[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61240436A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS61240436A
JPS61240436A JP8316385A JP8316385A JPS61240436A JP S61240436 A JPS61240436 A JP S61240436A JP 8316385 A JP8316385 A JP 8316385A JP 8316385 A JP8316385 A JP 8316385A JP S61240436 A JPS61240436 A JP S61240436A
Authority
JP
Japan
Prior art keywords
substrate
glow discharge
recording medium
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8316385A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kiyokazu Touma
清和 東間
Kazuyoshi Honda
和義 本田
Taro Nanbu
太郎 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8316385A priority Critical patent/JPS61240436A/en
Publication of JPS61240436A publication Critical patent/JPS61240436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the titled magnetic recording medium having stabilized magnetic characteristics and form by treating a substrate with glow discharge immediately before the substrate begins to contact a cylindrical can when a metallic thin film magnetic layer is formed by vacuum deposition. CONSTITUTION:A substrate 1 of a high molecular material is treated with glow discharge by a glow discharge electrode 6 immediately before the substrate begins to contact a can 2. The glow discharge electrode 6 is arranged so that the glow discharge is exerted on the part of the substrate 1 which begins to contact the cylindrical can 2. The surface conditions of the substrate 1 are made uniform by the passage of the substrate 1 through a gas under the influence of the glow discharge and the electrification of the substrate 1 is removed. Consequently, the sticking of the substrate 1 on the can 2 is made uniform, a magnetic recording medium without any creases and having uniform characteristics can be obtained. Ar or N2 is preferably used as a gas to be introduced into a vacuum vessel in consideration of its stability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高分子材料より成る基板上に直接あるいは下地
層を介して金属薄膜磁性層を形成した磁気記録媒体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a magnetic recording medium in which a metal thin film magnetic layer is formed on a substrate made of a polymeric material either directly or via an underlayer.

従来の技術 従来、磁気記録媒体としては非磁性基板上に磁性粉を塗
布した塗布形のものが使用されて来たが、より高い記録
密度を達成するために、非磁性基板上に金属薄膜を真空
蒸着法で形成した薄膜形が実用化されつつある。
Conventional technology Conventionally, coated magnetic recording media have been used, in which magnetic powder is coated on a non-magnetic substrate, but in order to achieve higher recording density, metal thin films are coated on the non-magnetic substrate. Thin film types formed by vacuum evaporation are being put into practical use.

高分子材料より成る基板上に真空蒸着法を用いて金属*
m磁性層を形成する方法としては、基板を円筒状キャン
の周面に沿わせて走行させつつ蒸看する方法が最も優れ
ている。第3図はこのような方法を用いた真空蒸着装置
の内部構造の概略を示す。高分子材料により成る基板1
は円筒状キャン2の周面に沿って矢印へ方向に走行する
。この基板1上に蒸発源5によって磁性層が形成される
Metal* is produced using a vacuum evaporation method on a substrate made of polymeric material.
The best method for forming the m-magnetic layer is to steam the substrate while running it along the circumferential surface of a cylindrical can. FIG. 3 schematically shows the internal structure of a vacuum evaporation apparatus using such a method. Substrate 1 made of polymer material
travels along the circumferential surface of the cylindrical can 2 in the direction of the arrow. A magnetic layer is formed on this substrate 1 by an evaporation source 5 .

3.4はそれぞれ基板1の供給ロール及び巻取りロール
であio 発明が解決しようとする問題点 第3図のような真空蒸着装置にて高分子材料より成る基
板上に磁性層を形成すると、基板1の幅方向および長さ
方向に特性が変動して安定な膜を得ることが困難である
。このことを例をあげて説明すると、垂直磁気記録用媒
体としてよく知られているCo−Cr垂直磁気異方性躾
を、第3図の真空蒸着装置にて作製し、膜面に垂直方向
の保磁力の長さ方向の分布を測定すると、第4図のよう
に大幅な変化が見られた。幅方向でも第4図と同様に垂
直方向の保磁力が変化していた。この原因としては、基
板表面状態の不均一性および基板1のキャン2への密着
が均一でなく、基板1にキャン2と密着している部分と
そうでない部分ができるために生じる基板1の温度むら
が考えられる。
3.4 are the supply roll and take-up roll of the substrate 1, respectively. Problems to be Solved by the Invention When a magnetic layer is formed on a substrate made of a polymeric material using a vacuum evaporation apparatus as shown in FIG. The characteristics vary in the width direction and length direction of the substrate 1, making it difficult to obtain a stable film. To explain this with an example, a Co-Cr perpendicular magnetic anisotropy film, which is well known as a perpendicular magnetic recording medium, is fabricated using the vacuum evaporation apparatus shown in Fig. 3. When we measured the longitudinal distribution of coercive force, we found a significant change as shown in Figure 4. Also in the width direction, the coercive force in the vertical direction changed as shown in FIG. The cause of this is the temperature of the substrate 1 caused by the non-uniformity of the surface condition of the substrate and the uneven adhesion of the substrate 1 to the can 2, resulting in the formation of parts of the substrate 1 that are in close contact with the can 2 and parts that are not. There may be some unevenness.

