JPS61257931A - Recovery of interleukin 2 polypeptide - Google Patents
Recovery of interleukin 2 polypeptideInfo
- Publication number
- JPS61257931A JPS61257931A JP60099262A JP9926285A JPS61257931A JP S61257931 A JPS61257931 A JP S61257931A JP 60099262 A JP60099262 A JP 60099262A JP 9926285 A JP9926285 A JP 9926285A JP S61257931 A JPS61257931 A JP S61257931A
- Authority
- JP
- Japan
- Prior art keywords
- polypeptide
- aqueous solution
- guanidine
- interleukin
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、インターロイキン2 (IL−2)の回収
方法に関し、詳しくは、微生物細胞内に顆粒状に蓄積さ
れているIL−2ポリ−eオチドを回収する方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for recovering interleukin-2 (IL-2), and more particularly, to a method for recovering interleukin-2 (IL-2), and more specifically, it relates to a method for recovering interleukin-2 (IL-2). Regarding how to recover.
IL−2は−Ta胞増殖因子としての作用を有するリン
ホカインの一種であり、医薬としての用途が期待されて
いる。IL-2 is a type of lymphokine that acts as a -Ta cell growth factor, and is expected to be used as a medicine.
従来の技術
IL−2の製造法の一つとして、組換えDNA技術によ
シ造成された微生物を用Aる方法が知られている(欧州
特許出願公開第0091539号)。このような微生物
を用いてIL−2i製造しようとする場合、IL−2,
f?ポリペプチド、微生物細胞内に顆粒状に蓄積される
ことが多い。顆粒状に蓄積され九IL−2ポリペプチド
を可溶化し、II、−2活性を有するポリペプチドとし
て回収するには、従来煩雑な工程を必要とし、また得ら
れたポリペプチドの比活性も低く、更にポリペプチドの
回収率も高いものでFiなかった。BACKGROUND ART As one of the methods for producing IL-2, a method using microorganisms created by recombinant DNA technology is known (European Patent Application Publication No. 0091539). When attempting to produce IL-2i using such microorganisms, IL-2,
f? Polypeptides are often accumulated in granular form within microbial cells. Conventionally, cumbersome steps were required to solubilize the IL-2 polypeptide accumulated in granules and recover it as a polypeptide with II,-2 activity, and the specific activity of the resulting polypeptide was also low. Furthermore, the polypeptide recovery rate was high and Fi was not achieved.
顆粒状に微生物細胞内に蓄積された蛋白質を採取するた
めに、微生物細胞を先ずリゾチームに接触させ、ついで
超音波によシ細胞を破砕し、破砕物よシ遠心分離によシ
蛋白顆粒を分離する方法が知られている(例えば、牛生
長ホルモンについて、バイオテノノロジ−(Biota
chnology )+ 151−154.1985年
2月を参照)。また、得られた蛋白顆粒をグアニジン塩
酸塩等によシ可溶化することも知られている(例えば、
インターフェロンについて、米国特許第4,476,0
49号参照)。更に、一般の可溶性蛋白質分子中の2つ
のチオール残基全グルタチオン等で酸化してジスルフィ
ド結合を形成せしめることも知られている(例えば、バ
イオケミストリー(Biochemistry ) 9
(1970)5015〜5022 )。In order to collect the proteins accumulated in microbial cells in the form of granules, the microbial cells are first brought into contact with lysozyme, then the cells are crushed by ultrasound, and the protein granules are separated by centrifugation. (For example, for bovine growth hormone, Biotenology
)+151-154.See February 1985). It is also known to solubilize the obtained protein granules with guanidine hydrochloride etc. (for example,
For interferon, U.S. Patent No. 4,476,0
(See No. 49). Furthermore, it is also known that two thiol residues in general soluble protein molecules are oxidized with all glutathione to form a disulfide bond (for example, Biochemistry 9
(1970) 5015-5022).
しかしながら、微生物細胞内に顆粒状に蓄積されたIL
−2ポリペプチドについては、より比活性が高いポリペ
プチド全よシ高い回収率で得るには、どのような回収方
法が適しているのか、知られていない。However, IL accumulated in granular form within microbial cells
Regarding the -2 polypeptide, it is not known what kind of recovery method is suitable for obtaining it with a higher recovery rate than all polypeptides with higher specific activity.
特にIL −2ポリペプチドは、他の蛋白質と比べると
、水に溶けにくい。加えて顆粒状ポリペプチドを可溶化
したときは、分子中に3箇のチオール残基が生じ、この
ようなポリペプチドは、IL−2活性を有しない。従っ
て、これら3つのチオール残基よシジスルフィド結合を
形成せしめる必要があると考えられるが、いずれか二つ
のチオール残基よシ選択的にジスルフィド結合を形成せ
しめなければならない。これらの点から、従来の顆粒状
に蓄積された蛋白に比べ、IL −2ポリペプチドの回
収については、よシ困難が予想される。In particular, IL-2 polypeptide is less soluble in water than other proteins. In addition, when a granular polypeptide is solubilized, three thiol residues are generated in the molecule, and such polypeptide does not have IL-2 activity. Therefore, it is considered necessary to form a cydisulfide bond between these three thiol residues, but the disulfide bond must be formed selectively between any two thiol residues. From these points, it is expected that recovery of IL-2 polypeptide will be more difficult than conventional proteins accumulated in granular form.
