である高温から常温に降温するときにも
、途中の弾塑性域で温度分布が悪いとスリップを発生す
る。このスリップの発生は、気相成長膜が厚い場合に顕
著である。In other words, if the temperature distribution on the surface of the substrate 5 is uniform when the substrate 6 is grown from room temperature to a vapor phase growth source in a mechanically unstable elastoplastic region, no slip occurs and the difference in temperature distribution within this plane is When the temperature exceeds several tens of degrees Celsius, slipping occurs. Similarly, when the temperature is lowered from a high temperature in a plastic state to room temperature, slip occurs if the temperature distribution is poor in the elastoplastic region midway. The occurrence of this slip is remarkable when the vapor-phase grown film is thick.
本発明は前述のような点に鑑みなされたもので、その目
的は使用できる半導体材料ガスの制限が少なく% 8
i Haをも使用でき、装置の保守も容易であり、かつ
スリップの発生のない気相成長方法を提供するにある。The present invention was made in view of the above-mentioned points, and its purpose is to reduce the limitation of usable semiconductor material gases by 8%.
It is an object of the present invention to provide a vapor phase growth method in which iHa can also be used, the equipment is easy to maintain, and slip does not occur.
かかる目的を達成するための本発明は、主たる加熱をサ
セプタを用いた高周波誘導加熱とし、この加熱方式にお
いてスリップ発生上量も問題となる昇温過程での加熱に
赤外線による基板の表面側からの加熱を補助的に行なう
ことにより、サセプタおよびそれに支持されている基板
の表面内の温度分布の均一化を図りつつ基板が弾性状態
から塑性状態へ移行するようKL、反応ガスを流す気相
成長時には実質的に高周波誘導加熱によって加熱するよ
うにしたものである。In order to achieve this object, the present invention uses high-frequency induction heating using a susceptor as the main heating method, and uses infrared rays from the surface side of the substrate for heating during the temperature rising process, where the amount of slip generation is a problem in this heating method. By performing supplementary heating, the temperature distribution within the surface of the susceptor and the substrate supported by it is made uniform, and the substrate transitions from an elastic state to a plastic state. The heating is substantially performed by high-frequency induction heating.
以下本発明の一実施態様を示す第1図ないし第2図につ
いて説明する。第1図において第3図と同一部分には同
一符号を用い、構成の説明は省略する。焉は赤外線を発
する補助加熱源としてのランプであり1反応室3を形成
するベルジャ3aの上方に複数個取付けられ、反射板1
とによシ基板6およびサセプタ50表面全域に対してよ
り均一に赤外線を照射するように構成されている。なお
。1 and 2 showing one embodiment of the present invention will be explained below. In FIG. 1, the same parts as in FIG. 3 are denoted by the same reference numerals, and a description of the structure will be omitted. A plurality of lamps are installed above the bell jar 3a forming one reaction chamber 3, and a plurality of lamps are used as auxiliary heating sources that emit infrared rays.
It is configured to irradiate infrared rays more uniformly over the entire surface area of the substrate 6 and the susceptor 50. In addition.
8は排気口、9はサセプタ5を支持する中空回転軸であ
る。8 is an exhaust port, and 9 is a hollow rotating shaft that supports the susceptor 5.
第2図は、第1図の装置を用いた本発明の気相成長方法
における基板6の加熱状態全示すもので。FIG. 2 shows the entire heating state of the substrate 6 in the vapor phase growth method of the present invention using the apparatus shown in FIG.
横軸のA−Fは気相成長の各工程を示し、縦軸は基板6
の温度T、RFコイル7の出力W+、および補助加熱源
であるランプ2の出力W2の値を示している。A-F on the horizontal axis indicates each step of vapor phase growth, and the vertical axis indicates the substrate 6.
The temperature T, the output W+ of the RF coil 7, and the output W2 of the lamp 2, which is an auxiliary heating source, are shown.