このように、磁気特性が均一にならないこと以外に、特
にキャンの温度を150℃以上に昇温する場合にはしわ
も非常に入り易(、磁気特性、形状ともに安定な媒体を
作製することは困難である。
In addition to the fact that the magnetic properties are not uniform, especially when the temperature of the can is raised to 150°C or higher, it is very easy to wrinkle (and it is difficult to create a medium with stable magnetic properties and shape). Have difficulty.

本発明は磁気特性ならびに形状が安定な金属薄膜型磁気
記録媒体の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a metal thin film magnetic recording medium having stable magnetic properties and shape.

問題点を解決するための手段 本発明の磁気記録媒体の製造方法は、円筒状キャンの同
面に沿って高分子材料基板を走行させて前記基板上に直
接あるいは下地層を介して金属薄膜磁性層を真空蒸着法
・によって形成する際に、前記基板が円筒状キャンに接
し始める直前に基板にグロー放電処理を施すことを特徴
とする。
Means for Solving the Problems The method of manufacturing a magnetic recording medium of the present invention involves running a polymer material substrate along the same surface of a cylindrical can, and depositing a metal thin film magnetic material on the substrate directly or through an underlayer. The present invention is characterized in that when the layer is formed by vacuum evaporation, the substrate is subjected to a glow discharge treatment immediately before the substrate comes into contact with the cylindrical can.

作用 この構成によれば、基板がキャンに接し始める直前(こ
こで言う直前とはキャンに接し始める部分を含んでいる
。)に基板をグロー放電処理するので、基板の表面状態
が均一になり、かつグロー放電による除電効果のために
基板の帯電が取り除かれてキャンに一様に密着し、その
結果、しわのない特性の均一な磁気記録媒体が得られる
According to this configuration, the glow discharge treatment is applied to the substrate just before the substrate starts contacting the can (immediately here includes the part where the substrate starts contacting the can), so that the surface condition of the substrate becomes uniform. In addition, due to the neutralizing effect of the glow discharge, the charge on the substrate is removed and the substrate uniformly adheres to the can, resulting in a wrinkle-free magnetic recording medium with uniform characteristics.

実施例 以下、本発明の製造方法を具体的な一実施例に基づいて
説明する。
EXAMPLE Hereinafter, the manufacturing method of the present invention will be explained based on a specific example.

第1図は本発明の製造方法を実施する真空蒸着装置を示
し、第3図と同様の作用を成すものには同一符号が付け
られており、高分子材料基板1がキャン2に接し始める
直前にグロー放電用電極6によりグロー放電処理が施さ
れる点だけが第3図とは異なる。グロー放電用電極6に
電力を供給し真空度を調整することにより電極近傍にグ
ロー放電が発生する。なお、グロー放電用電極6は、グ
ロー放電が基板1が円筒状キャン2に接し始める部分に
も及ぶように配置されている。このグロー放電状態にあ
る気体中を基板1が通過することにより、基板1の表面
状態が均一になり、かつ基板1の帯電が取り除かれる。
FIG. 1 shows a vacuum evaporation apparatus for carrying out the manufacturing method of the present invention. Components having the same functions as those in FIG. The only difference from FIG. 3 is that a glow discharge treatment is performed by a glow discharge electrode 6. By supplying power to the glow discharge electrode 6 and adjusting the degree of vacuum, glow discharge is generated near the electrode. Note that the glow discharge electrode 6 is arranged so that the glow discharge also extends to the portion where the substrate 1 begins to come into contact with the cylindrical can 2. By passing the substrate 1 through the gas in this glow discharge state, the surface condition of the substrate 1 becomes uniform and the charge on the substrate 1 is removed.