発明が解決しようとする問題点
従って、本発明の目的は、微生物細胞内に顆粒状に蓄積
されたIL −2ポリペプチドを、可溶性のIL−2活
性を有するポリペプチドとして、よシ高い比活性であっ
てより高い回収率で、回収する方法を見込出すことにあ
る。Problems to be Solved by the Invention Therefore, an object of the present invention is to convert IL-2 polypeptides accumulated in microbial cells into granules into polypeptides having soluble IL-2 activity with high specific activity. The goal is to find a way to recover the waste with a higher recovery rate.
問題点を解決するための手段
鋲止のような状況下で本発明者らは、IL −2ポリベ
ゾチドを顆粒状で細胞内に蓄積している微生物細胞を、
リゾチームと接触せしめた後、超音波にて細胞を破砕し
、ついで破砕物を重力場において沈降物を採取し、沈降
物を1Mから6Mグアニジン水溶液に入れ、これを弱い
酸化的条件下に置き、最後にグアニジン水溶液中に溶解
されているルー2/リペプチドを採取することにょシ、
高い比活性のポリペプチドが高い回収率で得られること
を見い出した。Means to Solve the Problems Under such circumstances, the present inventors have discovered that microbial cells that accumulate IL-2 polybezotide in granular form,
After contacting with lysozyme, the cells are disrupted by ultrasonication, then the crushed material is collected in a gravity field to collect the precipitate, the precipitate is placed in a 1M to 6M guanidine aqueous solution, and this is placed under weak oxidative conditions, Finally, to collect the Ru2/ripeptide dissolved in the guanidine aqueous solution,
It has been found that polypeptides with high specific activity can be obtained with a high recovery rate.
組換えDNA技術によシ造成されたIL−2生産能を有
する微生物及びその微生物を培養してIL−2ポリペプ
チドを生成せしめる方法は、欧州特許出顧公開第009
1539号に記載されている。A microorganism capable of producing IL-2 created by recombinant DNA technology and a method for culturing the microorganism to produce IL-2 polypeptide are disclosed in European Patent Publication No. 009.
No. 1539.
IL−2ポリペプチド全顆粒状に蓄積している微生物細
胞ヲリゾチームに接触せしめる方法は、微生物菌体を好
ましくは湿重to、005〜0.2fi/−となるよう
に、p?16から8の低張緩衝液あるいは培養液にけん
濁し、リゾチームt−2,500からso、ooo単位
/lntとなるように加え、好ましくはOから30℃の
範囲に、通常30分以上保てばよい。けん濁液中には0
.1から100mμのEDTA t−添加すれば、好ま
しい結果が得られることがある。The method of bringing the IL-2 polypeptide into contact with the microbial cell lysozyme accumulated in the form of granules includes the method of contacting the microbial cells with p? Suspend in 16 to 8 hypotonic buffer or culture solution, add lysozyme t-2,500 to so, ooo units/lnt, and keep preferably in the range of 0 to 30°C for usually 30 minutes or more. Bye. 0 in suspension
.. Favorable results may be obtained with additions of 1 to 100 mμ of EDTA t-.
リゾチームに接触させた細胞は、9から25 kHzの
超音波によシ破砕される。装置は、通常、細胞や組織の
破砕・ホそジエナイジングに用いられる超音波発生装置
を用いればよく、試料に超音波を伝達するホーンは投込
式のもの、カップ式のもの、いずれも使用できる。超音
波出力は、使用する超音波発生装置に適したものでよい
が、通常20Wから1 kWが用いられる。処理時間は
、処理液量。Cells contacted with lysozyme are disrupted by ultrasound at 9 to 25 kHz. As for the device, it is sufficient to use an ultrasonic generator that is normally used for disrupting and enlarging cells and tissues, and the horn that transmits ultrasonic waves to the sample can be either an immersion type or a cup type. . The ultrasonic output may be any value suitable for the ultrasonic generator used, but typically 20 W to 1 kW is used. Processing time depends on the amount of processing liquid.
出力、使用するホーン等に応じ適宜選択すればよい。細
胞の破砕状態は顕微鏡下に容易に観察することができる
。適切な破砕が行なわれると、 IL−2ポリペプチド
の顆粒以外の細胞構成物(細胞壁。It may be selected appropriately depending on the output, the horn used, etc. The crushed state of cells can be easily observed under a microscope. When proper disruption is performed, cellular components other than granules of IL-2 polypeptide (cell wall) are removed.
細胞膜等)は、微細な破片となり、もとの形をとどめな
い。また超音波処理は発熱を伴うので、けん濁液の熱変
性を防ぐため細胞の破砕は通常4℃とできるだけ低い温
度下で行なわれる。cell membranes, etc.) become minute fragments and do not retain their original shape. Furthermore, since ultrasonic treatment is accompanied by heat generation, cell disruption is usually carried out at as low a temperature as possible, 4° C., to prevent thermal denaturation of the suspension.