第2図の人工程は前ガスパージ工程であり、この前ガス
バージ工程人は、サセプタ5に基板6をセットし、ベル
ジャ3aを閉じてノズル4からまず窒素ガス(N2)を
所定時間噴出させることによって排気口gから反応室3
内の空気を排出させ、該反応室3内をN2ガスに置換し
、次いで気相成長雰囲気として必要なN2ガスをノズル
4から噴出させて反応室3内をN2ガスに置換する工程
である。この前ガスパージ工程人では、第2図に示すよ
うにRFコイル7による主加熱もランプ2による補助加
熱も行なわない。The process shown in FIG. 2 is a pre-gas purge process, in which the pre-gas purge process involves setting the substrate 6 on the susceptor 5, closing the bell jar 3a, and first spouting nitrogen gas (N2) from the nozzle 4 for a predetermined period of time. Reaction chamber 3 from exhaust port g
In this step, the air inside the reaction chamber 3 is exhausted, the inside of the reaction chamber 3 is replaced with N2 gas, and then the N2 gas necessary as a vapor phase growth atmosphere is jetted out from the nozzle 4 to replace the inside of the reaction chamber 3 with N2 gas. During the pre-gas purge process, neither main heating by the RF coil 7 nor auxiliary heating by the lamp 2 is performed as shown in FIG.
所定時間が経過して反応室3内が完全にN2ガスに置換
された後、第1次昇温工程B1に入り、中空回転軸9に
よりサセプタ5を低速で回転させつつRFコイル7に高
周波電力を供給してサセプタ5の加熱を開始する。この
ときもノズル4からはN2ガスを噴出し続ける。前記R
Fコイル7への供給電力すなわち出力W、は、第2図に
示すように、好ましくは適宜な勾配となるように出力制
御されて値P。まで上昇され、この値p□で出力増加が
ストップされる。前記RFコイル7への高周波電力の供
給によりサセプタ6が誘導加熱され、基板6を裏面から
加熱する。このときサセプタ5の昇温は。After a predetermined period of time has passed and the inside of the reaction chamber 3 has been completely replaced with N2 gas, the first temperature raising step B1 begins, in which high-frequency power is applied to the RF coil 7 while rotating the susceptor 5 at a low speed by the hollow rotating shaft 9. is supplied to start heating the susceptor 5. At this time, N2 gas continues to be ejected from the nozzle 4. Said R
As shown in FIG. 2, the power supplied to the F coil 7, that is, the output W, is preferably output-controlled to a value P to have an appropriate slope. The increase in output is stopped at this value p□. By supplying high frequency power to the RF coil 7, the susceptor 6 is heated by induction, and the substrate 6 is heated from the back side. At this time, the temperature of the susceptor 5 increases.
前述したように内周部より外周部の方が高温となシ、半
径方向に温度勾配を生ずる。基板6は曲線Tで示すよう
に当初は比較的急速に昇温(サセプタ5の表面も基板6
の温度とほぼ等しい)するが、RFコイル7の出力W、
が前記のように値Poに制限されているため、該基板6
の温度はt1点で安定するようになる。As described above, the outer circumferential portion is higher in temperature than the inner circumferential portion, creating a temperature gradient in the radial direction. Initially, the temperature of the substrate 6 rises relatively rapidly as shown by the curve T (the surface of the susceptor 5 also increases the temperature of the substrate 6).
), but the output W of the RF coil 7 is
is limited to the value Po as described above, the substrate 6
The temperature becomes stable at point t1.
この温度t、は、基板6が完全な弾性状態にある範囲で
できるだけ高い温度たとえば基板6が8□の場合には4
50〜500℃となるように予じめ前記出力W、の値P
。==+4=1eを定めるか、または温度Tを検出して
RPコイル7の出力W1を制御することにより設定され
る。This temperature t is as high as possible within the range where the substrate 6 is in a completely elastic state. For example, if the substrate 6 is 8□,
The value P of the output W is set in advance so that the temperature is 50 to 500°C.
. It is set by determining ==+4=1e or by detecting the temperature T and controlling the output W1 of the RP coil 7.
基板6すなわちサセプタ5の温度がt1点に安定すると
、サセプタ5はカーボン製で熱伝導が良いため、全体が
ほぼ均一な温度分布となる。When the temperature of the substrate 6, that is, the susceptor 5 is stabilized at point t1, since the susceptor 5 is made of carbon and has good heat conduction, the temperature distribution becomes almost uniform throughout.