その結果、キャン2への基板1の貼り付きが一様になり
、しわのない特性の均一な磁気記録媒体が得られる。
As a result, the adhesion of the substrate 1 to the can 2 becomes uniform, and a wrinkle-free magnetic recording medium with uniform characteristics is obtained.

グロー放電の形式としては、直流、交流、高周波、マグ
ネトロン形など、種々あるが、これらのいずれでも良い
。グロー放電を生じさせるために真空槽内に導入する気
体としては、A「あるいはN2が安定性の点から好まし
い。
There are various types of glow discharge, including direct current, alternating current, high frequency, and magnetron type, and any of these types may be used. As the gas introduced into the vacuum chamber to generate glow discharge, A or N2 is preferable from the viewpoint of stability.

なお、グロー放電用電極を第5図に示すように、基板1
のキャン2への入口近傍から離して設置すると、上述の
効果は大幅に低下してしまう。これは、グロー放電処理
を受けた基板1がキャン2に接し始めるまでに、真空槽
内の気体やフリーローラ7に接するので、グロー放電処
理の効果が弱められてしまうためだと考えられる。
In addition, as shown in FIG. 5, the glow discharge electrode is attached to the substrate 1.
If it is installed away from the vicinity of the entrance to the can 2, the above-mentioned effect will be significantly reduced. This is thought to be because the substrate 1 that has undergone the glow discharge treatment comes into contact with the gas in the vacuum chamber and the free roller 7 before it starts contacting the can 2, so that the effect of the glow discharge treatment is weakened.

また、グロー放電処理は基板1の片側だけに施してもか
なりの効果が認められるが、第1図に示す如(基板1の
両側に施すことが望ましい。さらに第2図に示す如く、
真空槽9内を仕切り板8によってグロー放電処理部Bと
蒸着膜形成部Cとに仕切り、蒸着膜形成部Cの真空度を
グロー放電処環部Bよりも高い真空度に保つことにより
、磁性層の磁気特性が向上する。第2図において、10
は排気ポンプである。
Further, even if the glow discharge treatment is applied only to one side of the substrate 1, a considerable effect can be recognized, but as shown in FIG. 1 (it is preferable to apply it to both sides of the substrate 1).
The interior of the vacuum chamber 9 is divided into a glow discharge processing section B and a vapor deposited film forming section C by a partition plate 8, and the vacuum degree of the vapor deposited film forming section C is maintained at a higher degree of vacuum than that of the glow discharge processing section B. The magnetic properties of the layer are improved. In Figure 2, 10
is the exhaust pump.

また、磁性層とキャン2の周面との間に電圧を印加する
ことにより、基板1のキャン2への密着性が向上し、よ
り安定な媒体が得られる。
Further, by applying a voltage between the magnetic layer and the circumferential surface of the can 2, the adhesion of the substrate 1 to the can 2 is improved, and a more stable medium can be obtained.

なお、本発明の効果はキャン2の周面温度が150℃以
上の場合に、より顕著である。Co−Cr!1!直磁気
異方性膜を真空蒸着法で作製する際には、キャン2の周
面温度を150″C以上、より好ましくは200℃以上
にする必要があるので、本発明はco−Cr垂直磁気異
方性膜を作製する場合に特に有効である。
Note that the effects of the present invention are more significant when the peripheral surface temperature of the can 2 is 150° C. or higher. Co-Cr! 1! When producing a perpendicular magnetic anisotropic film using a vacuum evaporation method, the peripheral surface temperature of the can 2 needs to be 150"C or higher, more preferably 200"C or higher. This is particularly effective when producing an anisotropic film.

次に本発明のより具体的な実験例を説明する。Next, more specific experimental examples of the present invention will be explained.

[実験例] 第2図の真空蒸着装置にて、基板1として膜厚10μ讃
のポリイミドフィルムを使用し、この上に磁性層として
膜厚300OAのCo−Cr垂直磁気異方性膜を形成し
た。ここでキャン2の周面の温度を230℃とした。グ
ロー放電用電源としては13.6MHzの高周波電源を
用い、グロー放電用電極6をポリイミドフィルムが円筒
状キャンに接し始める直前に設置した。グロー放電を発
生させるために、グロー放電用電極の近傍からA「を導
入し、グロー放電部近傍の真空度を0.01 Torr
とした。
[Experiment example] In the vacuum evaporation apparatus shown in Fig. 2, a polyimide film with a thickness of 10 μm was used as the substrate 1, and a Co-Cr perpendicular magnetic anisotropic film with a thickness of 300 OA was formed thereon as a magnetic layer. . Here, the temperature of the circumferential surface of can 2 was set to 230°C. A high frequency power source of 13.6 MHz was used as the glow discharge power source, and the glow discharge electrode 6 was installed just before the polyimide film began to come into contact with the cylindrical can. In order to generate glow discharge, A' is introduced from near the glow discharge electrode, and the degree of vacuum near the glow discharge part is set to 0.01 Torr.
And so.