破砕によシ得られたIL−2ポリペプチド顆粒は重力場
におき、沈降物として採取される。遠心分離はIL−2
ポリペプチド顆粒が沈降する条件で行えばよいが、通常
2,000〜30,0OOX、!i’、好ましくは10
,000X#、5分程度行なわれる。また、蔗糖等の密
度勾配遠心分離を行ってもよい。このようにして得られ
る沈降物は、通常5Oes以上のIL−2ポリペプチド
を含有する◎
得られた顆粒状I L−2ポリペプチドよりなる沈降物
を1Mから6Mの範囲のグアニジン溶液中に、好ましく
は、o、oiから0.211/lの濃度となるようにけ
ん濁又は溶解する。グアニジン溶液が4から6Mの範囲
であるときは、顆粒が充分溶解して後、1から4Mにな
るよう水で希釈した方がIL−2ポリペプチドの回収率
が高いことがある。グアニジン水溶液の−は、6から1
0の範囲、よシ好ましくは7から9の範囲である。また
、顆粒状IL−2ポリペゾチドかけん濁または溶解され
ているグアニジン水溶液は、温度5℃から45℃の範囲
に置くのが好ましい。The IL-2 polypeptide granules obtained by crushing are placed in a gravity field and collected as a sediment. Centrifugation is IL-2
It can be carried out under conditions that allow the polypeptide granules to settle, but usually 2,000 to 30,000 OOX! i', preferably 10
,000X#, will be performed for about 5 minutes. Alternatively, density gradient centrifugation of sucrose or the like may be performed. The precipitate thus obtained usually contains 5 Oes or more of IL-2 polypeptide.◎ The precipitate consisting of the obtained granular IL-2 polypeptide is placed in a guanidine solution ranging from 1M to 6M. Preferably, it is suspended or dissolved to a concentration of o, oi to 0.211/l. When the guanidine solution is in the range of 4 to 6M, the recovery rate of IL-2 polypeptide may be higher if the granules are sufficiently dissolved and then diluted with water to a concentration of 1 to 4M. - of guanidine aqueous solution is 6 to 1
It is in the range of 0, more preferably in the range of 7 to 9. Further, the temperature of the aqueous guanidine solution in which the granular IL-2 polypezotide is suspended or dissolved is preferably kept at a temperature in the range of 5°C to 45°C.
グアニシンは、グアニジン塩酸塩が容易に入手できるの
で、塩酸塩が通常使用されるが、他の塩又は遊離形であ
ってもよい。Guanisine is commonly used as the hydrochloride salt since guanidine hydrochloride is readily available, but it may be in other salts or in free form.
顆粒状IL−2ポリペゾチドかけん濁又は溶解されてい
る1から6Mグアニジン水溶液は1弱い酸化条件に置か
れる。弱い酸化条件に置くには、グアニジン水溶液に空
気又は酸素を含む気体を通気してもよく、また、グルタ
チオン、システィン。A 1 to 6 M aqueous solution of guanidine in which the granulated IL-2 polypezotide is suspended or dissolved is placed under mildly oxidizing conditions. To place it under weak oxidizing conditions, air or a gas containing oxygen may be bubbled through the guanidine aqueous solution, and glutathione, cysteine, etc.
メルカプトエタノール、ジチオスレイトール等のチオー
ル化合物(及び酸素又は他の酸化剤)及びこれらのジス
ルフィド体のような弱い酸化剤を水溶液に添加してもよ
い。弱い酸化剤は、顆粒状IL−2ポリペグテドと同時
にグアニジン水溶液に添加しても良いが、 IL−2y
j?リイプチドがある程度溶解して後、特に4から6
M’グアニジンを水にて希釈した後に添加してもよい。Weak oxidizing agents such as mercaptoethanol, dithiothreitol, and other thiol compounds (and oxygen or other oxidizing agents) and their disulfides may be added to the aqueous solution. A weak oxidizing agent may be added to the guanidine aqueous solution at the same time as the granular IL-2 polypegated, but IL-2y
j? After the liputide has dissolved to some extent, especially from 4 to 6
M'guanidine may be added after diluting with water.
弱い酸化剤は大過剰量使用されるが1通常1から100
mM好ましくは10から20mMの濃度範囲で用いら
れる。ジスルフィド化合物を酸化剤として用いる場合は
、そのチオール体と混用するのがよく1例えばグルタチ
オンを用いる場合には、還元型グルタチオン(GSB
)と酸化型グルタチオン(G55G )を好ましくは5
:1〜20:1の比混用する。還元型のみを用いるとき
け、グアニジン水溶液に空気を流すのがよい。Weak oxidizing agents are used in large excess amounts, usually from 1 to 100
A concentration range of 10 to 20 mM is preferably used. When using a disulfide compound as an oxidizing agent, it is best to mix it with its thiol form.1For example, when using glutathione, reduced glutathione (GSB
) and oxidized glutathione (G55G), preferably 5
: Mixed in a ratio of 1 to 20:1. When only the reduced form is used, it is recommended to flow air through the guanidine aqueous solution.
酸化は1反応液を適当な時間間隔でサンプルをとりだし
、逆相HPLCによる分析によシ、活性型IL−2のピ
ークの増加が停止する迄続けられる。Oxidation is continued until the peak of active IL-2 stops increasing, as determined by taking samples of one reaction solution at appropriate time intervals and analyzing them by reverse phase HPLC.
かくして、グアニジン水溶液中に溶解されたIL−2ポ
リペプチドを1通常の方法で回収する。The IL-2 polypeptide thus dissolved in the aqueous guanidine solution is recovered in a conventional manner.
例えば、グアニジン水溶液をグル濾過によって脱塩し、
陽イオン交換樹脂を用いるカラムクロマトグラフィーに
供する。塩濃度を上昇させることにより、吸着されたI
L−2ポリペプチドを溶離せしめ、溶離液を逆相HPL
Cに直接負荷することによシ精製する。このようにして
、実質的に夾雑物を含まないIL−2ポリベゾチドを得
ることが出来る。For example, a guanidine aqueous solution is desalted by gel filtration,
Subject to column chromatography using a cation exchange resin. By increasing the salt concentration, the adsorbed I
The L-2 polypeptide was eluted and the eluate was subjected to reverse phase HPL.
It is purified by direct loading onto C. In this way, IL-2 polybezotide substantially free of contaminants can be obtained.