このような状態になったところ、または該状態になる若
干手前で、ランプ2に供電して第2次昇温工程B2
に入る。このランプ2への供電開始は、第2図に示すよ
うに、・適宜な勾配となるように出力制御して行なうこ
とが好ましい。ランプ20点灯により、これから発する
赤外線が石英製のベルジャ3aを透過して基板6の表面
およびサセプタ5の露出している表面を加熱する。この
ランプ2による加熱は、その配置や反射板1の作用によ
って、サセプタ5の表面全体に対してほぼ均一に行なわ
れ、かう基板6に対してはノズル4からのN2ガスや放
熱によって温度低下を生ずる表面側から直接性なわれる
ため、基板6は平面内および厚さ方向のいずれの方向に
もより均一な温度分布となるように加熱されて、完全な
塑性状態となる温度t2まで加熱される。この温度t2
は、基板6が81の場合、950℃以上とすることが好
ましい。When this state is reached, or slightly before reaching this state, power is supplied to the lamp 2 and the second temperature raising step B2 is started.
to go into. The start of power supply to the lamp 2 is preferably carried out by controlling the output so that an appropriate slope is achieved, as shown in FIG. When the lamp 20 is turned on, infrared rays emitted from it pass through the quartz belljar 3a and heat the surface of the substrate 6 and the exposed surface of the susceptor 5. The heating by the lamp 2 is performed almost uniformly over the entire surface of the susceptor 5 due to its arrangement and the action of the reflector 1, and the temperature of the substrate 6 is reduced by the N2 gas and heat radiation from the nozzle 4. Since the substrate 6 is heated directly from the generated surface side, the substrate 6 is heated to have a more uniform temperature distribution both in the plane and in the thickness direction, and is heated to a temperature t2 at which it becomes completely plastic. . This temperature t2
When the substrate 6 is 81, the temperature is preferably 950° C. or higher.
しかして基板6の温度がt、からt2になるまでの間は
、基板6およびサセプタ5のRFコイル7による高周波
誘導加熱とランプ2による赤外線加熱の両方によって行
なわれる。また、このときのランプ2の出力W2の値は
% RFコイル7の出力P。に対し約50チ程度である
。During the period from t to t2 when the temperature of the substrate 6 reaches t2, high-frequency induction heating of the substrate 6 and susceptor 5 by the RF coil 7 and infrared heating by the lamp 2 are performed. Also, the value of the output W2 of the lamp 2 at this time is % the output P of the RF coil 7. It is about 50 inches.
このように基板6にスリップを生じ易い弾塑性域をラン
プ2による補助加熱によって、該基板6の全体を均一に
加熱して通過させるため、該スリップの発生が押えられ
る。In this way, the entire substrate 6 is heated uniformly through the auxiliary heating by the lamp 2 to pass through the elastoplastic region where slips are likely to occur in the substrate 6, thereby suppressing the occurrence of slips.
次いで、第3次昇温工程B、に入る。この工程B3では
、第2図に示すように、RFコイル7の出力W、を好ま
しくは適宜な勾配をもってP、まで上昇させると共に、
ランプ2に対する出力W2を好ましくは適宜な勾配をも
って零まで下げ、RFコイル7のみによってサセプタ5
を昇温させ、基板6を気相成長温度tg(例えば116
0℃)まで加熱する。Next, a third temperature raising step B is entered. In this step B3, as shown in FIG. 2, the output W of the RF coil 7 is preferably increased to P with an appropriate gradient, and
The output W2 to the lamp 2 is preferably reduced to zero with a suitable gradient, and the susceptor 5 is reduced by only the RF coil 7.
is heated, and the substrate 6 is brought to a vapor phase growth temperature tg (for example, 116
Heat to 0℃).
この温度t2からt5−1での昇温時には、再びサセプ
タ5の内周部よシ外周部の方が高温になる現象が生ずる
が、基板6は完全な塑性状態になっているため、温度分
布が不均一であってもスリップを生ずることはない。When the temperature rises from temperature t2 to t5-1, a phenomenon occurs again where the temperature is higher at the inner circumference than at the outer circumference of the susceptor 5, but since the substrate 6 is in a completely plastic state, the temperature distribution Even if the surface is uneven, slip will not occur.