この状態で蒸着膜形成部近傍の真空度は 1.2×1O
−4T Orrであった。また、キャン2の周面とco
 −Cr !!直磁気異方性膜との間に120ボルトの
電圧を印加した。
In this state, the degree of vacuum near the deposited film formation area is 1.2×1O
-4T Orr. In addition, the peripheral surface of can 2 and co
-Cr! ! A voltage of 120 volts was applied between the film and the direct magnetic anisotropic film.

このようにして形成された膜はしわが全くなく、長さ方
向及び幅方向に特性が均一であり、垂直磁気記録媒体と
して優れた特性を有していた。これに対し、グロー放電
処理を施さない場合には、長さ方向及び幅方向に均一な
特性の膜は得られなかった。なお、上記のように、ポリ
イミドフィルム上に直接co−Cr躾を形成せずに、問
に酸化物膜等の下地層を介してco−Cr膜を形成する
場合にも同様の効果が認められた。
The film thus formed had no wrinkles, had uniform properties in the length direction and width direction, and had excellent properties as a perpendicular magnetic recording medium. On the other hand, when the glow discharge treatment was not performed, a film with uniform characteristics in the length and width directions could not be obtained. Furthermore, as mentioned above, a similar effect is observed when a co-Cr film is formed via an underlying layer such as an oxide film instead of directly forming a co-Cr film on a polyimide film. Ta.

発明の詳細 な説明のように本発明の磁気記録媒体の製造方法は、高
分子材料基板が円筒状キャンに接し始める直前に、基板
にグロー放電処理を施し、円筒状キャンの周面に沿って
走行しつつある高分子材料基板上に直接にあるいは下地
層を介して金jl薄膜磁性層を真空蒸着するため、基板
がキャンに接し始める直前(ここで言う直前とはキャン
に接し始める部分を含んでいる。)に基板をグロー放電
処理すると、基板の表面状態が均一になり、かつグロー
放電による除電効果のために基板の帯電が取り除かれて
キャンに一様に密着し、完成した磁気記録媒体は高分子
材料基板上にしわがなく、長さ方向及び幅方向に特性が
均一な磁性層であった。
As described in the detailed description of the invention, in the method for manufacturing a magnetic recording medium of the present invention, immediately before the polymeric material substrate starts to come into contact with the cylindrical can, the substrate is subjected to a glow discharge treatment, and the substrate is treated with glow discharge along the circumferential surface of the cylindrical can. In order to vacuum-deposit a thin magnetic layer of gold onto a moving polymer substrate directly or through an underlayer, it is deposited immediately before the substrate starts contacting the can (immediately here includes the part where the substrate starts contacting the can). ) When the substrate is treated with glow discharge, the surface condition of the substrate becomes uniform, and the static electricity removal effect of the glow discharge removes the charge on the substrate, allowing it to adhere uniformly to the can, resulting in a completed magnetic recording medium. The magnetic layer had no wrinkles on the polymer material substrate and had uniform characteristics in the length and width directions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法を実施する真空蒸着装置の一
実施例の構成図、第2図は第1図の他の実施例の構成図
、第3図は従来の真空蒸着装置の構成図、第4図は従来
の方法で磁性層を蒸着した場合の保磁力のむらを示す説
明図、第5図は第1図におけるグロー放電用電極の配°
設位置説明図である。 1・・・高分子材料基板、2・・・円筒状キャン、3・
・・供給ロール、4・・・巻取りロール、5・・・蒸発
源、6・・・グロー放電用電極、8・・・仕切り板、9
・・・真空槽、B・・・グロー放電処理部、C・・・蒸
着膜形成部代理人   森  本  義  弘 第7図     /=−鉢j材料幕扱 2−一一円墳醜ミ(えヤ。 5−五発練 第3図 第4図 吾ハ―〕
FIG. 1 is a configuration diagram of an embodiment of a vacuum evaporation apparatus for carrying out the manufacturing method of the present invention, FIG. 2 is a configuration diagram of another embodiment of FIG. 1, and FIG. 3 is a configuration diagram of a conventional vacuum evaporation apparatus. Figure 4 is an explanatory diagram showing the unevenness of coercive force when a magnetic layer is deposited by the conventional method, and Figure 5 shows the arrangement of the glow discharge electrode in Figure 1.
It is an explanatory diagram of the installation position. 1... Polymer material substrate, 2... Cylindrical can, 3.
... Supply roll, 4... Winding roll, 5... Evaporation source, 6... Glow discharge electrode, 8... Partition plate, 9
...Vacuum chamber, B...Glow discharge processing section, C...Vapour-deposited film forming section agent Yoshihiro Morimoto Figure 7 Ya. 5-5 Exercises Figure 3 Figure 4 Iha]