発明の作用、効果
この発明のIL−2の回収方法によれば、高い比活性の
IL−2/IJペプチドが、高い回収率で得られる。Functions and Effects of the Invention According to the method for collecting IL-2 of the present invention, IL-2/IJ peptides with high specific activity can be obtained at a high recovery rate.
実施例I
IL−2産生微生物の取得
IL−2ポリペプチドを細胞内に顆粒状に蓄積できるエ
シェリヒア・コリ(Escherichia coll
)pT9−11/I(BIOIを次のようにして得た
(第1図参照)。Example I Obtaining IL-2-producing microorganisms Escherichia coli that can accumulate IL-2 polypeptide in granular form within cells
) pT9-11/I (BIOI was obtained as follows (see Figure 1).
即ち、IL−2全cDNAを含むpIL2−5OA(欧
州特許出願公開91539号)、(寄託エシェリヒア・
コリ(Escher i ah i a co 11
) #1776/ p IL2−5OA、AJ1199
6 jFERMBP−226)
EシPstlで切断しインターロイキン−2cD
NA断片を得、さらにDraIで消化してIL−2cD
NA遺伝子の3′非構造遺伝子に存在するA−T、G−
Cホモポリマーを含む約300塩基対の断片を除去した
ところの530塩基対断片を得た。そしてこの断片とB
amHIリンカ−と、pBR322のPs t I −
EcoRIの大きい方の断片(EcoRI部位はフレノ
ウで平滑末端にした)とをT 4DNAリガーゼで連結
し、インターロイキン−2構造遺伝子のおよそ50塩基
対下流の非構造遺伝子の後ic BamH1切断部位の
入ったプラスミドを造成した。そしてこのプラスミドを
、I(giAlで消化しIL−2遺伝子を含むHg i
Al断片を得、これをDNA &リメラーゼ■(フレ
ノウ)処理で3′側に突出した単鎖部分のヌクレオチド
を削シ取シ平滑末端にした。そしてさらにこの断片をB
amHIで切断して約450塩基対の断片を得た。That is, pIL2-5OA (European Patent Application Publication No. 91539) containing the entire IL-2 cDNA, (Deposited Escherichia
Cori (Escher i ah i a co 11
) #1776/p IL2-5OA, AJ1199
6 jFERMBP-226)
Interleukin-2cD was cleaved with E-Pstl.
The NA fragment was obtained and further digested with DraI to obtain IL-2cD.
A-T, G- present in the 3' non-structural gene of the NA gene
A 530 base pair fragment was obtained by removing the approximately 300 base pair fragment containing the C homopolymer. And this fragment and B
amHI linker and Ps t I of pBR322
The larger EcoRI fragment (the EcoRI site was made blunt-ended with Flenow) was ligated with T4 DNA ligase, creating a BamH1 cleavage site approximately 50 base pairs downstream of the interleukin-2 structural gene after the nonstructural gene. A plasmid was constructed. This plasmid was then digested with I (giAl) and Hg i containing the IL-2 gene.
An Al fragment was obtained, which was treated with DNA & Limerase (Flenow) to remove the nucleotides in the single-stranded portion that protruded to the 3' side, resulting in a blunt end. And then add this fragment to B
Digestion with amHI yielded a fragment of about 450 base pairs.
また、 trpプロモーターを搭載したプラスミドとし
てpDR720を使用した。pDR720はpKO−1
(Rus+se1.D、R,and Bennett、
G、N、、Gene+ 20 +231(1982)
)のSma l切断部位1ctrpプロ%−ター。Furthermore, pDR720 was used as a plasmid carrying the trp promoter. pDR720 is pKO-1
(Rus+se1. D, R, and Bennett,
G.N., Gene+ 20 +231 (1982)
) SmaI cleavage site 1ctrp promoter%.
オペレーター断片が組込まれたものである。pDR72
0をHpalとB amHIで消化し、大きいHpa
I−BamHI断片を得、 trpプロモーターの1部
とAAGGなるSD配列ならびに蛋白合成開始コドンA
TGと成熟IL−24リペプチドのN末端のアラニンを
コードするOCAを含む合成オリゴマーとを第1図に示
すように連結しpMI−9を選びだした。It includes an operator fragment. pDR72
0 was digested with Hpal and BamHI, and the large Hpa
I-BamHI fragment was obtained, and a part of the trp promoter, the SD sequence AAGG, and the protein synthesis initiation codon A were obtained.
TG and a synthetic oligomer containing OCA encoding the N-terminal alanine of mature IL-24 ripeptide were ligated as shown in FIG. 1 to select pMI-9.
一方、 pBR322のPvulと5ail切断断片の
大きい断片と1合成したtrpAターミネータ−配列を
持つDNAとを連結させpTrpAを得た。セしてpM
I−9とpTrpAをともにEcoR’lとB amH
Iで消化しpMI−9はIL−2遺伝子を含む方の断片
、 pTrpAはtrpAターミネータ−を含む方の断
片をそれぞれ調製し、この2者を連結して、 pT9−
11を得た。そこでpT′9−11をエシュリヒア・コ
リHBIOI(F−、hsds20 (rB−。On the other hand, pTrpA was obtained by ligating the large Pvul and 5ail cleavage fragment of pBR322 with the synthesized DNA having the trpA terminator sequence. pM
I-9 and pTrpA together with EcoR'l and B amH
pMI-9 is a fragment containing the IL-2 gene, and pTrpA is a fragment containing the trpA terminator. The two are ligated to create pT9-
I got 11. Therefore, pT'9-11 was used as Escherichia coli HBOI (F-, hsds20 (rB-).
mB−) 、 recA13. ara−14+ pr
oA2.1icY1. galK2+rpsL20(S
mr)、 xyl−5,m+4−1.5upE44.λ
−)に導入L テpT9−11/’HBIOI t 得
fc。mB-), recA13. ara-14+ pr
oA2.1icY1. galK2+rpsL20(S
mr), xyl-5, m+4-1.5upE44. λ
-) introduced into L tepT9-11/'HBIOI t obtained fc.