基板6の温度すなわちサセプタ5の表面の温度が気相成
長温度t5に安定すると、サセプタ5の半径方向の温度
分布は均一化される。なお、このときのRFコイル7に
対する出力W、は、前記基板6およびサセプタ5の表面
温度が気相成長温度t、に保たれるよう制御されるため
、第2図に示すように完全に一定な値P1を取るとは限
らず、若干上下に変化する。When the temperature of the substrate 6, that is, the temperature of the surface of the susceptor 5 stabilizes at the vapor growth temperature t5, the temperature distribution in the radial direction of the susceptor 5 becomes uniform. Note that the output W to the RF coil 7 at this time is completely constant as shown in FIG. 2 because the surface temperatures of the substrate 6 and susceptor 5 are controlled to be maintained at the vapor growth temperature t. It does not necessarily take a certain value P1, but changes slightly up and down.
こうして基板6が気相成長温度t3に達した後、エツチ
ング工程Cに入り、ノズル4からキャリアガスとしての
H2ガスと共に塩化水素(HCt)ガスを噴出させ、基
板6の表面を極〈薄くエツチングして汚れを取り、次い
でHCtガスに変えて半導体材料ガス(反応ガス)をノ
ズル4から噴出させて気相成長工程り、に入る。この気
相成長工程り、においては、サセプタ5が均一に加熱さ
れているため。After the substrate 6 reaches the vapor growth temperature t3 in this way, the etching process C begins, in which hydrogen chloride (HCt) gas is ejected from the nozzle 4 together with H2 gas as a carrier gas, and the surface of the substrate 6 is etched extremely thinly. Then, the semiconductor material gas (reactive gas) is ejected from the nozzle 4 instead of HCt gas, and the vapor phase growth process begins. This is because the susceptor 5 is uniformly heated in this vapor phase growth step.
基板6も全面が均一に加熱され1表面全体に一様な膜質
および膜厚の気相成長層が得られる。なお。The entire surface of the substrate 6 is also heated uniformly, and a vapor-phase grown layer having uniform quality and thickness can be obtained over the entire surface. In addition.
基板6の表面は裏面より温度が低くなり、反りを生ずる
傾向があるため、この反りによる平面内の温度分布の劣
化を防ぐため、サセプタ50基板支持部に周知のような
凹みを有する座ぐりを設けておくことが好ましい。Since the front surface of the substrate 6 has a lower temperature than the back surface and tends to warp, in order to prevent deterioration of the temperature distribution in the plane due to this warping, a well-known counterbore with a recess is provided in the substrate support portion of the susceptor 50. It is preferable to provide one.
気相成長工程D1に入って所定時間が経過したならば、
反応ガスを停止し、後ガスパージ工程)に入り、ノズル
4から為ガスのみを噴出させ、反応室3内を再びH2ガ
スのみの雰囲気とする。Once a predetermined time has elapsed after entering the vapor phase growth step D1,
The reaction gas is stopped, a post-gas purge step is started, and only the residual gas is ejected from the nozzle 4, so that the inside of the reaction chamber 3 is again made into an atmosphere of only H2 gas.
次いでRFコイル7への給電を断ってその出力W、を零
として降温工程Eに入るが、この若干手前または同時に
ランプ2を再び点灯する。この降温工程Eは、昇温工程
B7.B5のようにサセプタ5の外周部が内周部より高
温になるような現象はないため、ランプ2による補助加
熱は特に必要はないが、第2図に示したように、RFコ
イル7の出力W、を零にし、サセプタ2の全面をより均
一に加熱できるランプ2によって補助加熱することによ
り、基板6の急激な温度変化を押え、該基板6の温度分
布をより均一に保って弾塑性域を通過させるようにした
ものである。Next, the power supply to the RF coil 7 is cut off, its output W is set to zero, and the temperature lowering step E is started. However, slightly before or at the same time, the lamp 2 is turned on again. This temperature lowering step E is the temperature raising step B7. Since there is no phenomenon in which the outer circumference of the susceptor 5 becomes hotter than the inner circumference as in B5, auxiliary heating by the lamp 2 is not particularly necessary, but as shown in FIG. 2, the output of the RF coil 7 By reducing W to zero and performing auxiliary heating using the lamp 2 that can heat the entire surface of the susceptor 2 more uniformly, rapid temperature changes in the substrate 6 can be suppressed and the temperature distribution of the substrate 6 can be kept more uniform to maintain the elastic-plastic region. It is designed to allow the .