Claims (1)

【特許請求の範囲】 1、円筒状キャンの周面に沿って高分子材料基板を走行
させて前記基板上に直接あるいは下地層を介して金属薄
膜磁性層を真空蒸着法によって形成する際に、前記基板
が円筒状キャンに接し始める直前に基板にグロー放電処
理を施す磁気記録媒体の製造方法。 2、グロー放電処理を、基板の両面に施すことを特徴と
する特許請求の範囲第1項記載の磁気記録媒体の製造方
法。 3、グロー放電処理と磁性層の蒸着とを真空槽内で両室
間に差圧を有する別々の室で実施することを特徴とする
特許請求の範囲第1項記載の磁気記録媒体の製造方法。 4、磁性層と円筒状キャンの周面の電位を異ならせるこ
とを特徴とする特許請求の範囲第1項記載の磁気記録媒
体の製造方法。 5、グロー放電用のガスとして、ArあるいはN_2を
用いることを特徴とする特許請求の範囲第1項記載の磁
気記録媒体の製造方法。 6、磁性層としてCo−Cr垂直磁気異方性膜を用いる
ことを特徴とする特許請求の範囲第1項記載の磁気記録
媒体の製造方法。
[Claims] 1. When a polymer material substrate is run along the circumferential surface of a cylindrical can and a metal thin film magnetic layer is formed on the substrate directly or via a base layer by vacuum evaporation, A method for manufacturing a magnetic recording medium, wherein the substrate is subjected to glow discharge treatment immediately before the substrate starts contacting the cylindrical can. 2. The method for manufacturing a magnetic recording medium according to claim 1, wherein glow discharge treatment is performed on both sides of the substrate. 3. A method for manufacturing a magnetic recording medium according to claim 1, characterized in that the glow discharge treatment and the deposition of the magnetic layer are performed in separate chambers having a pressure difference between the two chambers in a vacuum chamber. . 4. The method of manufacturing a magnetic recording medium according to claim 1, characterized in that the potentials of the magnetic layer and the circumferential surface of the cylindrical can are made different. 5. The method for manufacturing a magnetic recording medium according to claim 1, characterized in that Ar or N_2 is used as the gas for glow discharge. 6. The method of manufacturing a magnetic recording medium according to claim 1, characterized in that a Co--Cr perpendicular magnetic anisotropic film is used as the magnetic layer.
JP8316385A 1985-04-18 1985-04-18 Production of magnetic recording medium Pending JPS61240436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8316385A JPS61240436A (en) 1985-04-18 1985-04-18 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8316385A JPS61240436A (en) 1985-04-18 1985-04-18 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61240436A true JPS61240436A (en) 1986-10-25