IL−2ポリペグチド顆粒の調製 細胞は、(2チカデミノ酸、0.2チ酵母エキス。Preparation of IL-2 polypeptide granules The cells were (2 Ticademinoic acid, 0.2 Ti yeast extract.
0、596 NH4Cl 、 2 %グ#:r−ス、
0.1 % KH2PO4#0、05 % MgSO4
・7H20、0,005SC&C12−2H20。0,596 NH4Cl, 2% G#:r-su,
0.1% KH2PO4#0, 05% MgSO4
・7H20, 0,005SC&C12-2H20.
0.8ダ/1ttt L−ロイシン、0.8勢−L−プ
ロリン。0.8 Da/1ttt L-Leucine, 0.8 Da/1ttt L-Proline.
Bq/lサイアミン、100μl/−アンピシリン。Bq/l thiamine, 100 μl/- ampicillin.
25μI/−ストレプトマイシン)の組成の培地30〇
−中で、アンモニアで−を6.2に調節しながら31℃
で13時間、通気培養した。途中。25 μl/streptomycin) in a medium 30°C at 31°C while adjusting the temperature to 6.2 with ammonia.
The cells were cultured under aeration for 13 hours. in the middle.
660nmの0.D、がおよそ5.0に達した時点で。660nm 0. When D reaches approximately 5.0.
3−インドールアクリル酸25μI/−を加えて。Add 25 μl/- of 3-indoleacrylic acid.
IL−2遺伝子を発現させた。The IL-2 gene was expressed.
その後、細胞を集め、湿重量0.02.9/−になるよ
うに、50mMのEDTAを加えた2 0 mM )リ
ス塩酸緩衝液(pH7,5)にけん濁し、1〜/ゴとな
るようにリゾチーム(生化学工業部、卵白、比活性>5
0,0OOU/1mg)を加え、10℃に30分保った
。Thereafter, the cells were collected and suspended in 20 mM lithium-hydrochloric acid buffer (pH 7.5) to which 50 mM EDTA was added to give a wet weight of 0.02.9/-, and then suspended to a wet weight of 0.02. lysozyme (Department of Biochemical Industries, egg white, specific activity>5
0.0 OOU/1 mg) and kept at 10°C for 30 minutes.
次いで、このうち20dを4℃、50W、10分間超音
波処理して(大岳製作所5onicator使用)細胞
を破砕し、12,0OOX、9 、5分間遠心分離して
、IL−2ポリイグチドの顆粒を採取した。Next, 20 d of these were subjected to ultrasonication at 4°C, 50 W, for 10 minutes (using Otake Seisakusho 5onicator) to disrupt the cells, and centrifuged at 12,0 OOX for 9,5 minutes to collect IL-2 polyligtide granules. did.
活性型I L−2ポリペプチドの回収
得られたIL−2yj?lJペプチド顆粒を、6Mグア
ニジン塩酸塩(Gun−H(’t) 20−に溶解して
、液体クロマトグラフィーによりIL−2/リペグチド
量を測定した。一方、培養終了後の細胞をリゾチーム処
理、超音波による細胞破砕をせずに直接6MGun−H
C2Kよシ可溶化したものを調製し、液体クロマトグラ
フィーによりIL−2ポリペグチド量を測定した。これ
らの結果を表1に示す。Recovery of active IL-2 polypeptide Obtained IL-2yj? The lJ peptide granules were dissolved in 6M guanidine hydrochloride (Gun-H('t) 20-), and the amount of IL-2/ripegutide was measured by liquid chromatography.Meanwhile, the cells after completion of culture were treated with lysozyme, 6MGun-H directly without cell disruption using sound waves
A C2K solubilized product was prepared, and the amount of IL-2 polypeptide was measured by liquid chromatography. These results are shown in Table 1.
表 1 得られたIL−2ポリ−efチドを含むペレットを。Table 1 The obtained pellet containing IL-2 poly-eftide.
6M塩酸グアニジンを含む0.1 M )リス−塩酸緩
衝液(pH8,0,以下Aと略す)に、IL−2濃度0
.3119/−となるように溶解した。その後、0.1
M ) リス−塩酸緩衝液(pH8,0,以下、Bと
略す)で、3倍に希釈し、 GSH及びG55Gをそれ
ぞれ、最終濃度10mM及び1 rnMとなるように加
えた後、希苛性ソーダを用いて、PHを8に調整した。An IL-2 concentration of 0 was added to a 0.1 M) Lis-HCl buffer (pH 8.0, hereinafter abbreviated as A) containing 6 M guanidine hydrochloride.
.. 3119/-. Then 0.1
M) Diluted 3 times with Lis-HCl buffer (pH 8.0, hereinafter abbreviated as B), added GSH and G55G to final concentrations of 10 mM and 1 nM, respectively, and then diluted with dilute caustic soda. The pH was adjusted to 8.