この降温時のランプ20点灯は、基板6の温度Tが完全
に弾性状態になるところまで降下したならば切ってよく
、サイクルタイムを短縮するため。The lighting of the lamp 20 during this temperature drop can be turned off once the temperature T of the substrate 6 has fallen to a point where it becomes completely elastic, in order to shorten the cycle time.
以後はできるだけ速く降温させることが好ましい。Thereafter, it is preferable to lower the temperature as quickly as possible.
スを噴出させ(E工程)、反応室3内をN2ガス雰囲気
とし1反応室3を開いて基板6を取出す。The reaction chamber 3 is made into an N2 gas atmosphere by blowing out gas (step E), and one reaction chamber 3 is opened and the substrate 6 is taken out.
前述した実施例ておいては1本発明を理解し易くするた
め、第1次昇温工程B、で基板′6すなわちサセプタ5
の温度が1. (基板6が弾性状態にある温度)で一旦
安定したところで、ランプ2による補助加熱を行なうよ
うにした例を示したが、RFコイル7による高周波誘導
加熱に対し赤外線による基板6の直接加熱を付加すれば
、高周波誘導加熱のみによって昇温させる場合に生ずる
ようなサセプタ5内の温度勾配を小さく押えることがで
き、これによってスリップの発生を押え得るものであず
、サセプタ5のような別の赤外線発生体などによって行
なってもよい。In the above-mentioned embodiment, in order to make it easier to understand the present invention, the substrate '6, that is, the susceptor 5 is
The temperature of 1. Although we have shown an example in which auxiliary heating is performed using the lamp 2 once the temperature is stabilized at (the temperature at which the substrate 6 is in an elastic state), direct heating of the substrate 6 using infrared rays is added to the high-frequency induction heating using the RF coil 7. By doing so, it is possible to suppress the temperature gradient inside the susceptor 5, which occurs when the temperature is raised only by high-frequency induction heating, and thereby suppress the occurrence of slip. You can also do it with your body.
以上述べたように本発明によれば、スリップの発生を確
実に防止できると共に、ランプなどによる補助加熱は1
反応ガスが流れない昇温過程さらには降温過程であるた
め、反応室内壁への気相成長物質の付着がなく、このた
め、よシ長時間にわ九って効率のよい加熱ができると共
にランプなどの補助加熱源の寿命を著しく押ばすことが
でき、装置の保守が容易であり、さらに主文る加熱は熱
効率の高い高周波誘導加熱であるため、ランニンクコス
トを低く押えることができるなどの効果が得られる。As described above, according to the present invention, it is possible to reliably prevent the occurrence of slips, and the auxiliary heating by lamps etc.
Since the temperature is raised or lowered during the temperature rising and cooling process in which no reactant gas flows, there is no deposition of vapor-grown substances on the walls of the reaction chamber. The service life of auxiliary heating sources such as is obtained.
第1図は本発明ft実施するための気相成長装置の一例
を示す概要断面図、第2図は本発明による気相成長方法
の一実施例を示すもので、高周波誘導コイル(RFコイ
ル)の出力W1%補助加熱源の出力W、ならびにこれら
によって加熱される基板の温度Tとの関係を示す曲線図
、第3図は従来の高周波誘導加熱方式の気相成長装置の
一例を示す概要断面図である。
1・・・反射板、 2・・・ランプ(補助加熱源)。
3・ ・・反応室% 4・ ・・ノズル、5・・・サ
セプタ、 6・・・基板、7・・・高周波誘導コイル
(RFコイル)。Fig. 1 is a schematic sectional view showing an example of a vapor phase growth apparatus for carrying out the present invention. Fig. 2 shows an embodiment of the vapor phase growth method according to the present invention. Output W1% A curve diagram showing the relationship between the output W of the auxiliary heating source and the temperature T of the substrate heated by these, and Fig. 3 is a schematic cross section showing an example of a conventional high-frequency induction heating type vapor phase growth apparatus. It is a diagram. 1...Reflector, 2...Lamp (auxiliary heating source). 3... Reaction chamber % 4... Nozzle, 5... Susceptor, 6... Substrate, 7... High frequency induction coil (RF coil).