Family

ID=13794587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8316385A Pending JPS61240436A (en) 1985-04-18 1985-04-18 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61240436A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810299A2 (en) * 1996-05-31 1997-12-03 The Boc Group, Inc. Apparatus for coating plastic films
JP2006089782A (en) * 2004-09-22 2006-04-06 Mitsubishi-Hitachi Metals Machinery Inc Substrate cooling apparatus and substrate cooling method
JP2006104568A (en) * 2004-10-08 2006-04-20 Dainippon Printing Co Ltd Film formation apparatus using pressure gradient ion plating
JP2006124731A (en) * 2004-10-26 2006-05-18 Dainippon Printing Co Ltd Pressure gradient type ion plating film deposition apparatus and film deposition method
JP2006124738A (en) * 2004-10-27 2006-05-18 Dainippon Printing Co Ltd Pressure gradient type ion plating film deposition apparatus
JP2006124781A (en) * 2004-10-29 2006-05-18 Dainippon Printing Co Ltd Pressure gradient type ion plating film deposition apparatus and film deposition method
JP2006131929A (en) * 2004-11-04 2006-05-25 Dainippon Printing Co Ltd Pressure-gradient ion-plating type film deposition system and film deposition method
WO2011158452A1 (en) * 2010-06-16 2011-12-22 パナソニック株式会社 Method for manufacturing thin film
WO2011158453A1 (en) * 2010-06-16 2011-12-22 パナソニック株式会社 Method for manufacturing thin film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810299A3 (en) * 1996-05-31 2000-02-09 The Boc Group, Inc. Apparatus for coating plastic films
EP0810299A2 (en) * 1996-05-31 1997-12-03 The Boc Group, Inc. Apparatus for coating plastic films
JP2006089782A (en) * 2004-09-22 2006-04-06 Mitsubishi-Hitachi Metals Machinery Inc Substrate cooling apparatus and substrate cooling method
JP4664637B2 (en) * 2004-09-22 2011-04-06 三菱重工業株式会社 Substrate cooling apparatus and substrate cooling method
JP4601379B2 (en) * 2004-10-08 2010-12-22 大日本印刷株式会社 Pressure gradient ion plating film deposition system
JP2006104568A (en) * 2004-10-08 2006-04-20 Dainippon Printing Co Ltd Film formation apparatus using pressure gradient ion plating
JP2006124731A (en) * 2004-10-26 2006-05-18 Dainippon Printing Co Ltd Pressure gradient type ion plating film deposition apparatus and film deposition method
JP2006124738A (en) * 2004-10-27 2006-05-18 Dainippon Printing Co Ltd Pressure gradient type ion plating film deposition apparatus
JP2006124781A (en) * 2004-10-29 2006-05-18 Dainippon Printing Co Ltd Pressure gradient type ion plating film deposition apparatus and film deposition method
JP2006131929A (en) * 2004-11-04 2006-05-25 Dainippon Printing Co Ltd Pressure-gradient ion-plating type film deposition system and film deposition method
WO2011158452A1 (en) * 2010-06-16 2011-12-22 パナソニック株式会社 Method for manufacturing thin film
WO2011158453A1 (en) * 2010-06-16 2011-12-22 パナソニック株式会社 Method for manufacturing thin film
US8865258B2 (en) 2010-06-16 2014-10-21 Panasonic Corporation Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material
US8877291B2 (en) 2010-06-16 2014-11-04 Panasonic Corporation Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material
JP5807216B2 (en) * 2010-06-16 2015-11-10 パナソニックIpマネジメント株式会社 Thin film manufacturing method
JP5807217B2 (en) * 2010-06-16 2015-11-10 パナソニックIpマネジメント株式会社 Thin film manufacturing method

Similar Documents

Publication Publication Date Title
JPS61240436A (en) Production of magnetic recording medium
EP0387904B1 (en) Method of producing thin film
JPS61240437A (en) Production of magnetic recording medium
JPS59124038A (en) Manufacture of magnetic recording medium
JPS62207867A (en) Production of thin metallic film
JPS63277750A (en) Formation of thin film
JPS6256567A (en) Production of metallic thin film
JPH01152261A (en) Manufacture of thin metallic film
JPS63255362A (en) Device for producing thin metallic film
JPH02239428A (en) Production of metal thin film
JPS61196430A (en) Production of magnetic recording medium
JPH0198123A (en) Production of magnetic recording medium
JPS63307258A (en) Production of thin metallic film
JPS61260425A (en) Magnetic recording medium producing device
JPH01273221A (en) Production of thin metallic film
JPS58222439A (en) Magnetic recording medium and its manufacture
JPS634424A (en) Production of magnetic recording medium
JPH08167141A (en) Device for forming film
JPS60147933A (en) Magnetic recording medium manufacturing device
JPS59147026A (en) Preparation of thin film of metal
JPH0223526A (en) Production of thin metallic film
JPS6122436A (en) Manufacture of vertical magnetic recording medium
JPS63310960A (en) Production of thin metal film
JPH09302475A (en) Continuous formation of thin coating and device therefor
JPH02126422A (en) Production of magnetic recording medium