室温下、12時間静止した後反応液0.05 M酢酸す
) IJウム緩衝液(pH5,0)で平衡化したセファ
デックスG−25を用いるカラムクロマトグラフィーに
供して低分子を除去した。0.05 M酢酸ナトリウム
緩衝液(pH5,0)で平衡化したCM−セフ7デツク
スC−25を充填したカラムに通液し、 IL−2を吸
着させた後に、0.5M酢酸ナトリウム緩衝液(pH5
,0)で。After standing still at room temperature for 12 hours, the reaction solution was subjected to column chromatography using Sephadex G-25 equilibrated with 0.05 M acetic acid buffer (pH 5.0) to remove low molecules. After passing the solution through a column packed with CM-Seph7dex C-25 equilibrated with 0.05 M sodium acetate buffer (pH 5,0) and adsorbing IL-2, 0.5 M sodium acetate buffer was added. (pH 5
,0) at.
IL−2を溶出した。IL-2 was eluted.
得られたIL−2ポリイグチド画分を逆相HPLC(特
開昭59−225195に記載されている方法を使用し
た)に供し、 IL−2画分を分取した。得られたIL
−2ポリペゾチドは、細胞障害性T−リン・臂球株を用
いる活性検定法では4.8X10’U/■の比活性を示
した。またペプチドマツプ法にヨリ、シじ(Cys−5
8とCys−105間にあることが判った。The obtained IL-2 polyligtide fraction was subjected to reverse phase HPLC (using the method described in JP-A-59-225195), and the IL-2 fraction was separated. Obtained IL
-2 polypezotide showed a specific activity of 4.8 x 10'U/■ in an activity assay using a cytotoxic T-phosphorus lumbar strain. In addition, the peptide map method (Cys-5
It was found to be between Cys-8 and Cys-105.
また、ペレット中に含まれるIL−2ポリペゾチドから
の回収率は86チであった。Moreover, the recovery rate from IL-2 polypezotide contained in the pellet was 86.
実施例2
実施例1に記した緩衝液Aで可溶化したペレットを緩衝
液Bで希釈する際に、ペレット量に対すリペプチド儀度
及び塩酸グアニジン濃度を表1に示した値になるように
調節した溶液を作成した。Example 2 When diluting the pellet solubilized with Buffer A described in Example 1 with Buffer B, the repeptide concentration and guanidine hydrochloride concentration relative to the pellet amount were adjusted to the values shown in Table 1. A solution was prepared.
これを、実施例1に記載した方法と同様にして。This was done in the same manner as described in Example 1.
GSHとassaで処理し、処理液を直接逆相HPLC
で分析することによって、総IL−2ポリー2fチドに
対する活性型、すなわちCys−58Cys−105間
にジスルフィド結合を持つIL−2の変換率を求めた。Treated with GSH and assa, and directly subjected the treated solution to reverse phase HPLC
The conversion rate of the active form of IL-2, that is, IL-2 having a disulfide bond between Cys-58Cys-105, with respect to total IL-2 poly2ftide was determined.
結果を表2に記した◎
表2 IL−2ポリペプチドの活性型への変換率(チ
)実施例3
実施例1に記載した方法によって得たIL−2ポリペプ
チドを含むペレットを、緩衝液A VCrL−2濃度0
.311/−となるように溶解し、続いて緩衝液Bで3
倍に希釈した。この溶液に空気をおだやかに通じながら
12時間攪拌した。しかる後に、実施例2に記した方法
によシ、脱塩、イオン交換クロマトグラフィー、逆相H
PLC工程を経て、IL−2画分を得た。得られたIL
−2は4.9X10 U/apの比活性を示し、また、
ジスルフィド結合位置は。The results are shown in Table 2. ◎ Table 2 Conversion rate of IL-2 polypeptide to active form (H) Example 3 The pellet containing IL-2 polypeptide obtained by the method described in Example 1 was dissolved in a buffer solution. A VCrL-2 concentration 0
.. 311/-, then diluted with buffer B
Diluted twice. The solution was stirred for 12 hours while gently bubbling air. Thereafter, the method described in Example 2 was followed by desalting, ion exchange chromatography, and reverse phase H
An IL-2 fraction was obtained through a PLC process. Obtained IL
-2 exhibited a specific activity of 4.9X10 U/ap, and
What is the disulfide bond position?
Cy@−58−Cys−105間であることが確認され
た。なおペレット中に含まれるIL−2ポリペゾチドか
らの回収率は72%であった。It was confirmed that it was between Cy@-58-Cys-105. The recovery rate from IL-2 polypezotide contained in the pellets was 72%.
実施例4
実施例1に記載した方法によって得られたIL−2yR
リペfチドを含むにレットを、3M塩酸グアニジン、
10 mM GSH、1mM G55Gを含む0.1
M トリス−塩酸緩衝液(pH8,0)に懸濁し、室温
下。Example 4 IL-2yR obtained by the method described in Example 1
3M guanidine hydrochloride,
0.1 containing 10mM GSH, 1mM G55G
M Suspended in Tris-HCl buffer (pH 8,0) at room temperature.
24時間、緩かに攪拌した。遠心分離によって不溶性画
分を除去した後実施例2に記した方法によって脱塩、イ
オン交換クロマトグラフィー、逆相HPLCを行ない、
I L−2画分を得た。得られたIL−2は、48X1
0 U/即の比活性を示し、ジスルフィド結合をCys
−58−105間に有していた。また、−(レフト中に
含まれるIL−2ポリペプチドからの回収率は65%で
あった。Stir gently for 24 hours. After removing the insoluble fraction by centrifugation, desalting, ion exchange chromatography, and reverse phase HPLC were performed by the method described in Example 2.
IL-2 fraction was obtained. The obtained IL-2 was 48X1
0 U/immediate specific activity, disulfide bond is changed to Cys
-58-105. Furthermore, the recovery rate from the IL-2 polypeptide contained in -(left) was 65%.