Claims (1)
導加熱によつて発熱させることにより前記基板を加熱し
て気相成長を行なう方法において、前記サセプタにより
基板を昇温させる過程で補助加熱源からの赤外線を前記
基板の表面に直接照射して補助加熱し、気相成長時には
実質的に高周波誘導加熱されるサセプタによつて前記基
板を加熱することを特徴とする気相成長方法。 2、気相成長後の降温過程においても補助加熱源からの
赤外線を前記基板の表面に直接照射することを特徴とす
る特許請求の範囲第1項記載の気相成長方法。 3、補助加熱源による基板の加熱が、該基板の弾性状態
から塑性状態への移行時を中心にして行なわれることを
特徴とする特許請求の範囲第1または2項記載の気相成
長方法。[Claims] 1. In a method for performing vapor phase growth by supporting a substrate on a susceptor and heating the substrate by causing the susceptor to generate heat by high-frequency induction heating, the temperature of the substrate is raised by the susceptor. A vapor phase method characterized in that in the process, infrared rays from an auxiliary heating source are directly irradiated onto the surface of the substrate to perform auxiliary heating, and during vapor phase growth, the substrate is heated by a susceptor that is substantially heated by high-frequency induction heating. How to grow. 2. The vapor phase growth method according to claim 1, wherein the surface of the substrate is directly irradiated with infrared rays from an auxiliary heating source even during the temperature cooling process after vapor phase growth. 3. The vapor phase growth method according to claim 1 or 2, wherein the heating of the substrate by the auxiliary heating source is performed mainly when the substrate transitions from an elastic state to a plastic state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9316685A JPS61251126A (en) | 1985-04-30 | 1985-04-30 | Vapor growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9316685A JPS61251126A (en) | 1985-04-30 | 1985-04-30 | Vapor growth method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61251126A true JPS61251126A (en) | 1986-11-08 |
Family
ID=14074981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9316685A Pending JPS61251126A (en) | 1985-04-30 | 1985-04-30 | Vapor growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61251126A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015070045A (en) * | 2013-09-27 | 2015-04-13 | 株式会社日立国際電気 | Substrate processing apparatus, semiconductor device manufacturing method and program |
-
1985
- 1985-04-30 JP JP9316685A patent/JPS61251126A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015070045A (en) * | 2013-09-27 | 2015-04-13 | 株式会社日立国際電気 | Substrate processing apparatus, semiconductor device manufacturing method and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1796149B1 (en) | Quartz jig and semiconductor manufacturing equipment | |
US7700376B2 (en) | Edge temperature compensation in thermal processing particularly useful for SOI wafers | |
JPH10107018A (en) | Semiconductor wafer heat treatment apparatus | |
KR101447663B1 (en) | Film-forming method and film-forming apparatus | |
JPH0590165A (en) | Vapor growth apparatus | |
JPS61251126A (en) | Vapor growth method | |
JPH097953A (en) | Manufacture of single crystal thin film | |
JP3074312B2 (en) | Vapor growth method | |
JP2013075789A (en) | Apparatus and method for producing compound semiconductor single crystal | |
CN107641796B (en) | Processing equipment and chemical vapor deposition process | |
JPH03246931A (en) | Susceptor | |
JPH0722342A (en) | Vapor growth device | |
JPH07142401A (en) | Fabrication of semiconductor device and film deposition equipment therefor | |
JPH02208925A (en) | Formation of semiconductor film | |
JPS6016416A (en) | Vapor growth apparatus | |
JP2022014212A (en) | Silicon substrate and method for producing the same | |
JP2000053493A (en) | Production of single crystal and single crystal production device | |
JPS6058613A (en) | Epitaxial apparatus | |
JP2764416B2 (en) | Susceptor | |
TWI853310B (en) | Method for manufacturing epitaxial wafer and epitaxial wafer manufacturing device | |
JP3986177B2 (en) | Method for forming silicon carbide crystal film | |
JP2013256401A (en) | Production apparatus of single crystal | |
JP2001035800A (en) | Semiconductor epitaxial growth system and growth method | |
JP2669823B2 (en) | Silicon film growth method | |
JP2876994B2 (en) | Short-time annealing equipment |