実施例5
実施例1に記載した方法によって得られたIL−2ポリ
ペプチドを含むペレットを3M塩酸グアニジンを含む0
.1 M )リス−塩酸緩衝液(pH8,0)に懸濁し
、室温下空気を通じながら、24時間攪拌した。遠心分
離によって不溶性画分を除去した後。Example 5 The pellet containing the IL-2 polypeptide obtained by the method described in Example 1 was dissolved in
.. The suspension was suspended in 1 M) lithium-hydrochloric acid buffer (pH 8,0) and stirred for 24 hours at room temperature while bubbling with air. After removing the insoluble fraction by centrifugation.
実施例2に記した方法によシ脱塩、イオン交換クロマト
グラフィー、逆相HPLCを行ないIL−2画分を得た
。得られたIL−2は、5.0X10 U/ダの比活性
を示し、ジスルフィド結合をCys−58−105間に
有していた。またペレット中に含まれるIL−2ポリペ
ブチPからの回収率は、52チであっ念。Desalting, ion exchange chromatography, and reverse phase HPLC were performed according to the method described in Example 2 to obtain an IL-2 fraction. The obtained IL-2 exhibited a specific activity of 5.0×10 U/da and had a disulfide bond between Cys-58 and 105. Furthermore, the recovery rate from IL-2 polypeptide P contained in the pellet was 52, which is impressive.
第1図は、インターロイキン2産生微生物の取得経過説
明図である。FIG. 1 is an explanatory diagram of the acquisition progress of interleukin-2 producing microorganisms.
Claims (1)
積している微生物細胞をリゾチームに接触させる第1工
程、リゾチームに接触された細胞を超音波により破砕す
る第2工程、破砕物を重力場に置き沈降物を採取する第
3工程、沈降物を1Mから6Mグアニジン水溶液中にて
弱い酸化条件に置く第4工程及びグアニジン水溶液中に
溶解されているインターロイキン2ポリペプチドを採取
する第5工程よりなるインターロイキン2ポリペプチド
の回収方法。The first step is to contact lysozyme with microbial cells that have accumulated interleukin-2 polypeptide in the form of granules, the second step is to crush the cells that have been contacted with lysozyme using ultrasound, and the crushed product is placed in a gravitational field. The third step is to collect the precipitate, the fourth step is to place the precipitate in a 1M to 6M guanidine aqueous solution under weak oxidizing conditions, and the fifth step is to collect the interleukin-2 polypeptide dissolved in the guanidine aqueous solution. Method for collecting interleukin 2 polypeptide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60099262A JPH0640832B2 (en) | 1985-05-10 | 1985-05-10 | Method for recovering interleukin 2 polypeptide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60099262A JPH0640832B2 (en) | 1985-05-10 | 1985-05-10 | Method for recovering interleukin 2 polypeptide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61257931A true JPS61257931A (en) | 1986-11-15 |
JPH0640832B2 JPH0640832B2 (en) | 1994-06-01 |
Family
ID=14242791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60099262A Expired - Lifetime JPH0640832B2 (en) | 1985-05-10 | 1985-05-10 | Method for recovering interleukin 2 polypeptide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0640832B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02503384A (en) * | 1987-05-11 | 1990-10-18 | カイロン コーポレイション | Method for recovering purified, oxidized, and regenerated recombinant interleukin-2 from microorganisms |
WO1992014832A1 (en) * | 1991-02-26 | 1992-09-03 | Ajinomoto Co., Inc. | Processes for purifying human bcdf |
US5162507A (en) * | 1987-05-11 | 1992-11-10 | Cetus Corporation | Process for recovering purified, oxidized, renatured recombinant interleukin-2 from microorganisms |
US6140128A (en) * | 1998-12-23 | 2000-10-31 | Genentech, Inc. | Preparation of calcium phosphate transfectacons |
US6180367B1 (en) | 1998-10-28 | 2001-01-30 | Genentech, Inc. | Process for bacterial production of polypeptides |
EP1911839A1 (en) | 2001-07-26 | 2008-04-16 | Ajinomoto Co., Inc. | Peptide-forming enzyme gene, peptide-forming enzyme, and dipeptide producing method |
EP2210943A1 (en) | 2002-08-26 | 2010-07-28 | Ajinomoto Co., Inc. | Novel aldolase and production process of substituted alpha-keto acids |
US7858339B1 (en) | 1998-10-28 | 2010-12-28 | Genentech, Inc. | Process for bacterial production of polypeptides |
DE112009001080T5 (en) | 2008-05-12 | 2011-03-03 | Ajinomoto Co., Inc. | A process for producing β-alanyl amino acid or a derivative thereof |
EP2295579A2 (en) | 2002-07-26 | 2011-03-16 | Ajinomoto Co., Inc. | Novel peptide-forming enzyme gene |
EP2330211A2 (en) | 2001-12-27 | 2011-06-08 | Ajinomoto Co., Inc. | Process for producing glutamic acid derivatives |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59161321A (en) * | 1982-12-22 | 1984-09-12 | ジエネンテツク・インコ−ポレイテツド | Purification and activation of sedimental heterogeneous protein |
JPS59220189A (en) * | 1983-02-08 | 1984-12-11 | バイオジェン ナームローズ ベンノットシャップ | Dna arrangement for preparing human interleukin 2-like polypeptide, rearranged dna molecule and production thereof |
-
1985
- 1985-05-10 JP JP60099262A patent/JPH0640832B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59161321A (en) * | 1982-12-22 | 1984-09-12 | ジエネンテツク・インコ−ポレイテツド | Purification and activation of sedimental heterogeneous protein |
JPS59220189A (en) * | 1983-02-08 | 1984-12-11 | バイオジェン ナームローズ ベンノットシャップ | Dna arrangement for preparing human interleukin 2-like polypeptide, rearranged dna molecule and production thereof |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02503384A (en) * | 1987-05-11 | 1990-10-18 | カイロン コーポレイション | Method for recovering purified, oxidized, and regenerated recombinant interleukin-2 from microorganisms |
US5162507A (en) * | 1987-05-11 | 1992-11-10 | Cetus Corporation | Process for recovering purified, oxidized, renatured recombinant interleukin-2 from microorganisms |
WO1992014832A1 (en) * | 1991-02-26 | 1992-09-03 | Ajinomoto Co., Inc. | Processes for purifying human bcdf |
US5610284A (en) * | 1991-02-26 | 1997-03-11 | Ajinomoto Co., Inc. | Method of purification of human BCDF |
US6180367B1 (en) | 1998-10-28 | 2001-01-30 | Genentech, Inc. | Process for bacterial production of polypeptides |
US6258560B1 (en) | 1998-10-28 | 2001-07-10 | Genentech, Inc. | Process for bacterial production of polypeptides |
US7858339B1 (en) | 1998-10-28 | 2010-12-28 | Genentech, Inc. | Process for bacterial production of polypeptides |
US8183029B2 (en) | 1998-10-28 | 2012-05-22 | Genentech, Inc. | Replicable expression vector for bacterial expression of a mammalian polypeptide |
US6140128A (en) * | 1998-12-23 | 2000-10-31 | Genentech, Inc. | Preparation of calcium phosphate transfectacons |
EP1911839A1 (en) | 2001-07-26 | 2008-04-16 | Ajinomoto Co., Inc. | Peptide-forming enzyme gene, peptide-forming enzyme, and dipeptide producing method |
EP2460884A2 (en) | 2001-12-27 | 2012-06-06 | Ajinomoto Co., Inc. | Process for preparing monatin |
EP2330211A2 (en) | 2001-12-27 | 2011-06-08 | Ajinomoto Co., Inc. | Process for producing glutamic acid derivatives |
EP2298908A2 (en) | 2002-07-26 | 2011-03-23 | Ajinomoto Co., Inc. | Novel peptide-forming enzyme gene |
EP2298906A2 (en) | 2002-07-26 | 2011-03-23 | Ajinomoto Co., Inc. | Novel peptide-forming enzyme gene |
EP2298907A2 (en) | 2002-07-26 | 2011-03-23 | Ajinomoto Co., Inc. | Novel peptide-forming enzyme gene |
EP2295579A2 (en) | 2002-07-26 | 2011-03-16 | Ajinomoto Co., Inc. | Novel peptide-forming enzyme gene |
EP2298909A2 (en) | 2002-07-26 | 2011-03-23 | Ajinomoto Co., Inc. | Novel peptide-forming enzyme gene |
EP2298905A2 (en) | 2002-07-26 | 2011-03-23 | Ajinomoto Co., Inc. | Novel peptide-forming enzyme gene |
EP2280068A1 (en) | 2002-08-26 | 2011-02-02 | Ajinomoto Co., Inc. | Novel aldolase and production process of substituted alpha-keto acids |
EP2210943A1 (en) | 2002-08-26 | 2010-07-28 | Ajinomoto Co., Inc. | Novel aldolase and production process of substituted alpha-keto acids |
DE112009001080T5 (en) | 2008-05-12 | 2011-03-03 | Ajinomoto Co., Inc. | A process for producing β-alanyl amino acid or a derivative thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0640832B2 (en) | 1994-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2686090B2 (en) | Novel fusion protein and purification method thereof | |
US5594115A (en) | Process of purifying recombinant proteins and compounds useful in such process | |
JPH0829096B2 (en) | DNA encoding a fusion protein | |
AU718013B2 (en) | Novel fusion protein recovery and purification methods | |
JPS61257931A (en) | Recovery of interleukin 2 polypeptide | |
US20190077828A1 (en) | High ph protein refolding methods | |
JP2011088922A (en) | Method of refining interleukin-4 and mutated protein of the same | |
KR20140135959A (en) | On-column enzymatic cleavage | |
JPH03228682A (en) | Preparation of nonhybrid protein in e. coli | |
CN114790474B (en) | Preparation method of Somalutide | |
WO1986007380A1 (en) | Process for preparing polypeptide | |
AU8640798A (en) | Recombinant expression of insulin c-peptide | |
EP0301835A1 (en) | Purification of human interleukin-4 expressed in Escherichia Coli | |
JP2537029B2 (en) | Method for producing growth hormone releasing factor | |
Dasari et al. | Optimization of the downstream process for high recovery of rhG-CSF from inclusion bodies expressed in Escherichia coli | |
KR0161656B1 (en) | Method for the production of glucagon | |
WO2002034785A1 (en) | Method of monomerizing human serum albumin polymers | |
WO1991015589A1 (en) | Improved process of purifying recombinant proteins and compounds useful in such process | |
CN111607004B (en) | A method for selectively protecting enzyme cleavage sites during trypsin digestion | |
JPH03259084A (en) | Method for producing thrombin-binding substance | |
WO2005066208A2 (en) | Method for production of recombinant growth hormone in form of hybrid protein | |
JP2845558B2 (en) | DNA sequence of methionine aminopeptidase | |
JPS63245680A (en) | Novel recombined plasmid pgif1 | |
CN117964708A (en) | Application of an intein and its mutants | |
CN115838745A (en) | Linear DNA template and system suitable for cell-free synthesis of restriction endonuclease BsaI and application thereof |